首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The social brain hypothesis proposes that haplorhine primates have evolved relatively large brains for their body size primarily as an adaptation for living in complex social groups. Studies that support this hypothesis have shown a strong relationship between relative brain size and group size in these taxa. Recent reports suggest that this pattern is unique to haplorhine primates; many nonprimate taxa do not show a relationship between group size and relative brain size. Rather, pairbonded social monogamy appears to be a better predictor of a large relative brain size in many nonprimate taxa. It has been suggested that haplorhine primates may have expanded the pairbonded relationship beyond simple dyads towards the evolution of complex social groups. We examined the relationship between group size, pairbonding, and relative brain size in a sample of 19 lemurs; strepsirrhine primates that last share a common ancestor with monkeys and apes approximately 75 Ma. First, we evaluated the social brain hypothesis, which predicts that species with larger social groups will have relatively larger brains. Secondly, we tested the pairbonded hypothesis, which predicts that species with a pairbonded social organization will have relatively larger brains than non-pairbonded species. We found no relationship between group size or pairbonding and relative brain size in lemurs. We conducted two further analyses to test for possible relationships between two nonsocial variables, activity pattern and diet, and relative brain size. Both diet and activity pattern are significantly associated with relative brain size in our sample. Specifically, frugivorous species have relatively larger brains than folivorous species, and cathemeral species have relatively larger brains than diurnal, but not nocturnal species. These findings highlight meaningful differences between Malagasy strepsirrhines and haplorhines, and between Malagasy strepsirrhines and nonprimate taxa, regarding the social and ecological factors associated with increases in relative brain size. The results suggest that factors such as foraging complexity and flexibility of activity patterns may have driven selection for increases in brain size in lemurs.  相似文献   

2.
The social intelligence hypothesis suggests that living in large social networks was the primary selective pressure for the evolution of complex cognition in primates. This hypothesis is supported by comparative studies demonstrating a positive relationship between social group size and relative brain size across primates. However, the relationship between brain size and cognition remains equivocal. Moreover, there have been no experimental studies directly testing the association between group size and cognition across primates. We tested the social intelligence hypothesis by comparing 6 primate species (total N = 96) characterized by different group sizes on two cognitive tasks. Here, we show that a species’ typical social group size predicts performance on cognitive measures of social cognition, but not a nonsocial measure of inhibitory control. We also show that a species’ mean brain size (in absolute or relative terms) does not predict performance on either task in these species. These data provide evidence for a relationship between group size and social cognition in primates, and reveal the potential for cognitive evolution without concomitant changes in brain size. Furthermore our results underscore the need for more empirical studies of animal cognition, which have the power to reveal species differences in cognition not detectable by proxy variables, such as brain size.  相似文献   

3.
We present a detailed reanalysis of the comparative brain data for primates, and develop a model using path analysis that seeks to present the coevolution of primate brain (neocortex) and sociality within a broader ecological and life-history framework. We show that body size, basal metabolic rate and life history act as constraints on brain evolution and through this influence the coevolution of neocortex size and group size. However, they do not determine either of these variables, which appear to be locked in a tight coevolutionary system. We show that, within primates, this relationship is specific to the neocortex. Nonetheless, there are important constraints on brain evolution; we use path analysis to show that, in order to evolve a large neocortex, a species must first evolve a large brain to support that neocortex and this in turn requires adjustments in diet (to provide the energy needed) and life history (to allow sufficient time both for brain growth and for 'software' programming). We review a wider literature demonstrating a tight coevolutionary relationship between brain size and sociality in a range of mammalian taxa, but emphasize that the social brain hypothesis is not about the relationship between brain/neocortex size and group size per se; rather, it is about social complexity and we adduce evidence to support this. Finally, we consider the wider issue of how mammalian (and primate) brains evolve in order to localize the social effects.  相似文献   

4.
Compared to most other mammals and birds, anthropoid primates have unusually complex societies characterised by bonded social groups. Among primates, this effect is encapsulated in the social brain hypothesis: the robust correlation between various indices of social complexity (social group size, grooming clique size, tactical behaviour, coalition formation) and brain size. Hitherto, this has always been interpreted as a simple, unitary relationship. Using data for five different indices of brain volume from four independent brain databases, we show that the distribution of group size plotted against brain size is best described as a set of four distinct, very narrowly defined grades which are unrelated to phylogeny. The allocation of genera to these grades is highly consistent across the different data sets and brain indices. We show that these grades correspond to the progressive evolution of bonded social groups. In addition, we show, for those species that live in multilevel social systems, that the typical sizes of the different grouping levels in each case coincide with different grades. This suggests that the grades correspond to demographic attractors that are especially stable. Using five different cognitive indices, we show that the grades correlate with increasing social cognitive skills, suggesting that the cognitive demands of managing group cohesion increase progressively across grades. We argue that the grades themselves represent glass ceilings on animals' capacity to maintain social and spatial coherence during foraging and that, in order to evolve more highly bonded groups, species have to be able to invest in costly forms of cognition.  相似文献   

