首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that F-actin exerts a negative effect on Abl tyrosine kinase activity. This inhibition results from a direct association of F-actin with the C terminus of Abl and accounts, in part, for the loss of Abl activity in detached fibroblasts. We report here that Abl from mitotic cells or cells treated with the protein phosphatase inhibitor okadaic acid remains active when detached from the extracellular matrix. Aspartic acid substitution of Thr(566), which is phosphorylated in mitotic or okadaic acid-treated cells, is sufficient to abolish F-actin-mediated inhibition and to maintain Abl activity despite cell detachment. A recent crystal structure of the Abl N-terminal region has revealed autoinhibitory interactions among the Src homology 3 (SH3), SH2, and kinase domains. We found that deletion of the SH2 domain also abolished the negative effect of F-actin on kinase activity. Immediately following the kinase domain in Abl is a proline-rich linker (PRL) that binds to several SH3 adaptor proteins. Interestingly, binding of the Crk N-terminal SH3 domain to the PRL also disrupted F-actin-mediated inhibition of Abl kinase. These results suggest that F-actin may reinforce the autoinhibitory interactions to regulate Abl kinase and that inhibition can be relieved through phosphorylation and/or protein interactions with the Abl PRL region.  相似文献   

2.
The nonreceptor tyrosine kinase encoded by the c-Abl gene has the unique feature of an F-actin binding domain (FABD). Purified c-Abl tyrosine kinase is inhibited by F-actin, and this inhibition can be relieved through mutation of its FABD. The c-Abl kinase is activated by physiological signals that also regulate the actin cytoskeleton. We show here that c-Abl stimulated the formation of actin microspikes in fibroblasts spreading on fibronectin. This function of c-Abl is dependent on kinase activity and is not shared by c-Src tyrosine kinase. The Abl-dependent F-actin microspikes occurred under conditions where the Rho-family GTPases were inhibited. The FABD-mutated c-Abl, which is active in detached fibroblasts, stimulated F-actin microspikes independent of cell attachment. Moreover, FABD-mutated c-Abl stimulated the formation of F-actin branches in neurites of rat embryonic cortical neurons. The reciprocal regulation between F-actin and the c-Abl tyrosine kinase may provide a self-limiting mechanism in the control of actin cytoskeleton dynamics.  相似文献   

3.
The nonreceptor tyrosine kinase c-Abl is tightly regulated in vivo, but the mechanisms that normally repress its activity are not well understood. We find that a construct encoding the first two Src homology 3 (SH3) domains of the Src homology 2/SH3 adaptor protein Nck can activate c-Abl in human 293T cells. A myristoylated Nck SH3 domain construct, which is expected to localize to membranes, potently activated Abl when expressed at low levels. An unmyristoylated Nck SH3 domain construct, which localizes to the cytosol and nucleus, also activated Abl but only at high levels of expression. Activation by both myristoylated and unmyristoylated Nck constructs required the C terminus of Abl; a C-terminally truncated form of Abl was not activated, although this construct could still be activated by deletion of its SH3 domain. Activation did not require the major binding sites in the Abl C terminus for Nck SH3 domains, however, suggesting that the mechanism of activation does not require direct binding to the C terminus. Activation of c-Abl by Nck SH3 domains provides a robust experimental system for analyzing the mechanisms that normally repress Abl activity and how that normal regulation can be perturbed.  相似文献   

4.
In Philadelphia chromosome-positive human leukemias, which include chronic myelogenous leukemia and some acute lymphocytic leukemias, the c-abl proto-oncogene on chromosome 9 becomes fused to the bcr gene on chromosome 22, and Bcr-Abl fusion proteins are produced. The Bcr sequences activate the Abl tyrosine kinase which is required for the transforming function of Bcr-Abl. The Bcr sequences also enhance an F-actin-binding activity associated with c-Abl. Here, we show that binding of c-Abl and Bcr-Abl proteins to actin filaments in vivo and in vitro is mediated by an evolutionarily conserved domain at the C-terminal end of c-Abl. The c-Abl F-actin-binding domain contains a consensus motif found in several other actin-crosslinking proteins. Mutations in the consensus motif are shown to abolish binding to F-actin. Bcr-Abl proteins unable to associate with F-actin have a reduced ability to transform Rat-1 fibroblasts and to abrogate the requirement for interleukin-3 in the lymphoblastoid cell line Ba/F3. In transformed cells, Bcr-Abl induces a redistribution of F-actin into punctate, juxtanuclear aggregates. The binding to actin filaments has important implications for the pathogenic and physiological functions of the Bcr-Abl and c-Abl proteins.  相似文献   

