首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The rat liver glucocorticoid receptor has been eluted from DNA-cellulose with pyridoxal 5′-phosphate at low ionic strength. This elution is concentration dependent with 80–90% of the receptor eluted in 30 rain at 0 °C when the concentration of pyridoxal 5′-phosphate is 10 mm. This elution is specific for the 4′-aldehyde group of pyridoxal 5′-phosphate since vitamin B6 analogs lacking this group are inactive in eluting the steroid-receptor complex from DNA-cellulose. Receptor has also been eluted from rat liver nuclei with similar results. The receptor eluted with pyridoxal 5′-phosphate has been compared with the receptor eluted with 0.45 m NaCl. Both methods of elution yield a steroid-receptor complex which sediments at about 3.7 S. The pyridoxal 5′-phosphate-eluted receptor however, is less prone to aggregation at low ionic strength and more stable with respect to steroid binding than the 0.45 m NaCl-eluted steroid-receptor complex. The complement of proteins eluted from DNA-cellulose with pyridoxal 5′-phosphate is very similar to that eluted with NaCl as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

2.
Chick oviduct cytosol [3H]progesterone-receptor complex treated with 30 mm Ca2+ at 0 °C demonstrated a twofold greater binding to isolated chick oviduct nuclei or DNA-cellulose than such complexes activated thermally (25 °C). Divalent ions such as Mg2+ and Mn2+ were unable to mimic the effect of Ca2+ under identical conditions. The capacity of the Ca2+-treated progesterone-receptor complex to bind to nuclei or DNA-cellulose reached a peak within 45 min of Ca2+ treatment of the complex at 0 °C. This binding gradually declined as a function of incubation time and after 24 h at 0 °C no significant binding was observed. The Ca2+- and heat-treated chick oviduct [3H]progesterone-receptor complex was also characterized by DEAE-cellulose and agarose gel nitration chromatography. While heat-activated receptor could be resolved into A and B subunits on DEAE-cellulose, the receptor exposed to Ca2+ for 45 min at low temperature yielded the “A” subunit and a broad peak with poor affinity for the anion exchanger. The peak corresponding to “B” subunit was not discernible. The broad peak which eluted before the A peak was subsequently resolved by agarose gel filtration into receptor forms IV and V as described previously by Sherman et al. (M. Sherman, S. Atienza, J. Shansky, and L. Hoffman, 1974, J. Biol. Chem., 249, 5351–5363; M. Sherman, L. Pickering, F. Rollwagen and L. Miller, 1978, Fed. Proc., 37, 167–173). Again DEAE-cellulose chromatography of the progesterone-receptor complex treated as long as 24 h at 0 °C with Ca2+ revealed a poorly bound peak which on agarose gel filtration corresponded exclusively to form V. A correlation was apparent between an increase in form V and a gradual decrease in the binding capacity of the Ca2+-treated steroid-receptor complex to nuclei, DNA-cellulose, or DEAE-cellulose filters.Based on these findings, I postulate that Ca2+ has a functional role in the mechanism of progesterone action in chick oviduct. Firstly, it enhances a low temperature, time dependent binding of the progesterone-receptor complex to chick oviduct nuclear components, and subsequently promotes, by possible activation of endogenous protease(s) the cleavage of the receptor subunits.  相似文献   

3.
Physical measurements of the liver glucocorticoid receptor.   总被引:5,自引:2,他引:3       下载免费PDF全文
Physical measurements were made on the cytosolic form of the liver [3H]dexamethasone receptor. These include a Stokes radius of 3.5 nm, determined by gel filtration, and sedimentation coefficients of 5.1 and 7-8S, by sucrose-density-gradient centrifugation. From these measurements, the following physical properties were calculated: apparent mol. wt. 78000 (the 5.1 S form); D app. 6.1 X 10(-7) cm2-S-1; f/fo 1.25; axial ratio 4.7; these indicate a globular protein. Measurements of sedimentation coefficient of cytosol steroid-receptor complexes previously subjected to various activating conditions gave different values and lead to the conclusion that the mechanism of activation in vitro enabling the steroid-receptor complex to bind to DNA is more complex than simple disaggregation to a uniform size.  相似文献   