5.
Neocortex size predicts deception rate in primates   总被引:4,自引:0,他引:4  
Human brain organization is built upon a more ancient adaptation, the large brain of simian primates: on average, monkeys and apes have brains twice as large as expected for mammals of their size, principally as a result of neocortical enlargement. Testing the adaptive benefit of this evolutionary specialization depends on finding an association between brain size and function in primates. However, most cognitive capacities have been assessed in only a restricted range of species under laboratory conditions. Deception of conspecifics in social circumstances is an exception, because a corpus of field data is available that encompasses all major lines of the primate radiation. We show that the use of deception within the primates is well predicted by the neocortical volume, when observer effort is controlled for; by contrast, neither the size of the rest of the brain nor the group size exert significant effects. These findings are consistent with the hypothesis that neocortical expansion has been driven by social challenges among the primates. Complex social manipulations such as deception are thought to be based upon rapid learning and extensive social knowledge; thus, learning in social contexts may be constrained by neocortical size.  相似文献   

6.
Mammals living in more complex social groups typically have large brains for their body size and many researchers have proposed that the primary driver of the increase in brain size through primate and hominin evolution was the selection pressures associated with sociality. Many mammals, and especially primates, use flexible signals that show a high degree of voluntary control and these signals may play an important role in forming and maintaining social relationships between group members. However, the specific role that cognitive skills play in this complex communication, and how in turn this relates to sociality, is still unclear. The hypothesis for the communicative roots of complex sociality and cognition posits that cognitive demands behind the communication needed to form and maintain bonded social relationships in complex social settings drives the link between brain size and sociality. We review the evidence in support of this hypothesis and why key features of cognitively complex communication such as intentionality and referentiality should be more effective in forming and maintaining bonded relationships as compared with less cognitively complex communication. Exploring the link between cognition, communication and sociality provides insights into how increasing flexibility in communication can facilitate the emergence of social systems characterised by bonded social relationships, such as those found in non‐human primates and humans. To move the field forward and carry out both within‐ and among‐species comparisons, we advocate the use of social network analysis, which provides a novel way to describe and compare social structure. Using this approach can lead to a new, systematic way of examining social and communicative complexity across species, something that is lacking in current comparative studies of social structure.  相似文献   

7.
According to behavioural ecology theory, sociality evolves when the net benefits of close association with conspecifics exceed the costs. The nature and relative magnitude of the benefits and costs of sociality are expected to vary across species and habitats. When sociality is favoured, animals may form groups that range from small pair-bonded units to huge aggregations. The size and composition of social groups have diverse effects on morphology and behaviour, ranging from the extent of sexual dimorphism to brain size, and the structure of social relationships. This general argument implies that sociality has fitness consequences for individuals. However, for most mammalian species, especially long-lived animals like primates, there are sizable gaps in the chain of evidence that links sociality and social bonds to fitness outcomes. These gaps reflect the difficulty of quantifying the cumulative effects of behavioural interactions on fitness and the lack of information about the nature of social relationships among individuals in most taxa. Here, I review what is known about the reproductive consequences of sociality for mammals.  相似文献   

8.
In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support ‘technical intelligence’ hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency.  相似文献   

9.
Among mammals, the members of some Orders have relatively large brains. Alternative explanations for this have emphasized either social or ecological selection pressures favouring greater information-processing capacities, including large group size, greater foraging efficiency, higher innovation rates, better invasion success and complex problem solving. However, the focal taxa for these analyses (primates, carnivores and birds) often show both varied ecological competence and social complexity. Here, we focus on the specific relationship between social complexity and brain size in ungulates, a group with relatively simple patterns of resource use, but extremely varied social behaviours. The statistical approach we used, phylogenetic generalized least squares, showed that relative brain size was independently associated with sociality and social complexity as well as with habitat use, while relative neocortex size is associated with social but not ecological factors. A simple index of sociality was a better predictor of both total brain and neocortex size than group size, which may indicate that the cognitive demands of sociality depend on the nature of social relationships as well as the total number of individuals in a group.  相似文献   