5.
BRCA1 plays an important role in mechanisms of response to double-strand breaks, participating in genome surveillance, DNA repair, and cell cycle checkpoint arrests. Here, we identify a constitutive BRCA1-c-Abl complex and provide evidence for a direct interaction between the PXXP motif in the C terminus of BRCA1 and the SH3 domain of c-Abl. Following exposure to ionizing radiation (IR), the BRCA1-c-Abl complex is disrupted in an ATM-dependent manner, which correlates temporally with ATM-dependent phosphorylation of BRCA1 and ATM-dependent enhancement of the tyrosine kinase activity of c-Abl. The BRCA1-c-Abl interaction is affected by radiation-induced modification to both BRCA1 and c-Abl. We show that the C terminus of BRCA1 is phosphorylated by c-Abl in vitro. In vivo, BRCA1 is phosphorylated at tyrosine residues in an ATM-dependent, radiation-dependent manner. Tyrosine phosphorylation of BRCA1, however, is not required for the disruption of the BRCA1-c-Abl complex. BRCA1-mutated cells exhibit constitutively high c-Abl kinase activity that is not further increased on exposure to IR. We suggest a model in which BRCA1 acts in concert with ATM to regulate c-Abl tyrosine kinase activity.  相似文献   

6.
Here we report c-Abl kinase inhibition mediated by a phosphotyrosine located in trans in the c-Abl substrate, Abi1. The mechanism, which is pertinent to the nonmyristoylated c-Abl kinase, involves high affinity concurrent binding of the phosphotyrosine pY213 to the Abl SH2 domain and binding of a proximal PXXP motif to the Abl SH3 domain. Abi1 regulation of c-Abl in vivo appears to play a critical role, as demonstrated by inhibition of pY412 phosphorylation of the nonmyristoylated Abl by coexpression of Abi1. Pervanadate-induced c-Abl kinase activity was also reduced upon expression of the wild type Abi1 but not by expression of the Y213 to F213 mutant Abi1 in LNCaP cells, which are naturally deficient in the regulatory pY213. Our findings suggest a novel mechanism by which Abl kinase is regulated in cells.  相似文献   

7.
The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus.  相似文献   

8.
Chen C  Ba X  Xu T  Cui L  Hao S  Zeng X 《Journal of biochemistry》2006,140(2):229-235
L-selectin is a cell adhesion molecule mediating the initial capture and subsequent rolling of leukocytes along the endothelial cells expressing L-selectin ligands. In addition to its action in adhesion, an intracellular signaling role for L-selectin has been recognized. Its cytoplasmic domain is involved in signal transduction following antibody crosslinking and in the regulation of receptor binding activity in response to intracellular signals. In this work, we demonstrated that L-selectin crosslinking led to F-actin polymerization and redistribution in human neutrophils. Using immuno-fluorescence microscopy, we observed that F-actin redistribution spatiotemporally related to the polarization of L-selectin. STI571, a specific inhibitor for cytoplasmic tyrosine kinase c-Abl, can inhibit F-actin polymerization and c-Abl redistribution in the activated neutrophils. Furthermore, we determined that c-Abl redistributed to the region where L-selectin polarized and associated with L-selectin in the activated neutrophils. The association between L-selectin and c-Abl was reduced by cytochalasin B. These results suggested that c-Abl was involved in the F-actin alteration triggered by L-selectin crosslinking in human neutrophils.  相似文献   

9.
c-Abl kinase regulates the protein binding activity of c-Crk.   总被引:26,自引:1,他引:25       下载免费PDF全文
S M Feller  B Knudsen    H Hanafusa 《The EMBO journal》1994,13(10):2341-2351
c-Crk is a proto-oncogene product composed largely of Src homology (SH) 2 and 3 domains. We have identified a kinase activity, which binds to the first Crk SH3 domain and phosphorylates c-Crk on tyrosine 221 (Y221), as c-Abl. c-Abl has a strong preference for c-Crk, when compared with common tyrosine kinase substrates. The phosphorylation of c-Crk Y221 creates a binding site for the Crk SH2 domain. Bacterially expressed c-Crk protein lacks phosphorylation on Y221 and can bind specifically to several proteins, while mammalian c-Crk, which is phosphorylated on tyrosine, remains uncomplexed. The protein binding activity of c-Crk is therefore likely regulated by a mechanism similar to that of the Src family kinases. v-Crk is truncated before c-Crk Y221 and forms constitutive complexes with c-Abl and other proteins. Our results suggest that c-Abl regulates c-Crk function and that it could be involved in v-Crk transformation.  相似文献   

