首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we describe a protocol for the selective isolation of any genomic fragment or gene of interest up to 250 kb in size from complex genomes as a circular yeast artificial chromosome (YAC). The method is based on transformation-associated recombination (TAR) in the yeast Saccharomyces cerevisiae between genomic DNA and a linearized TAR cloning vector containing targeting sequences homologous to a region of interest. Recombination between the vector and homologous sequences in the co-transformed mammalian DNA results in the establishment of a YAC that is able to propagate, segregate and be selected for in yeast. Yield of gene-positive clones varies from 1% to 5%. The entire procedure takes 2 weeks to complete once the TAR vector is constructed and genomic DNA is prepared. The TAR cloning method has a broad application in functional and comparative genomics, long-range haplotyping and characterization of chromosomal rearrangements, including copy number variations.  相似文献   

2.
The transformation-associated recombination (TAR) cloning technique allows selective and accurate isolation of chromosomal regions and genes from complex genomes. The technique is based on in vivo recombination between genomic DNA and a linearized vector containing homologous sequences, or hooks, to the gene of interest. The recombination occurs during transformation of yeast spheroplasts that results in the generation of a yeast artificial chromosome (YAC) containing the gene of interest. To further enhance and refine the TAR cloning technology, we determined the minimal size of a specific hook required for gene isolation utilizing the Tg.AC mouse transgene as a targeted region. For this purpose a set of vectors containing a B1 repeat hook and a Tg.AC-specific hook of variable sizes (from 20 to 800 bp) was constructed and checked for efficiency of transgene isolation by a radial TAR cloning. When vectors with a specific hook that was ≥60 bp were utilized, ~2% of transformants contained circular YACs with the Tg.AC transgene sequences. Efficiency of cloning dramatically decreased when the TAR vector contained a hook of 40 bp or less. Thus, the minimal length of a unique sequence required for gene isolation by TAR is ~60 bp. No transgene-positive YAC clones were detected when an ARS element was incorporated into a vector, demonstrating that the absence of a yeast origin of replication in a vector is a prerequisite for efficient gene isolation by TAR cloning.  相似文献   

3.
We constructed representative large-insert bacterial artificial chromosome (BAC) libraries of two human pathogens (Trypanosoma brucei and Giardia lamblia) using a new hybrid vector, pTARBAC1, containing a yeast artificial chromosome (YAC) cassette (a yeast selectable marker and a centromere). The cassette allows transferring of BACs into yeast for their further modification. Furthermore, the new hybrid vector provides the opportunity to re-isolate each DNA insert without construction of a new library of random clones. Digestion of a BAC DNA by an endonuclease that has no recognition site in the vector, but which deletes most of the internal insert sequence and leaves the unique flanking sequences, converts a BAC into a TAR vector, thus allowing direct gene isolation. Cotransformation of a TAR vector and genomic DNA into yeast spheroplasts, and subsequent recombination between the TAR vector's flanking ends and a specific genomic fragment, allows rescue of the fragment as a circular YAC/BAC molecule. Here we prove a new cloning strategy by re-isolation of randomly chosen genomic fragments of different size from T. brucei cloned in BACs. We conclude that genomic regions of unicellular eukaryotes can be easily re-isolated using this technique, which provides an opportunity to study evolution of these genomes and the role of genome instability in pathogenicity.  相似文献   

4.
The reported draft human genome sequence includes many contigs that are separated by gaps of unknown sequence. These gaps may be due to chromosomal regions that are not present in the Escherichia coli libraries used for DNA sequencing because they cannot be cloned efficiently, if at all, in bacteria. Using a yeast artificial chromosome (YAC)/ bacterial artificial chromosome (BAC) library generated in yeast, we found that approximately 6% of human DNA sequences tested transformed E. coli cells less efficiently than yeast cells, and were less stable in E. coli than in yeast. When the ends of several YAC/BAC isolates cloned in yeast were sequenced and compared with the reported draft sequence, major inconsistencies were found with the sequences of those YAC/BAC isolates that transformed E. coli cells inefficiently. Two human genomic fragments were re-isolated from human DNA by transformation-associated recombination (TAR) cloning. Re-sequencing of these regions showed that the errors in the draft are the results of both missassembly and loss of specific DNA sequences during cloning in E. coli. These results show that TAR cloning might be a valuable method that could be widely used during the final stages of the Human Genome Project.  相似文献   

