首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiu PY  Mak DH  Poon MK  Ko KM 《Life sciences》2005,77(23):2887-2895
In order to explore the role of cytochrome P-450 (P-450) in schisandrin B (Sch B)-induced antioxidant and heat shock responses, the effect of 1-aminobenzotriazole (ABT, a broad spectrum inhibitor of P-450) on hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (Hsp)25/70 expression was examined in Sch B-treated mice. The non-specific and partial inhibition of cytochrome P-450 (P-450) by ABT pretreatment significantly caused a protraction in the time-course of Sch B-induced enhancement in hepatic mitGAS and Hsp25/70 expression in mice. Using mouse liver microsomes as a source of P-450, Sch B, but not dimethyl diphenyl bicarboxylate (a non-hepatoprotective analog of Sch B), was found to serve as a co-substrate for the P-450-catalyzed NADPH oxidation reaction, with a concomitant production of oxidant species. Taken together, the results suggest that oxidant species generated from P-450-catalyzed reaction with Sch B may trigger the antioxidant and heat shock responses in mouse liver.  相似文献   

2.
In this study, the time course of schisandrin B- (Sch B-) induced changes in hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (HSP) 25/70 induction was examined to study their differential roles in the hepatoprotection afforded by Sch B pretreatment against carbon tetrachloride (CCl(4)) toxicity in mice. Dimethyl diphenyl bicarboxylate (DDB), a nonhepatoprotective analog of Sch B, was also included for comparison. The results indicate that Sch B treatment (2 mmol/kg) produced maximum enhancement in hepatic mtGAS and increases in both hepatic HSP 25 and HSP 70 levels at 24 h after dosing. While the extent of hepatoprotection afforded by Sch B pretreatment against CCl(4) was found to correlate inversely with the elapsed time postdosing, the protective effect was associated with the ability to sustain mtGAS and/or HSP 70 levels in a CCl(4)-intoxicated condition. On the other hand, DDB (2 mmol/kg) treatment, which did not sustain mtGAS and HSP 70 level, could not protect against CCl(4) toxicity. Abolition of the Sch B-mediated enhancement of mtGAS by buthionine sulfoximine/phorone did not completely abrogate the hepatoprotective action of Sch B. The results indicate that Sch B pretreatment independently enhances mtGAS and induces HSP 25/70 production, particularly under conditions of oxidative stress, thereby protecting against CCl(4) hepatotoxicity.  相似文献   

3.
Sch B (schisandrin B), the most abundant dibenzocyclooctadiene lignan in Fructus schisandrae, can induce glutathione antioxidant and heat shock responses, as well as protect against oxidant-induced injury in various tissues, including the liver in rodents and AML12 (alpha mouse liver 12) hepatocytes. (-)Sch B is the most potent stereoisomer of Sch B in its cytoprotective action on AML12 hepatocytes. To define the role of ROS (reactive oxygen species) arising from CYP (cytochrome P450)-catalysed metabolism of (-)Sch B in triggering glutathione antioxidant and heat shock responses, the effects of a CYP inhibitor [ABT (aminobenzotriazole)] and antioxidants [DMTU (dimethylthiouracil) and TRX (trolox)] on (-)Sch B-induced ROS production and associated increases in cellular GSH level, as well as Hsp25/70 (heat-shock protein 25/70) production, were investigated in AML12 hepatocytes. The results indicated that (-)Sch B causes a dose dependent and sustained increase in ROS production over 6 h in AML12 hepatocytes, which was completely suppressed by pre-/co-treatment with ABT or DTMU/TRX. Incubation with (-)Sch B for 6 h caused optimal and dose-dependent increases in cellular GSH level and Hsp25/70 production at 16 h post-drug exposure in AML12 hepatocytes. These cellular responses were associated with protection against menadione-induced apoptosis. Pre-/co-treatment with ABT or antioxidants completely abrogated the (-)Sch B-induced glutathione antioxidant and heat shock responses, as well as protection against menadione-induced apoptosis. Experimental evidence obtained thus far supports the causal role of ROS arising from the CYP-catalysed metabolism of (-)Sch B in eliciting glutathione antioxidant and heat shock responses in AML12 hepatocytes.  相似文献   