10.
c-Abl phosphorylates Dok1 to promote filopodia during cell spreading   总被引:5,自引:0,他引:5  
Filopodia are dynamic F-actin structures that cells use to explore their environment. c-Abl tyrosine kinase promotes filopodia during cell spreading through an unknown mechanism that does not require Cdc42 activity. Using an unbiased approach, we identified Dok1 as a specific c-Abl substrate in spreading fibroblasts. When activated by cell adhesion, c-Abl phosphorylates Y361 of Dok1, promoting its association with the Src homology 2 domain (SH2)/SH3 adaptor protein Nck. Each signaling component was critical for filopodia formation during cell spreading, as evidenced by the finding that mouse fibroblasts lacking c-Abl, Dok1, or Nck had fewer filopodia than cells reexpressing the product of the disrupted gene. Dok1 and c-Abl stimulated filopodia in a mutually interdependent manner, indicating that they function in the same signaling pathway. Dok1 and c-Abl were both detected in filopodia of spreading cells, and therefore may act locally to modulate actin. Our data suggest a novel pathway by which c-Abl transduces signals to the actin cytoskeleton through phosphorylating Dok1 Y361 and recruiting Nck.  相似文献   

11.
Dok-R, also known as Dok-2/FRIP, belongs to the DOK family of signaling molecules that become tyrosine-phosphorylated by several different receptor and cytoplasmic tyrosine kinases. Tyrosine phosphorylation of DOK proteins establishes high affinity binding sites for other signaling molecules leading to activation of a signaling cascade. Here we show that Dok-R associates with c-Abl directly via a constitutive SH3-mediated interaction and that this binding requires a PMMP motif in the proline-rich tail of Dok-R. The Dok-R-Abl interaction is further enhanced by an active c-Abl kinase, which requires the presence of its SH2 domain. Interaction of Dok-R with c-Abl also results in an increase in c-Abl tyrosine phosphorylation and kinase activity. Furthermore, we demonstrate that this increase in kinase activity correlates with a concomitant increase in c-Abl-mediated biological activity as measured by the formation of actin microspikes. Our data are the first to demonstrate that Dok-R and c-Abl interact in both a constitutive and inducible fashion and that Dok-R influences the intracellular kinase and biological activity of c-Abl.  相似文献   

12.
ACK1 (activated Cdc42-associated kinase 1) is a nonreceptor tyrosine kinase and the only tyrosine kinase known to interact with Cdc42. To characterize the enzymatic properties of ACK, we have expressed and purified active ACK using the baculovirus/Sf9 cell system. This ACK1 construct contains (from N to C terminus) the kinase catalytic domain, SH3 domain, and Cdc42-binding Cdc42/Rac interactive binding (CRIB) domain. We characterized the substrate specificity of ACK1 using synthetic peptides, and we show that the specificity of the ACK1 catalytic domain most closely resembles that of Abl. Purified ACK1 undergoes autophosphorylation, and autophosphorylation enhances kinase activity. We identified Tyr284 in the activation loop of ACK1 as the primary autophosphorylation site using mass spectrometry. When expressed in COS-7 cells, the Y284F mutant ACK1 showed dramatically reduced levels of tyrosine phosphorylation. Although the SH3 and CRIB domains of purified ACK1 are able to bind ligands (a polyproline peptide and Cdc42, respectively), the addition of ligands did not stimulate tyrosine kinase activity. To characterize potential interacting partners for ACK1, we screened several SH2 and SH3 domains for their ability to bind to full-length ACK1 or to the catalytic-SH3-CRIB construct. ACK1 interacts most strongly with the SH3 domains of Src family kinases (Src or Hck) via its C-terminal proline-rich domain. Co-expression of Hck with kinase-inactive ACK1(K158R) in mammalian cells resulted in tyrosine phosphorylation of ACK1, suggesting that ACK1 is a substrate for Hck. Our data suggest that Hck is a novel binding partner for ACK1 that can regulate ACK1 activity by phosphorylation.  相似文献   