4.
Rat liver cytosol contains a heat-labile macromolecule that inhibits the binding of the transformed glucocorticoid-receptor complex to nuclei or DNA-cellulose (Milgrom, E., and Atger, M. (1975) J. Steroid Biochem. 6, 487-492; Simons, S. S., Jr., Martinez, H. M., Garcea, R. L., Baxter, J. D., and Tomkins, G. M. (1976) J. Biol. Chem. 251, 334-343. We have developed a quantitative assay for the inhibitor and have purified it 600-700-fold by ammonium sulfate precipitation, ethanol precipitation, and phosphocellulose and Sephacryl S-300 chromatography. The inhibitory activity copurifies with a Mr = 37,000 protein doublet. Under low salt conditions, both the inhibitory activity and the 37-kDa protein doublet behave as high Mr aggregates that subsequently dissociate in the presence of salt. The inhibitor is positively charged at physiological pH, and it is not affected by digestion with several serine proteases or RNase. The inhibitor does not affect the transformation process, and it does not cause the release of steroid-receptor complexes that have been prebound to DNA-cellulose. The inhibitor preparation does not cleave receptors in L-cell cytosol that are covalently labeled with the site-specific affinity steroid [3H]dexamethasone 21-mesylate. If the steroid-receptor complex is first separated from the great majority of cytosol protein by transforming it and binding it to DNA-cellulose, addition of the inhibitor preparation results in receptor cleavage. Under these conditions, cleavage can be blocked with 1-chloro-3-tosylamido-7-amino-L-2-heptanone and antipain, but protease inhibitors do not affect the inhibition of DNA binding that occurs in whole cytosol. The inhibitor acts through an interaction with the receptor, not with DNA. We suggest that the inhibitor may prove to be a useful tool for studying the interaction of the steroid-receptor complex with DNA or nuclei and speculate that it may be important in determining normal events of the receptor cycle as they occur in the intact cell.  相似文献   

5.
Abstract

Activation and deactivation of the chick thymus glucocorticoid receptor protein was studied in ordinary and heavy water by DNA-cellulose binding of the tritiated triamcinolone acetonide-receptor complex. Activation was significantly slower in heavy water if it was promoted by incubation at elevated temperature in buffers of low ionic strength. In the presence of 300 mM KC1 or after separation from the low molecular weight cytosol constituents, the complex was activated at the same rate in both solvents. Deactivation (time dependent loss of DNA-binding capacity) was much faster in ordinary than in heavy water regardless of gel filtration or the presence of KC1. A model of receptor activation-deactivation was constructed on the basis of these data that accounts for the observed kinetic deuterium isotope effects and reveals some submolecular details of the process.  相似文献   

6.
Abstract

Male rat liver contains components in both cytosol and nucleosol which bind the synthetic testosterone derivative, mibolerone, with a high affinity, low capacity and a high specificity for androgens. Gel filtration chromatography shows two binding components. A high molecular weight component (M.Wt 230,000) present in cytosol alone and a low molecular weight component (M.Wt 60,000) present in cytosol and nucleosol. Male rat liver contains the classical androgen receptor.  相似文献   

7.
When soluble steroid-receptor complexes are exposed to DNA-cellulose only activated complexes bind. The specificity of the binding was shown by its dependence on the presence of hormone during activation. However, prolonged incubation of non-activated steroid-receptor complexes with DNA-cellulose led to a progressive activation of these complexes. When the same hepatic cytosol containing heat-activated [3H]triamcinolone acetonide-receptor complexes was titrated by high concentrations of nuclei or DNA-cellulose the former bound 75% of the complexes, the latter only 40%. This decreased binding was due on the one hand to a lower initial interaction between DNA-cellulose and activated complexes than between nuclei and these complexes and on the other hand to increased losses during washes when DNA-cellulose was used. For these reasons nuclei and not DNA-cellulose should be used when accurate measurements of the concentration of activated complexes are required. When only comparative data are needed DNA-cellulose may, however, be employed.  相似文献   