4.
Tumor necrosis factor-alpha (TNFalpha) could cause apoptosis in hepatic tissue of D-galactosamine sensitized mice, as evidenced by the increase in the extent of DNA fragmentation. The hepatic apoptosis induced by TNFalpha was associated with hepatocellular damage as assessed by plasma alanine aminotransferase activity. Schisandrin B (Sch B) pretreatment at daily doses ranging from 0.5 to 2 mmol/kg for 3 days caused a dose-dependent protection against TNFalpha-induced apoptosis in mice. The hepatoprotection was accompanied by a parallel reduction in the extent of hepatocellular damage. The same Sch B pretreatment regimens increased hepatic Hsp70 level in a dose-dependent manner. The relevance of Sch B-induced increase in Hsp70 expression to the prevention of TNFalpha-triggered hepatic apoptosis remains to be elucidated.  相似文献   

5.
Cytochrome P450 17α-hydroxylase/17, 20 lyase (CYP17) is a microsomal enzyme reported to have two distinct catalytic activities, 17α-hydroxylase and 17, 20 lyase, that are essential for the biosynthesis of peripheral androgens such as dehydroepiandrosterone (DHEA). Paradoxically, DHEA is present and plays a role in learning and memory in the adult rodent brain, while CYP17 activity and protein are undetectable. To determine if CYP17 is required for DHEA formation and function in the adult rodent brain, we generated CYP17 chimeric mice that had reduced circulating testosterone levels. There were no detectable differences in cognitive spatial learning between CYP17 chimeric and wild-type mice. In addition, while CYP17 mRNA levels were reduced in CYP17 chimeric compared to wild-type mouse brain, the levels of brain DHEA levels were comparable. To determine if adult brain DHEA is formed by an alternative Fe2+-dependent pathway, brain microsomes were isolated from wild-type and CYP17 chimeric mice and treated with FeSO4. Fe2+ caused comparable levels of DHEA production by both wild-type and CYP17 chimeric mouse brain microsomes; DHEA production was not reduced by a CYP17 inhibitor. Taken together these in vivo studies suggest that in the adult mouse brain DHEA is formed via a Fe2+-sensitive CYP17-independent pathway.  相似文献   

6.
H(2)O(2) production was evaluated in liver microsomes prepared from Cyp1a1/1a2(+/+) wild-type and Cyp1a1(-/-) and Cyp1a2(-/-) knockout mice pretreated with 5 microg dioxin (TCDD)/kg body wt or vehicle alone. NADPH-dependent H(2)O(2) production in TCDD-induced microsomes from wild-type mice was about one-third of that in noninduced microsomes. In Cyp1a2(-/-) mice, H(2)O(2) production was the same for induced and noninduced microsomes, with levels significantly higher than those in wild-type mice. Cyp1a1(-/-) microsomes displayed markedly lower levels of H(2)O(2) production in both induced and noninduced microsomes, compared with those in wild-type and Cyp1a2(-/-) microsomes. The CYP1A2 inhibitor furafylline in vitro exacerbated microsomal H(2)O(2) production proportional to the degree of CYP1A2 inhibition, and the CYP2E1 inhibitor diethyldithiocarbamate decreased H(2)O(2) production proportional to the degree of CYP2E1 inhibition. Microsomal H(2)O(2) production was strongly correlated to NADPH-stimulated production of thiobarbituric acid-reactive substances, as well as to decreases in microsomal membrane polarization anisotropy, indicative of peroxidation of unsaturated membrane lipids. Our results suggest that possibly acting as an "electron sink," CYP1A2 might decrease CYP2E1-and CYP1A1-mediated H(2)O(2) production and oxidative stress. In this regard, CYP1A2 may be considered an antioxidant enzyme.  相似文献   