13.
Multidomain kinases such as c-Src and c-Abl are regulated by complex allosteric interactions involving their noncatalytic SH3 and SH2 domains. Here we show that enhancing natural allosteric control of kinase activity by SH3/linker engagement has long-range suppressive effects on the kinase activity of the c-Abl core. Surprisingly, enhanced SH3/linker interaction also dramatically sensitized the Bcr-Abl tyrosine kinase associated with chronic myelogenous leukemia to small molecule inhibitors that target either the active site or the myristic acid binding pocket in the kinase domain C-lobe. Dynamics analyses using hydrogen exchange mass spectrometry revealed a remarkable allosteric network linking the SH3 domain, the myristic acid binding pocket, and the active site of the c-Abl core, providing a structural basis for the biological observations. These results suggest a rational strategy for enhanced drug targeting of Bcr-Abl and other multidomain kinase systems that use multiple small molecules to exploit natural mechanisms of kinase control.  相似文献   

14.
The tyrosine kinase c-Abl is implicated in a variety of cellular processes that are tightly regulated by c-Abl kinase activity and/or by interactions between c-Abl and other signaling molecules. The interaction of c-Abl with the Abl interactor protein Abi2 is shown to be negatively regulated by phosphorylation of serines 637 and 638. These serines are adjacent to the PxxP motif (PTPPKRS637S638SFR) that binds the SH3 domain of Abi. Phosphorylation of the Abl 593-730 fragment by Pak2 dramatically reduces Abi2 binding ( approximately 90%). Mutation of serines 637-639 to alanine (3A) or aspartate (3D) results in an increased tyrosine kinase activity of c-Abl 3D, and a slight reduction of the activity of the 3A mutant, as compared to wild-type (WT) c-Abl. The interaction between Abi2 and c-Abl 3D is inhibited by 80%, as compared to WT c-Abl or c-Abl 3A. This is accompanied by a 2-fold increase in binding of Crk to c-Abl 3D. The data indicate a molecular mechanism whereby phosphorylation of c-Abl by Pak2 inhibits the interaction between the SH3 domain of Abi2 and the PxxP motif of c-Abl. This phosphorylation enhances the association of c-Abl with the substrate Crk and increases c-Abl-mediated phosphorylation of Crk, thus altering the association of Crk with other signaling molecules.  相似文献   

15.
The carboxyl terminus of p53 is a target of a variety of signals for regulation of p53 DNA binding. Growth suppressor c-Abl interacts with p53 in response to DNA damage and overexpression of c-Abl leads to G(1) growth arrest in a p53-dependent manner. Here, we show that c-Abl binds directly to the carboxyl-terminal regulatory domain of p53 and that this interaction requires tetramerization of p53. Importantly, we demonstrate that c-Abl stimulates the DNA-binding activity of wild-type p53 but not of a carboxyl-terminally truncated p53 (p53Delta363C). A deletion mutant of c-Abl that does not bind to p53 is also incapable of activating p53 DNA binding. These data suggest that the binding to the p53 carboxyl terminus is necessary for c-Abl stimulation. To investigate the mechanism for this activation, we have also shown that c-Abl stabilizes the p53-DNA complex. These results led us to hypothesize that the interaction of c-Abl with the C terminus of p53 may stabilize the p53 tetrameric conformation, resulting in a more stable p53-DNA complex. Interestingly, the stimulation of p53 DNA-binding by c-Abl does not require its tyrosine kinase activity, indicating a kinase-independent function for c-Abl. Together, these results suggest a detailed mechanism by which c-Abl activates p53 DNA-binding via the carboxyl-terminal regulatory domain and tetramerization.  相似文献   

16.
The myristoylated form of c-Abl protein, as well as the P210bcr/abl protein, have been shown by indirect immunofluorescence to associate with F-actin stress fibers in fibroblasts. Analysis of deletion mutants of c-Abl stably expressed in fibroblasts maps the domain responsible for this interaction to the extreme COOH-terminus of Abl. This domain mediates the association of a heterologous protein with F-actin filaments after microinjection into NIH 3T3 cells, and directly binds to F-actin in a cosedimentation assay. Microinjection and cosedimentation assays localize the actin-binding domain to a 58 amino acid region, including a charged motif at the extreme COOH-terminus that is important for efficient binding. F-actin binding by Abl is calcium independent, and Abl competes with gelsolin for binding to F- actin. In addition to the F-actin binding domain, the COOH-terminus of Abl contains a proline-rich region that mediates binding and sequestration of G-actin, and the Abl F- and G-actin binding domains cooperate to bundle F-actin filaments in vitro. The COOH terminus of Abl thus confers several novel localizing functions upon the protein, including actin binding, nuclear localization, and DNA binding. Abl may modify and receive signals from the F-actin cytoskeleton in vivo, and is an ideal candidate to mediate signal transduction from the cell surface and cytoskeleton to the nucleus.  相似文献   