8.
The possible reversibility of pH induced activation of the glucocorticoid-receptor complex was studied. Generally, this was accomplished by activating rat liver cytosol at pH 8.5 (15 degrees C, 30 min), and then returning it to pH 6.5 for a second incubation (15 degrees C, 30 min). Activation was quantitated by measuring the binding of [3H]triamcinolone acetonide [( 3H]TA)-receptor complexes to DNA-cellulose. When cytosol was incubated at pH 6.5, only 4.1% of the [3H]TA-receptor complexes bound to DNA-cellulose. However, 39.2% of the complexes bound when the cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 47.0% of the steroid-receptor complexes bound. Thus, according to the DNA-cellulose binding assay, pH induced activation was irreversible. In order to visualize both activated and unactivated [3H]TA-receptor complexes during this process, diethylaminoethyl (DEAE)-cellulose chromatography was performed. When cytosol was incubated at pH 6.5, only 19.6% of the [3H]TA-receptor complexes were eluted in the activated form from DEAE-cellulose. However, 67.5% of the complexes were eluted in the activated form when cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 74.9% of the steroid-receptor complexes were eluted in the activated form. Thus, DEAE-cellulose chromatography also showed that pH induced activation was irreversible. This is the first known report that the combination of DNA-cellulose binding and DEAE-cellulose chromatography have been used to study pH induced activation of the glucocorticoid-receptor complex. By these criteria, we conclude that in vitro pH induced activation is irreversible.  相似文献   

9.
The DNA-binding and physical properties of the rat liver cytosol glucocorticoid receptor were determined before and after Sephacryl S-300 filtration in the presence or absence of molybdate. Cytosol was prepared and labeled with [3H]triamcinolone acetonide in buffer containing molybdate. Prior to gel filtration, only 5 +/- 3% (mean +/- S.E.) of labeled receptors bound to DNA-cellulose. After gel filtration in the presence and absence of molybdate, the per cent of labeled receptors binding to DNA-cellulose was 57 +/- 10% and 83 +/- 1%, respectively. Nonreceptor fractions from the Sephacryl S-300 column contained a heat-stable factor which blocked receptor activation but did not block the binding of activated receptors to DNA-cellulose. The activation inhibitor eluted from the column in the region of the albumin standard, but after heating its size was considerably reduced (Mr less than 3500). Receptors activated by Sephacryl S-300 filtration underwent the same size changes in the presence or absence of molybdate. Prior to gel filtration, the S20,w of labeled receptors in the presence of molybdate was 9.2 +/- 0.2 S. After filtration in the presence and absence of molybdate, the S20,w of labeled receptors was 4.2 +/- 0.2 and 4.4 +/- 0.1 S, respectively. The Stokes radius (Rs) of labeled receptors after gel filtration in either the presence or absence of molybdate was 65 +/- 1 A. From the Rs and S20,w values, the molecular weight (Mr) of activated receptors was calculated to be 115,000 to 121,000, which was in close agreement with the Mr of affinity-labeled receptors determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

10.
The binding of [1-14C]oleate to rat liver cytosol was studied, using gel filtration on Sephadex G-75 and G-50. In liver cytosols from control rats, most of the high-affinity oleate binding was in the region of 12 000-dalton proteins. In liver cytosols from diabetic and starved rats, a second peak of radioactivity appeared in the void volume. This peak was shown to be associated with a component having the molecular weight of 400 000. Evidence suggesting that a change in the composition of cytosolic binding proteins is involved is presented.  相似文献   

11.
The binding of the radioactive synthetic hormonal steroids [3H]dexamethasone (9 alpha-fluoro-11 beta, 17 alpha, 21-trihydroxy-16 alpha-methyl-1,4-pregnadiene-3,20-dione) and [3H]methyltrienolone (17 beta-hydroxy-17 alpha-methyl-4,9,11-estratien-3-one) to cytosol from rat skeletal muscle was studied using dextran-coated charcoal to separate unbound and receptor-bound steroid. The rates of association, dissociation, and degradation of the complexes of dexamethasone and methyltrienolone with receptor were highly dependent on temperature. The temperature dependence of association was greater for dexamethasone, and that of degradation was greater for methyltrienolone. Dissociation rates were insignificant for both steroid-receptor complexes compared to association and degradation rates. The apparent equilibrium dissociation constants for the binding of dexamethasone and methyltrienolone to their receptor binding sites were about 7 and 0.3 nM, respectively, regardless of temperature (0. 15 or 23 degrees C). The lack of influence of temperature on the equilibrium constants indicate that the binding was of hydrophobic character, and the corresponding free energy changes upon binding of dexamethasone and methyltrienolone to their respective binding sites were -41 and -49 kJ mol-1 under equilibrium conditions at 0 degrees C. The apparent maximum number of binding sites determined from Scatchard plots under these conditions was about 1900 fmol/g of tissue, 3500 fmol/mg of DNA or 30 fmol/mg of protein in the case of the dexamethasone receptor, and the corresponding figures for the methyltrienolone were about 100 fmol/g of tissue, 200 fmol/mg of DNA or 2 fmol/mg of protein. The ligand specificities of the binding sites for dexamethasone and methyltrienolone were typical of a glucocorticoid and an androgen receptor, respectively. Both steroid-receptor complexes were retained on DNA-cellulose columns, and were eluted by NaCl at an ionic strength of 0.1. The DNA-cellulose step purified about 20 times, and was used to allow gel exclusion chromatography and electrofocusing. Both steroid-receptor complexes were excluded from a column of Sephadex G-150. Electrofocusing in preparative columns gave reproducible patterns consisting of three peaks for each receptor. The apparent isoelectric points were 5.4, 5.6 and 6.2 for the glucocorticoid receptor, and 5.9, 6.2 and 8.5 for the androgen receptor.  相似文献   