7.
8.
《Free radical research》2013,47(4):483-495
Abstract

This study examined the effects of (?)schisandrin B [(?)Sch B] on MAPK and Nrf2 activation and the subsequent induction of glutathione antioxidant response and cytoprotection against apoptosis in AML12 hepatocytes. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitors and Nrf2 RNAi, were used to delineate the signalling pathway. (?)Sch B caused a time-dependent activation of MAPK in AML12 cells, particularly the ERK1/2. The MAPK activation was followed by an enhancement in Nrf2 nuclear translocation and the eliciting of a glutathione antioxidant response. Reactive oxygen species arising from a CYP-catalysed reaction with (?)Sch B seemed to be causally related to the activation of MAPK and Nrf2. ERK inhibition by U0126 or Nrf2 suppression by Nrf2 RNAi transfection almost completely abrogated the cytoprotection against menadione-induced apoptosis in (?)Sch B-pre-treated cells. (?)Sch B pre-treatment potentiated the menadione-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against carbon tetrachloride-hepatotoxicity in an in vivo mouse model. In conclusion, (?)Sch B triggers a redox-sensitive ERK/Nrf2 signalling, which then elicits a cellular glutathione antioxidant response and protects against oxidant-induced apoptosis in AML12 cells.  相似文献   

9.
The effects of a single injection (40 mg/kg) of 4′-trifluoromethyl-2,3,4,5-tetrachlorobiphenyl (CF3) on hepatic cytochrome P-450 monooxygenases were assessed in rat and syrian hamster. The CF3 treatment significantly increased the total amount of cytochrome P-450 in both species. In rats, CF3 treatment caused marked increases in ethoxyresorufin O-deethylase (EROD), arylhydrocarbon hydroxylase (AHH), and testosterone 7α-hydroxylase activities but significantly reduced the activities of benzphetamine N-demethylase (BzND), erythromycin N-demethylase (ErND), testosterone 6β, 16α, and 16β-hydroxylases, and formation of androstenedione. Administration of CF3 to hamsters strongly induced the activities of EROD, AHH, BzND, testosterone 15α, and 16α-hydroxylases, and androstenedione production, whereas ErND, testosterone 6β, and 7α-hydroxylases were decreased. Administration of CF3 to rats induced the CYP1A family proteins and CYP2A1, while CF3 reduced the level of CYP2B1, and, to a lesser extent, of CYP6β2. In hamsters, CF3 treatment significantly induced the CYP1A2, CYP2A1, CYP2A8, and CYP2B1 isozymes, whereas the CYP6β2 level was decreased. The ability of hepatic microsomes to activate aflatoxin B1 and benzo(a)pyrene was elevated by CF3 treatment in hamsters, while activation of aflatoxin B1 was decreased in microsomes from CF3-treated rats. These results showed differences in the CF3-induced pattern of rat and hamster cytochrome P-450 monooxygenases.  相似文献   

10.
Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from Fructus Schisandrae, has been shown to produce antioxidant effect on rodent liver and heart. A mouse model of tert-butylhydroperoxide (t-BHP) induced cerebral toxicity was adopted for examining the antioxidant potential of Sch B in the brain. Intracerebroventricular injection of t-BHP caused a time-dependent increase in mortality rate in mice. The t-BHP toxicity was associated with an increase in the extent of cerebral lipid peroxidation and an impairment in cerebral glutathione antioxidant status, as evidenced by the abrupt decrease in reduced glutathione (GSH) level and the inhibition of Se-glutathione peroxidase activity at 5 min following t-BHP challenge. Sch B pretreatment (1 or 2 mmol/kg/day × 3) produced a dose-dependent protection against t-BHP induced mortality. The protection was associated with a decrease in the extent of lipid peroxidation and an enhancement in glutathione antioxidant status in brain tissue detectable at 5 min post t-BHP challenge, with the assessed biochemical parameters being returned to normal values at 60 min in Sch B pretreated mice at a dose of 2 mmol/kg. The ensemble of results suggests the antioxidant potential of Sch B pretreatment in protecting against cerebral oxidative stress.  相似文献   