10.
Facial colour patterns and facial expressions are among the most important phenotypic traits that primates use during social interactions. While colour patterns provide information about the sender''s identity, expressions can communicate its behavioural intentions. Extrinsic factors, including social group size, have shaped the evolution of facial coloration and mobility, but intrinsic relationships and trade-offs likely operate in their evolution as well. We hypothesize that complex facial colour patterning could reduce how salient facial expressions appear to a receiver, and thus species with highly expressive faces would have evolved uniformly coloured faces. We test this hypothesis through a phylogenetic comparative study, and explore the underlying morphological factors of facial mobility. Supporting our hypothesis, we find that species with highly expressive faces have plain facial colour patterns. The number of facial muscles does not predict facial mobility; instead, species that are larger and have a larger facial nucleus have more expressive faces. This highlights a potential trade-off between facial mobility and colour patterning in primates and reveals complex relationships between facial features during primate evolution.  相似文献   

11.
The evolutionary origin of Primates' exceptionally large brains is still highly debated. Two competing explanations have received much support: the ecological hypothesis and the social brain hypothesis (SBH). We tested the SBH in (n = 82) baboons (Papio anubis) belonging to the same research centre but housed in groups with size ranging from 2 to 63 individuals. We found that baboons living in larger social groups had larger brains. This effect was driven mainly by white matter volume and to a lesser extent by grey matter volume but not by the cerebrospinal fluid. In comparison, the size of the enclosure, an ecological variable, had no such effect. In contrast to the current re-emphasis on potential ecological drivers of primate brain evolution, the present study provides renewed support for the social brain hypothesis and suggests that the social brain plastically responds to group size. Many factors may well influence brain size, yet accumulating evidence suggests that the complexity of social life might be an important determinant of brain size in primates.  相似文献   

12.
The siamang (Hylobates syndactylus) is exceptional among gibbons in that its area of distribution almost completely overlaps those of other gibbons, namely the white-handed gibbon (H. lar) and the agile gibbon (H. agilis) of the lar group. The siamang has almost twice the body weight of the gibbons of the lar group (ca. 11 kg vs. 5–6 kg), and it has been suggested that distinct ecological and behavioural differences exist between the siamang and its two sympatric species. The siamang has been claimed to differ from the white-handed gibbon “in the closer integration and greater harmony of group life” (Chivers, 1976, p. 132). However, few quantitative data exist to support this hypothesis. In the present study, intra-group interactions in captive family groups of white-handed gibbons and siamangs (two groups of each species) were recorded by focal-animal sampling. These data failed to show a consistent association between species and most of the behavioural patterns recorded, such as frequency of aggression, percentage of successful food transfer, frequency of social grooming bouts, and duration of social grooming/animal/hr. A significant difference was found for only two of the variables: Individual siamangs in this study showed longer grooming bout durations, and made fewer food transfer attempts than lar individuals. Only the first of these two differences is consistent with the hypothesis mentioned above, whereas the lower frequency of food transfer attempts in siamangs is the opposite of what should be expected under the hypothesis. On the other hand, two of these behavioural patterns showed a significant correlation with the parameters group size and individual age: Both individuals in larger groups and younger individuals tended to show shorter grooming bouts and a smaller proportion of successful food transfers. Our findings indicate that social cohesion within these gibbon groups may be much more flexible according to and depending on social or ecological influences and less rigidly linked to specific gibbon taxa than previously assumed. A considerably larger number of gibbon groups would have to be compared to provide reliable evidence for or against species-specific differences in group cohesion. Another finding of this study—a positive correlation between the frequency of aggression and grooming—is discussed in the light of the functional interpretations commonly attributed to allogrooming behaviour in primates.  相似文献   

13.
The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition.  相似文献   

14.
Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.  相似文献   

15.
According to the social intelligence hypothesis, relative neocortex size should be directly related to the degree of social complexity. This hypothesis has found support in a number of comparative studies of group size. The relationship between neocortex and sociality is thought to exist either because relative neocortex size limits group size or because a larger group size selects for a larger neocortex. However, research on primate social evolution has indicated that male and female group sizes evolve in relation to different demands. While females mostly group according to conditions set by the environment, males instead simply go where the females are. Thus, any hypothesis relating to primate social evolution has to analyse its relationship with male and female group sizes separately. Since sex-specific neocortex sizes in primates are unavailable in sufficient quantity, I here instead present results from phylogenetic comparative analyses of unsexed relative neocortex sizes and female and male group sizes. These analyses show that while relative neocortex size is positively correlated with female group size, it is negatively, or not at all correlated with male group size. This indicates that the social intelligence hypothesis only applies to female sociality.  相似文献   