12.
Glucocorticoid-receptor complex from rat liver cytosol, activated by warming at 23°C or fractionation with (NH4)2SO4, was adsorbed over DNA-cellulose. This DNA-cellulose-bound [3H]triamcinolone acetonide-receptor complex was extracted in a dose-dependent manner by incubation with different concentrations of sodium tungstate. A 50% recovery of receptor was achieved with 5 mM sodium tungstate. Almost the entire glucocorticoid-receptor complex bound to DNA-cellulose could be extracted with 20 mM sodium tungstate. The [3H]triamcinolone acetonide released from DNA-cellulose following tungstate and molybdate treatment was found to be associated with a macromolecule, as seen by analysis on a Sephadex G-75 column. The glucocorticoid-receptor complex extracted by both the compounds sedimented as a 4 S entity of 5–20% sucrose gradients under low- and high-salt conditions. Addition of tungstate or molybdate to the preparations containing activated receptor had no effect on the sedimentation rate of receptor. However, addition of tungstate to non-activated receptor preparation caused aggregates of larger size. The tungstate-extracted glucocorticoid-receptor complex failed to rebind to DNA-cellulose even after extensive dialysis, whereas receptor in molybdate-extract retained its DNA-cellulose binding capacity.  相似文献   

13.
In order to explain the potent antiglucocorticoid activity of RU 38486 and the absence of agonist effect in spite of its very strong interaction with the cytoplasmic glucocorticoid receptor (GR), we investigated the compound's ability to promote GR “activation” and nuclear translocation. We have compared the dissociation-rates of the “non-activated” (molybdate stabilized) and of the “activated” (25°C pre-heated) GR complexes formed either with [3H]RU 38486 or with different tritiated glucocorticoid agonists. While agonists dissociated more slowly from the “activated” than from the “non-activated” complex, RU 38486 dissociated much faster from the “activated” than from the “native” receptor. This difference of activation was confirmed in a DNA-cellulose binding assay. The affinity of the “activated” RU 38486-GR complex for DNA was much lower than that of the dexamethasone-GR complex. Finally, the in vitro nuclear uptake of [3H]RU 38486 was compared with that of [3H]dexamethasone after incubation with thymus minces at 25 or 37°C. A very weak or nearly undetectable level of specific uptake of [3H]RU 38486 was observed in purified nuclei, whatever the concentration or the time of incubation used. These observations suggest that while glucocorticoid agonists form with the non-activated receptor a complex able to be activated into a more stable form (lower k−1), RU 38486 interacts strongly with the non-activated receptor (impeding the binding of DM) but the complex is “transformed” by heat to a less stable form (higher k−1), unable to translocate properly into the nucleus in order to trigger a glucocorticoid response.  相似文献   

14.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) binds to a specific, high-affinity, low-capacity protein in rat liver cytosol. The TCDD-receptor complex is a large molecule with a Stokes radius of 6.6 nm as determined by gel filtration on calibrated columns. The receptor complex sediments at 5.0 S on glycerol gradients. The calculated molecular weight from the physical parameters was 136 000 and the frictional ratio 1.79.The TCDD-receptor complex binds to DNA-cellulose without preceding heat activation or incubation at high ionic strength. The receptor must first bind TCDD before it can interact with DNA. The DNA-binding ability can be removed from the TCDD receptor by limited proteolysis with trypsin. This treatment does not affect the TCDD-binding site of the receptor. The proteolytic fragment of the TCDD-receptor complex containing the TCDD-binding site but not the ability to bind to DNA appears to be approximately the same size as the native receptor, as judged from chromatography of Sepharose CL-6B and glycerol gradient centrifugation.  相似文献   