11.
This study investigated the signal transduction pathway involved in the cytoprotective action of (-)schisandrin B [(-)Sch B, a stereoisomer of Sch B]. Using H9c2 cells, the authors examined the effects of (-)Sch B on MAPK and Nrf2 activation, as well as the subsequent eliciting of glutathione response and protection against apoptosis. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitor, and Nrf2 RNAi, were used to delineate the signaling pathway. (-)Sch B caused a time-dependent activation of MAPK in H9c2 cells, with the degree of ERK activation being much larger than that of p38 or JNK. The MAPK activation was followed by an increase in the level of nuclear Nrf2, an indirect measure of Nrf2 activation, and the eliciting of a glutathione antioxidant response. The activation of MAPK and Nrf2 seemed to involve oxidants generated from a CYP-catalyzed reaction with (-)Sch B. Both ERK inhibition by U0126 and Nrf2 suppression by Nrf2 RNAi transfection largely abolished the cytoprotection against hypoxia/reoxygenation-induced apoptosis in (-)Sch B-pretreated cells. (-)Sch B pretreatment potentiated the reoxygenation-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against ischemia/reperfusion injury in an ex vivo rat heart model. The results indicate that (-)Sch B triggers a redox-sensitive ERK/Nrf2 signaling, which then elicits a cellular glutathione antioxidant response and protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. The ERK-mediated signaling is also likely involved in the cardioprotection afforded by Sch B in vivo.  相似文献   

12.
4-Vinyl-1-cyclohexene (VCH), is converted by multiple forms of cytochrome P450 (CYP) to two monoepoxides (4-vinyl-1-cyclohexene 1,2-epoxide [VCH-1,2-epoxide], 4-vinyl-1-cyclohexene 7,8-epoxide [VCH-7,8-epoxide]), and 4-vinyl-1-cyclohexene diepoxide (VCD). A greater degree of formation of these epoxides by female B6C3F1 mice as compared to Fischer 344 rats correlates with the ovarian toxicity observed only in the mice. Understanding which isoforms of CYP are involved in VCH bioactivation will better explain the species-dependent ovotoxicity of VCH. Present studies focus on the role of CYP2E1, as this isoform is responsible for the bioactivation of several structurally related small molecular weight compounds, including 1,3-butadiene. Hepatic microsomes prepared from either mice or rats pretreated with the CYP inducer acetone demonstrated 2-fold increases in the formation of VCH-1,2-epoxide. However, incubations with microsomes from cyp2e1-deficient mice compared to those from wild type mice revealed no differences in the rates of bioactivation of VCH to the monoepoxides. Since repeated exposure to VCH is required for VCH-induced ovotoxicity, rodents were dosed with VCH for 5 or 10 d to observe effects on the hepatic concentration of CYP2E1 and/or associated activities. VCH pretreatment failed to increase the concentration of CYP2E1 or CYP2E1 activity in either species, as measured by immunoblotting analysis and p-nitrophenol hydroxylation. Based on these data, it is concluded that CYP2E1 does not play a role in the species differences between mice and rats in the bioactivation of VCH following repeated exposure to VCH. Other isoforms, such as those in CYP2A and CYP2B subfamilies, are likely involved in VCH bioactivation.  相似文献   

13.
The effects of schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, and dimethyl diphenyl bicarboxylate (DDB), a synthetic intermediate of schisandrin C (also a dibenzocyclooctadiene derivative), on hepatic mitochondrial glutathione redox status in control and carbon tetrachloride (CCl4)-intoxicated mice were examined. Treating mice with Sch B or DDB at a daily oral dose of 1 mmol/kg for 3 d did not produce any significant alterations in plasma alanine aminotransferase (ALT) and sorbital dehydrogenase (SDH) activities. CCl4 treatment caused drastic increases in both plasma ALT and SDH activities in mice. Pretreating mice with Sch B or DDB at the same dosage regimen significantly suppressed the CCl4-induced increase in plasma ALT activity, with the inhibitory effect of Sch B being much more potent. Sch B, but not DDB, pretreatment could also decrease the plasma SDH activity in CCl4-intoxicated mice. The lowering of plasma SDH activity, indicative of hepatoprotection against CCl4 toxicity, by Sch B pretreatment was associated with an enhancement in hepatic mitochondrial glutathione redox status as well as an increase in mitochondrial glutathione reductase (mtGRD) activity in both non-CCl4 and CCl4-treated mice. DDB pretreatment, though enhancing both hepatic mitochondrial glutathione redox status and mtGRD activity in control animals, did not produce any beneficial effect in CCl4-treated mice. The difference in hepatoprotective action against CCl4 toxicity between Sch B and DDB may therefore be related to their ability to maintain hepatic mitochondrial glutathione redox status under oxidative stress condition.  相似文献   