5.
The development of yeast artificial chromosome (YAC) cloning vectors capable of carrying several hundred kilobase-pairs of DNA insert has greatly facilitated the study of complex genomes, and the cloning of large genes as single fragments. In addition, the ability to manipulate YAC sequences by homologous recombination makes this system extremely useful for the generation of disease models.  相似文献   

6.
Transformation-associated recombination (TAR) is a cloning technique that allows specific chromosomal regions or genes to be isolated directly from genomic DNA without prior construction of a genomic library. This technique involves homologous recombination during spheroplast transformation between genomic DNA and a TAR vector that has 5′ and 3′ gene targeting sequences (hooks). Typically, TAR cloning produces positive YAC recombinants at a frequency of ~0.5%; the positive clones are identified by PCR or colony hybridization. This paper describes a novel TAR cloning procedure that selects positive clones by positive and negative genetic selection. This system utilizes a TAR vector with two targeting hooks, HIS3 as a positive selectable marker, URA3 as a negative selectable marker and a gene-specific sequence called a loop sequence. The loop sequence lies distal to a targeting hook sequence in the chromosomal target, but proximal to the targeting hook and URA3 in the TAR vector. When this vector recombines with chromosomal DNA at the gene-specific targeting hook, the recombinant YAC product carries two copies of the loop sequence, therefore, the URA3 negative selectable marker becomes mitotically unstable and is lost at high frequency by direct repeat recombination involving the loop sequence. Positive clones are identified by selecting against URA3. This method produces positive YAC recombinants at a frequency of ~40%. This novel TAR cloning method provides a powerful tool for structural and functional analysis of complex genomes.  相似文献   

7.
The Huntington disease (HD) gene has been mapped to the most distal subband of chromosome 4p. Analysis of recombination events has not provided an unequivocal location of the HD gene, but it indicates a position very close to the telomere as one possibility. We have constructed a yeast artificial chromosome (YAC) vector (containing a rare-cutter polylinker) for the cloning of mammalian telomeres, used it to prepare a BssHII-telomere library with DNA from an individual homozygous for HD, and have identified a 115-kb clone containing the telomere of 4p. One probable recombinant would confine the telomeric candidate location for the gene to the region covered by the YAC, which makes it possible that the clone described here contains the HD locus in its mutant form.  相似文献   

8.
The BRCA1 gene, mutations of which contribute significantly to hereditary breast cancer, was not identified in the existing YAC and BAC libraries. The gene is now available only as a set of overlapping fragments that form a contig. In this work we describe direct isolation of a genomic copy of BRCA1 from human DNA by transformation-associated recombination (TAR) cloning. Despite the presence of multiple repeats, most of the primary BRCA1 YAC isolates did not contain detectable deletions and could be stably propagated in a host strain with conditional RAD52. Similar to other circular YACs, 90 kb BRCA1 YACs were efficiently and accurately retrofitted into bacterial artificial chromosomes (BACs) with the NeoR mammalian selectable marker and transferred as circular BAC/YACs in E. coli cells. The BRCA1 BAC/YAC DNAs were isolated from bacterial cells and were used to transfect mouse cells using the NeoR gene as selectable marker. Western blot analysis of transfectants showed that BRCA1 YACs isolated by a TAR cloning contained a functional gene. The advantage of this expression vector is that the expression of BRCA1 is generated from its own regulatory elements and does not require additional promoter elements that may result in overexpression of the protein. In contrast to the results with cDNA expression vectors, the level of BRCA1 expression from this TAR vector is stable, does not induce cell death, maintains serum regulation, and approximates the level of endogenously expressed BRCA1 in human cells. The entire isolation procedure of BRCA1 described in this paper can be accomplished in approximately 10 days and can be applied to isolation of gene from clinical material. We propose that the opportunity to directly isolate normal and mutant forms of BRCA1 will greatly facilitate analysis of the gene and its contribution to breast cancer.  相似文献   

9.
The structural and functional analysis of mammalian genomes would benefit from the ability to isolate from multiple DNA samples any targeted chromosomal segment that is the size of an average human gene. A cloning technique that is based on transformation-associated recombination (TAR) in the yeast Saccharomyces cerevisiae satisfies this need. It is a unique tool to selectively recover chromosome segments that are up to 250 kb in length from complex genomes. In addition, TAR cloning can be used to characterize gene function and genome variation, including polymorphic structural rearrangements, mutations and the evolution of gene families, and for long-range haplotyping.  相似文献   