15.
The cytoplasmic DNA-binding proteins of Physarum polycephalum were recovered by chromatography of cytosol extracts on sequential columns of native and denatured calf thymus DNA-cellulose. 5.4% of the total cytosol protein was bound to native DNA-cellulose, while 4.4% was bound to denatured DNA-cellulose. Stepwise salt gradient elution of the columns separated the DNA-binding proteins into 9 fractions which were analysed by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Several hundred discrete polypeptide bands were identified, with many more high molecular weight polypeptides (greater than 100 000 D) binding to native than to denatured DNA. Continuous in vivo labelling of microplasmodia in KH2[32P]O4 and [3H]leucine was used to determine which of the DNA-binding proteins were phosphorylated, and to approximate their phosphorus content. About 30–40 phosphoproteins were resolved among the DNA-binding proteins. Most phosphoproteins contained less than 3 phosphates per polypeptide, but a small number of low molecular weight phosphoproteins (less than 50 000 D) contained from 5 to 10 phosphates per polypeptide. The majority of high molecular weight DNA-binding phosphoproteins bound to native DNA and were eluted with 0.25 M NaCl. As a group, the DNA-binding proteins were enriched in protein-bound phosphorus when compared with the cytosol proteins which did not bind to DNA. The phosphorus content of the cytoplasmic DNA-binding proteins was similar to that of the acidic nuclear proteins.  相似文献   

16.
Using a gel filtration on Sephadex G-150 in low ionic strength, it was possible to separate a corticosterone-binding protein in rat liver cytosol from corticosteroid-binding globulin after incubation of cytosol with [3H]corticosterone. The corticosterone-protein complex ("alpha-Complex") had a sedimentation coefficient of 8-9 S in low ionic strength. In high ionic strength, the alpha-Complex rapidly dissociated with a half-life of 15 h, compared to a half-life of 31 h for the hepatic dexamethasone-receptor complex under identical conditions (0 degrees C). The alpha-Compelx was saturable with an excess of unlabelled corticosterone of dexamethasone and was sensitive to heat and protease digestion. It is stressed that quantitation of the corticosterone-receptor complex must include separation of the receptor from corticosteroid-binding globulin as this protein binds corticosterone with high affinity and with a saturable amount of binding sites.  相似文献   

17.
A fatty acid-binding protein has been identified and isolated from the cytosol fraction of rat brain. The fatty acid-binding protein was purified to homogeneity by gel filtration and preparative isoelectric focusing. The binding protein was different from Z protein from rat liver in its isoelectric point and immunological reactivity, in spite of its similar molecular weight of 12,000. Rabbit antibodies against rat liver Z protein were used to demonstrate that the fatty acid-binding proteins from rat liver and brain are immunologically unrelated, and that no Z protein is present in rat brain cytosol.  相似文献   

18.
the occurrence of a soluble fraction from rat liver that inactivates acetyl-CoA carboxylase was previously reported by this laboratory (1). The purification of this fraction is now reported, and we show that it behaves as a cAMP-independent kinase that inactivates acetyl-CoA carboxylase by phosphorylation. The kinase has a molecular weight of 160,000 and it requires ATP and Mg2+ for activity. A partial purification from rat liver cytosol of a Mg2+-requiring phosphoprotein phosphatase of high molecular weight (greater than 200,000) which dephosphorylates phosphorylated acetyl-CoA carboxylase with the regeneration of enzyme activity is also reported. The kinase, phosphatase, and acetyl-CoA carboxylase are separable from each other by a combination of ammonium sulfate precipitation, DEAE-cellulose chromatography, and gel filtration.  相似文献   

19.
20.
A macromolecular material that enhances the translocation, or binding, of already "activated" receptor-glucocorticoid complex to nuclei in the presence of 5 mM ATP was separated from the cytosol of rat liver by DEAE-cellulose column chromatography with about 0.025 M NaCl. The molecular weight of the material was about 93,000 +/- 4,900, as determined by agarose gel filtration. After incubation at 60 degrees C for 15 min, this material still had activity to increase the nuclear binding, but on boiling for 15 min it lost its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号