14.
The growth-promoting and root-colonizing endophyte Piriformospora indica induces camalexin and the expression of CYP79B2, CYP79B3, CYP71A13, PAD3, and WRKY33 required for the synthesis of indole-3-acetaldoxime (IAOx)-derived compounds in the roots of Arabidopsis seedlings. Upregulation of the mRNA levels by P. indica requires cytoplasmic calcium elevation and mitogen-activated protein kinase 3 but not root-hair-deficient 2, radical oxygen production, or the 3-phosphoinositide-dependent kinase 1/oxidative signal-inducible 1 pathway. Because P. indica-mediated growth promotion is impaired in cyp79B2 cyp79B3 seedlings, while pad3 seedlings-which do not accumulate camalexin-still respond to the fungus, IAOx-derived compounds other than camalexin (e.g., indole glucosinolates) are required during early phases of the beneficial interaction. The roots of cyp79B2 cyp79B3 seedlings are more colonized than wild-type roots, and upregulation of the defense genes pathogenesis-related (PR)-1, PR-3, PDF1.2, phenylalanine ammonia lyase, and germin indicates that the mutant responds to the lack of IAOx-derived compounds by activating other defense processes. After 6 weeks on soil, defense genes are no longer upregulated in wild-type, cyp79B2 cyp79B3, and pad3 roots. This results in uncontrolled fungal growth in the mutant roots and reduced performance of the mutants. We propose that a long-term harmony between the two symbionts requires restriction of root colonization by IAOx-derived compounds.  相似文献   

15.
CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Camalexin represents the main phytoalexin in Arabidopsis (Arabidopsis thaliana). The camalexin-deficient phytoalexin deficient 3 (pad3) mutant has been widely used to assess the biological role of camalexin, although the exact substrate of the cytochrome P450 enzyme 71B15 encoded by PAD3 remained elusive. 2-(Indol-3-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid (dihydrocamalexic acid) was identified as likely intermediate in camalexin biosynthesis downstream of indole-3-acetaldoxime, as it accumulated in leaves of silver nitrate-induced pad3 mutant plants and it complemented the camalexin-deficient phenotype of a cyp79b2/cyp79b3 double-knockout mutant. Recombinant CYP71B15 heterologously expressed in yeast catalyzed the conversion of dihydrocamalexic acid to camalexin with preference of the (S)-enantiomer. Arabidopsis microsomes isolated from leaves of CYP71B15-overexpressing and induced wild-type plants were capable of the same reaction but not microsomes from induced leaves of pad3 mutants. In conclusion, CYP71B15 catalyzes the final step in camalexin biosynthesis.  相似文献   

16.
Accumulation of camalexin, the characteristic phytoalexin of Arabidopsis thaliana, is induced by a great variety of plant pathogens. It is derived from Trp, which is converted to indole-3-acetonitrile (IAN) by successive action of the cytochrome P450 enzymes CYP79B2/B3 and CYP71A13. Extracts from wild-type plants and camalexin biosynthetic mutants, treated with silver nitrate or inoculated with Phytophthora infestans, were comprehensively analyzed by ultra-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. This metabolomics approach was combined with precursor feeding experiments to characterize the IAN metabolic network and to identify novel biosynthetic intermediates and metabolites of camalexin. Indole-3-carbaldehyde and indole-3-carboxylic acid derivatives were shown to originate from IAN. IAN conjugates with glutathione, γ-glutamylcysteine, and cysteine [Cys(IAN)] accumulated in challenged phytoalexin deficient3 (pad3) mutants. Cys(IAN) rescued the camalexin-deficient phenotype of cyp79b2 cyp79b3 and was itself converted to dihydrocamalexic acid (DHCA), the known substrate of CYP71B15 (PAD3), by microsomes isolated from silver nitrate–treated Arabidopsis leaves. Surprisingly, yeast-expressed CYP71B15 also catalyzed thiazoline ring closure, DHCA formation, and cyanide release with Cys(IAN) as substrate. In conclusion, in the camalexin biosynthetic pathway, IAN is derivatized to the intermediate Cys(IAN), which serves as substrate of the multifunctional cytochrome P450 enzyme CYP71B15.  相似文献   