10.
The yeast artificial chromosome (YAC) system (Burke et al., 1987, Science 236: 806-812) allows the direct cloning of large regions of the genome. A YAC contig map of approximately 700 kb encompassing the region surrounding the type 1 neurofibromatosis (NF1) locus on 17q11.2 has been constructed. A single YAC containing the entire NF1 locus has been constructed by homologous recombination in yeast. In the process of contig construction a novel method of YAC end rescue has been developed by YAC circularization in yeast and plasmid rescue in bacteria. YACs containing homology to the NF1 region but mapping to another chromosome have also been discovered. Sequences of portions of the homologous locus indicate that this other locus is a nonprocessed pseudogene.  相似文献   

11.
The tomato (Lycopersicon esculentum) Bs4 gene confers resistance to strains of Xanthomonas campestris pathovar vesicatoria that express the avirulence protein AvrBs4. As part of a map-based cloning strategy for the isolation of Bs4, we converted Bs4-linked amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers into locus-specific sequence-tagged-site (STS) markers. The use of these markers for the analysis of 1972 meiotic events allowed high-resolution genetic mapping within a 1.2-cM interval containing the target gene. Two tomato yeast artificial chromosome (YAC) clones, each harboring inserts of approximately 250 kb, were identified using the marker most closely linked to Bs4. YAC end-specific markers were established and employed to construct a local YAC contig. The ratio of physical to genetic distance at Bs4 was calculated to be 280 kb/cM, revealing that recombination rates in this region are about three times higher than the genome-wide average. Mapping of YAC end-derived markers demonstrated that the Bs4 locus maps within a region of 250 kb, corresponding to a genetic interval of 0.9 cM.  相似文献   

12.
The yeast artificial chromosome (YAC) cloning system allows the cloning of exogenous DNA several hundred kilobases in length. To enhance the usefulness of this technology, yeast artificial chromosome vectors have been designed for efficient clone characterization, manipulation, and mapping. The vectors contain a polylinker with unique EcoRI, BglII, NotI, EagI, SacII, SalI, NruI, NheI, and ClaI cloning sites and T7 bacteriophage promoters positioned to allow the generation of riboprobes from the exogenous DNA ends. Centric and acentric vector arms were constructed as separate plasmids to allow the recovery of both ends of the YAC insert DNA directly in Escherichia coli. In addition, YACs generated using this vector system contain a yeast gene (SUP 11) that allows visual monitoring of YAC stability and copy number.  相似文献   

13.
We previously described the construction and characterization of aChlamydomonasgenomic library in yeast artificial chromosomes (YACs). Here we describe the isolation and genetic mapping of YACs at the FLA10 locus on theunichromosome as well as isolation of a YAC spanning the PF14 locus on chromosome VI. Genetic mapping of YAC end clones by RFLP analyses in interspecific crosses reveals that YACs with a physical size of 150 kb commonly span genetic intervals defined by one or two recombination events in crosses of approximately 20 tetrads. This promises to make chromosomal walking inChlamydomonasa relatively efficient enterprise. We also describe our development of a method for direct complementation of mutant genes by transformation with amplified wildtype YAC DNA. The use of positional cloning using YACs and this direct functional assay for the presence of a gene in a YAC represent powerful molecular genetic tools enabling the cloning of most anyChlamydomonasgene.  相似文献   

14.
Human genomic mapping has been greatly advanced by the independent development of three new methods: large DNA fragment cloning in yeast artificial chromosomes, amplification from complex DNAs of human specific segments by Alu-PCR, and high-resolution localization of complex DNA probes by fluorescent in situ hybridization. We describe here the combination of these three analytical tools for efficient and accurate localization of randomly screened or especially selected human YAC recombinants to chromosome 11. We map a YAC clone encompassing the pepsinogen A (PGA) locus to 11q13.1-11q13.3.  相似文献   

15.
16.
A mutable slender glume gene slg, which often reverts to the wild-type state, was induced by gamma-ray irradiation of seeds of the japonica rice cultivar 'Gimbozu'. The final goal was to understand whether the slender glume mutation was associated with the insertion of a transposable element, utilizing map-based cloning techniques. The RFLP (restriction fragment length polymorphism) analysis revealed that the slg locus was located between two RFLP loci, XNpb33 and R1440, on chromosome 7 with recombination values of 3.1% and 1.0%, respectively. Using these two RFLP loci as probes, five YAC (yeast artificial chromosome) clones containing either of these two loci were selected from a YAC library. Subsequently, both end fragments of these YAC clones, amplified by the inverse PCR (IPCR) method, were used to select new YAC clones more closely located to the slg locus. After repeating such a procedure, we successfully constructed a 6-cM YAC contig, and identified four overlapping YAC clones, Y1774, Y3356, Y5124, and Y5762, covering the slg locus. The chromosomal location of the slg was narrowed down to the region with a physical distance of less than 280 kb between the right-end fragments of Y1774 and Y3356.  相似文献   