16.
Primate societies are characterized by bonded social relationships of a kind that are rare in other mammal taxa. These bonded relationships, which provide the basis for coalitions, are underpinned by an endorphin mechanism mediated by social grooming. However, bonded relationships of this kind impose constraints on the size of social groups that are possible. When ecological pressures have demanded larger groups, primates have had to evolve new mechanisms to facilitate bonding. This has involved increasing the size of vocal and visual communication repertoires, increasing the time devoted to social interaction and developing a capacity to manage two-tier social relationships (strong and weak ties). I consider the implications of these constraints for the evolution of human social communities and argue that laughter was an early evolutionary innovation that helped bridge the bonding gap between the group sizes characteristic of chimpanzees and australopithecines and those in later hominins.  相似文献   

17.
We present a compilation of endocranial volumes (ECV) for 176 non-human primate species based on individual data collected from 3813 museum specimens, at least 88% being wild-caught. In combination with body mass data from wild individuals, strong correlations between endocranial volume and body mass within taxonomic groups were found. Errors attributable to different techniques for measuring cranial capacity were negligible and unbiased. The overall slopes for regressions of log ECV on log body mass in primates are 0.773 for least-squares regression and 0.793 for reduced major axis regression. The least-squares slope is reduced to 0.565 when independent contrasts are substituted for species means (branch lengths from molecular studies). A common slope of 0.646 is obtained with logged species means when grade shifts between major groups are taken into account using ANCOVA. In addition to providing a comprehensive and reliable database for comparative analyses of primate brain size, we show that the scaling relationship between brain mass and ECV does not differ significantly from isometry in primates. We also demonstrate that ECV does not differ substantially between captive and wild samples of the same species. ECV may be a more reliable indicator of brain size than brain mass, because considerably larger samples can be collected to better represent the full range of intraspecific variation. We also provide support for the maternal energy hypothesis by showing that basal metabolic rate (BMR) and gestation period are both positively correlated with brain size in primates, after controlling for the influence of body mass and potential effects of phylogenetic relatedness.  相似文献   

18.
The number of species varies greatly among taxa. In birds, for example, the parvorder Passerida contains 3556 species while the Odontophorida contains only six species. This uneven distribution of species among bird groups is not a consequence of random branching patterns and therefore warrants an explanation. According to the behavioural drive hypothesis, behavioural innovation coupled with social transmission of the new skill to other members of the population may lead to accelerated rates of evolution, and could therefore account for differences in species richness. In this paper, we test the behavioural drive hypothesis by examining the link between behavioural flexibility and the number of species per taxon. We estimate flexibility with relative brain size and feeding innovation rate and predict that both will be positively associated with the number of species per taxon. Since the number of species at any given time results from a balance between speciation and extinction rates, we also examine the link between flexibility and the number of species threatened with extinction. We predict that the two flexibility correlates will be negatively associated with the number of species at risk. In simple regressions, both flexibility correlates were significantly associated with species number per taxon. However, only innovation rate remained in the final model. Relative brain weight dropped out of the multiple regression due to its association with innovation rate. Relative brain weight, innovation rate and species number per taxon were all significantly correlated with the number of threatened species in the simple regression, but only the latter remained significant in the final model. The same results were obtained on independent contrasts, indicating that behavioural flexibility predicts richness but not extinction risk in birds. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

19.
The social brain hypothesis, an explanation for the unusually large brains of primates, posits that the size of social group typical of a species is directly related to the volume of its neocortex. To test whether this hypothesis also applies at the within-species level, we applied the Cavalieri method of stereology in conjunction with point counting on magnetic resonance images to determine the volume of prefrontal cortex (PFC) subfields, including dorsal and orbital regions. Path analysis in a sample of 40 healthy adult humans revealed a significant linear relationship between orbital (but not dorsal) PFC volume and the size of subjects' social networks that was mediated by individual intentionality (mentalizing) competences. The results support the social brain hypothesis by indicating a relationship between PFC volume and social network size that applies within species, and, more importantly, indicates that the relationship is mediated by social cognitive skills.  相似文献   

20.
The 'social brain hypothesis' for the evolution of large brains in primates has led to evidence for the coevolution of neocortical size and social group sizes, suggesting that there is a cognitive constraint on group size that depends, in some way, on the volume of neural material available for processing and synthesizing information on social relationships. More recently, work on both human and non-human primates has suggested that social groups are often hierarchically structured. We combine data on human grouping patterns in a comprehensive and systematic study. Using fractal analysis, we identify, with high statistical confidence, a discrete hierarchy of group sizes with a preferred scaling ratio close to three: rather than a single or a continuous spectrum of group sizes, humans spontaneously form groups of preferred sizes organized in a geometrical series approximating 3-5, 9-15, 30-45, etc. Such discrete scale invariance could be related to that identified in signatures of herding behaviour in financial markets and might reflect a hierarchical processing of social nearness by human brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号