17.
In the present study, we investigated the differential role of the mitochondrial glutathione status and induction of heat shock proteins (HSPs) 25/70 in protecting against carbon tetrachloride (CCl_4) hepatotoxicity in schisandrin B (Sch B)-pretreated mice. The time-course of Sch B-induced changes in these hepatic parameters were examined. Dimethyl diphenyl bicarboxylate (DDB), a non-hepatoprotective analog of Sch B, was studied for comparison. Sch B treatment (2 mmol/kg) produced maximal enhancement in hepatic mitochondrial glutathione status as well as increases in hepatic HSP 25/70 levels at 24 h post-dosing. The stimulatory effect of Sch B then gradually subsided, but the activities of hepatic mitochondrial glutathione reductase (GR) and glutathione S-transferases (GST) as well as the level of HSP 25 remained relatively high even at 72 h post-dosing. CCl_4 challenge caused significant impairment in mitochondrial glutathione status and a decrease in HSP 70 level, but the HSP 25 level was significantly elevated. While the extent of hepatoprotection afforded by Sch B pretreatment against CCl_4 was found to inversely correlate with the time elapsed after the dosing, the protective effect was associated with the ability of Sch B to maintain the mitochondrial glutathione status and/or induce further production of HSP 25 in CCl_4-intoxicated condition. On the other hand, DDB treatment (2 mmol/kg), which did not increase mitochondrial GSH level and GST activity or induce further production of HSP 25 after CCl_4 challenge, could not protect against CCl_4 toxicity. The results suggest that the enhancement of mitochondrial glutathione status and induction of HSP 25/70 may contribute independently to the hepatoprotection afforded by Sch B pretreatment.  相似文献   

18.
Degradation of the cholesterol side‐chain in Mycobacterium tuberculosis is initiated by two cytochromes P450, CYP125A1 and CYP142A1, that sequentially oxidize C26 to the alcohol, aldehyde and acid metabolites. Here we report characterization of the homologous enzymes CYP125A3 and CYP142A2 from Mycobacterium smegmatis mc2 155. Heterologously expressed, purified CYP125A3 and CYP142A2 bound cholesterol, 4‐cholesten‐3‐one, and antifungal azole drugs. CYP125A3 or CYP142A2 reconstituted with spinach ferredoxin and ferredoxin reductase efficiently hydroxylated 4‐cholesten‐3‐one to the C‐26 alcohol and subsequently to the acid. The X‐ray structures of both substrate‐free CYP125A3 and CYP142A2 and of cholest‐4‐en‐3‐one‐bound CYP142A2 reveal significant differences in the substrate binding sites compared with the homologous M. tuberculosis proteins. Deletion only of cyp125A3 causes a reduction of both the alcohol and acid metabolites and a strong induction of cyp142 at the mRNA and protein levels, indicating that CYP142A2 serves as a functionally redundant back up enzyme for CYP125A3. In contrast to M. tuberculosis, the M. smegmatis Δcyp125Δcyp142 double mutant retains its ability to grow on cholesterol albeit with a diminished capacity, indicating an additional level of redundancy within its genome.  相似文献   

19.
20.
Pretreating mice with schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, at a daily dose of 1 mmol/kg for 3 days protected against menadione-induced hepatic oxidative damage in mice, as evidenced by decreases in plasma alanine aminotransferase activity (78%) and hepatic malondialdehyde level (70%), when compared with the menadione intoxicated control. In order to define the biochemical mechanism involved in the hepatoprotection afforded by Sch B pretreatment, we examined the activity of DT-diaphorase (DTD) in hepatocytes isolated from Sch B pretreated rats. Hepatocytes isolated from Sch B pretreated (a daily dose of 1 mmol/kg for 3 days) rats showed a significant increase (25%) in DTD activity. The increase in DTD activity was associated with the enhanced rate of menadione elimination in the hepatocyte culture. The ensemble of results suggests that the ability of Sch B pretreatment to enhance hepatocellular DTD activity may at least in part be attributed to the protection against menadione hepatotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号