17.
The recent development of yeast artificial chromosome (YAC) vectors has provided a system for cloning fragments that are over ten times larger than those that can be cloned in more established systems. We have developed a method for the rapid isolation of terminal sequences from YAC clones. The YAC clone is digested with a range of restriction enzymes, a common linker is ligated to the DNA fragments and terminal sequences are amplified using a vector specific primer and a linker specific primer. Sequence data derived from these terminal specific products can be used to design primers for a further round of screening to isolate overlapping clones. The method also provides a convenient method of generating Sequence Tagged Sites for the mapping of complex genomes.  相似文献   

18.
The BRCA1 gene, mutations of which contribute significantly to hereditary breast cancer, was not identified in the existing YAC and BAC libraries. The gene is now available only as a set of overlapping fragments that form a contig. In this work we describe direct isolation of a genomic copy of BRCA1 from human DNA by transformation-associated recombination (TAR) cloning. Despite the presence of multiple repeats, most of the primary BRCA1 YAC isolates did not contain detectable deletions and could be stably propagated in a host strain with conditional RAD52. Similar to other circular YACs, 90 kb BRCA1 YACs were efficiently and accurately retrofitted into bacterial artificial chromosomes (BACs) with the NeoR mammalian selectable marker and transferred as circular BAC/YACs in E. coli cells. The BRCA1 BAC/YAC DNAs were isolated from bacterial cells and were used to transfect mouse cells using the NeoR gene as selectable marker. Western blot analysis of transfectants showed that BRCA1 YACs isolated by a TAR cloning contained a functional gene. The advantage of this expression vector is that the expression of BRCA1 is generated from its own regulatory elements and does not require additional promoter elements that may result in overexpression of the protein. In contrast to the results with cDNA expression vectors, the level of BRCA1 expression from this TAR vector is stable, does not induce cell death, maintains serum regulation, and approximates the level of endogenously expressed BRCA1 in human cells. The entire isolation procedure of BRCA1 described in this paper can be accomplished in approximately 10 days and can be applied to isolation of gene from clinical material. We propose that the opportunity to directly isolate normal and mutant forms of BRCA1 will greatly facilitate analysis of the gene and its contribution to breast cancer.  相似文献   

19.
Arabidopsis thaliana (Thale cress, Arabidopsis) is an ideal model organism for the molecular genetic analysis of many plant processes. The availability of a complete physical map would greatly facilitate the gene cloning steps in these studies. The small genome size of Arabidopsis makes the construction of such a map a feasible goal. One of the approaches to construct an overlapping library of the Arabidopsis genome takes advantage of the many mapped markers and the availability of Arabidopsis yeast artificial chromosome (YAC) libraries. Mapped molecular markers are used to identify corresponding YAC clones and thereby place them on the genetic map. Subsequently, these YAC clones provide the framework for directed walking experiments aimed at closing the gaps between the YAC contigs. Adopting this strategy, YAC clones comprising about 10% of the genome have been assigned to the top halves of Arabidopsis chromosomes 4 and 5. Extensive walking experiments in a 10 cM interval of chromosome 4 have resulted in two contiguous regions in the megabase size range.  相似文献   

20.
具有同源重叠区的酵母人工染色体(YAC)可以利用酵母细胞减数分裂进行同源重组,从而构建更大的人工染色体基因组,这对生命科学基础研究和生物技术应用研究有着非常重要的意义。本实验以两个含人免疫球蛋白κ链基因簇片段的YAC克隆为材料,通过酵母改型、异型接合、二倍体发孢、单孢子筛选和分子生物学鉴定等技术和方法,利用酵母菌减数分裂同源重组机制,构建了一条包含人的免疫球蛋白κ轻链32个Vκ基因、5个Jκ基因、Cκ基因、Eκ基因和κde基因的YAC重组体,长度约400kb。同时,本实验利用溶壁酶消化法获取单孢子重组体,代替了传统的显微分孢操作。使得利用酵母人工染色体减数分裂同源重组的技术更加简便可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号