17.
The bcr-abl oncogene plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). The fusion of Bcr sequences to Abl constitutively activates the Abl protein tyrosine kinase. We have recently shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces in mice a myeloproliferative disease resembling human CML and that Abl kinase activity is essential for Bcr-Abl to induce a CML-like myeloproliferative disease. However, it is not known if activation of the Abl kinase alone is sufficient to induce a myeloproliferative disease. In this study, we examined the role of the Abl SH3 domain of Bcr-Abl in induction of myeloproliferative disease and tested whether c-Abl activated by SH3 deletion can induce a CML-like disease. We found that Bcr-Abl with an Abl SH3 deletion still induced a CML-like disease in mice. In contrast, c-Abl activated by SH3 deletion induced only lymphoid malignancies in mice and did not stimulate the growth of myeloid colonies from 5-fluorouracil-treated bone marrow cells in vitro. These results indicate that Bcr sequences in Bcr-Abl play additional roles in inducing myeloproliferative disease beyond simply activating the Abl kinase domain and that functions of the Abl SH3 domain are either not required or redundant in Bcr-Abl-induced myeloproliferative disease. The results also suggest that the type of hematological neoplasm induced by an abl oncogene is influenced not only by what type of hematopoietic cells the oncogene is targeted into but also by the intrinsic oncogenic properties of the particular abl oncogene. In addition, we found that DeltaSH3 c-Abl induced less activation of Akt and STAT5 than did Bcr-Abl, suggesting that activation of these pathways plays a critical role in inducing a CML-like disease.  相似文献   

18.
Protein kinase C (PKC) isoforms are phosphorylated on tyrosine in the response of cells to oxidative stress. The present studies demonstrate that treatment of cells with hydrogen peroxide (H(2)O(2)) induces binding of the PKCdelta isoform and the c-Abl protein-tyrosine kinase. The results show that c-Abl phosphorylates PKCdelta in the H(2)O(2) response. We also show that PKCdelta phosphorylates and activates c-Abl in vitro. In cells, induction of c-Abl activity by H(2)O(2) is attenuated by the PKCdelta inhibitor, rottlerin, and by overexpression of the regulatory domain of PKCdelta. These findings support a functional interaction between PKCdelta and c-Abl in the cellular response to oxidative stress.  相似文献   

19.
The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.  相似文献   

20.
The carboxyl terminus of the calcium channel plays an important role in the regulation of calcium entry, signal transduction, and gene expression. Potential protein-protein interaction sites within the COOH terminus of the L-type calcium channel include those for the SH3 and SH2 binding domains of c-Src kinase that regulates calcium currents in smooth muscle. In this study, we examined the binding sites involved in Src kinase-mediated phosphorylation of the human voltage-gated calcium channel (Ca(v)) 1.2b (hCav1.2b) and the effect of nitrotyrosylation. Cotransfection of human embryonic kidney (HEK)-293 cells with hCa(v)1.2b and c-Src resulted in tyrosine phosphorylation of the calcium channel, which was prevented by nitration of tyrosine residues by peroxynitrite. Whole cell calcium currents were reduced by 58 + 5% by the Src kinase inhibitor PP2 and 64 + 6% by peroxynitrite. Nitrotyrosylation prevented Src-mediated regulation of the currents. Glutathione S-transferase fusion protein of the distal COOH terminus of hCa(v)1.2b (1809-2138) bound to SH2 domain of Src following tyrosine phosphorylation, while binding to SH3 required the presence of the proline-rich motif. Site-directed mutation of Y(2134) prevented SH2 binding and resulted in reduced phosphorylation of hCa(v)1.2b. Within the distal COOH terminus, single, double, or triple mutations of Y(1837), Y(1861), and Y(2134) were constructed and expressed in HEK-293 cells. The inhibitory effects of PP2 and peroxynitrite on calcium currents were significantly reduced in the double mutant Y(1837-2134F). These data demonstrate that the COOH terminus of hCa(v)1.2b contains sites for the SH2 and SH3 binding of Src kinase. Nitrotyrosylation of these sites prevents Src kinase regulation and may be importantly involved in calcium influx regulation during inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号