首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
该文利用无血清培养基对脐带间充质干细胞(umbilical cord derived mesenchymal stem cells,UC-MSCs)、脂肪间充质干细胞(adipose derived mesenchymal stem cells,AD-MSCs)和胎盘间充质干细胞(placenta derived mesenchymal stem cells,PMSCs)进行了体外传代培养,通过比较此三种不同来源间充质干细胞生物学特性及遗传特性在传代过程中的变化及差异,为间充质干细胞临床应用安全性及细胞来源的选择提供实验和理论依据。通过细胞形态观察、细胞周期检测、表面标记物检测、染色体核型分析、相关基因表达及细胞因子的定量分析,结果发现,UC-MSCs和ADMSCs在体外培养时呈长梭形旋涡状贴壁生长,而PMSCs则呈短梭形旋涡状或网状贴壁生长,细胞核较大。通过长期传代培养及细胞周期分析发现,PMSCs增殖活性最强,UC-MSCs次之,AD-MSCs最弱。三种细胞均表达CD73、CD90和CD105,且阳性率大于98%;均低表达CD11b、CD19、CD34和CD45,且阳性率低于1%;HLA-DR均为阴性。三种细胞染色体核型稳定,没有缺失、易位和倒位等现象。7种基因表达均有差异,但在7代内各基因表达量仅有微小变化,细胞因子在传代过程中均比较稳定。以上结果提示,利用无血清培养基体外传代培养至7代以内,PMSCs比AD-MSCs和UCMSCs更安全。  相似文献   

2.
目的:研究表皮生长因子诱导骨髓间充质干细胞向视网膜神经细胞分化的可能性。方法:体外培养骨髓间充质干细胞,利用流式细胞仪分析其细胞表型。采用含EGF的培养液诱导骨髓间充质干细胞向视网膜神经细胞分化,并利用免疫荧光法进行鉴定。结果:从骨髓中分离培养的细胞具有成纤维细胞样形态,贴壁生长,表型相对均一,表面标志为CD90、CD44、CD147阳性;而CD34、CD38、CD45、CD14、HLA-DR阴性。体外诱导后可以得到神经干细胞标志物nestin、神经胶质细胞标志物GFAP和视网膜光感受器细胞标志物Rhodopsin呈阳性表达的细胞。结论:从骨髓中分离培养得到的间充质干细胞具有向视网膜神经细胞分化的潜能。  相似文献   

3.
目的:分离、培养、纯化家猫的骨髓间充质干细胞,并对获得细胞的表面标志物进行鉴定,为进一步利用骨髓间充质干细胞的细胞移植实验奠定基础。方法:采用全骨髓贴壁法体外分离、培养、纯化家猫骨髓间充质干细胞,通过多次更换培养液获得较纯化的骨髓间充质干细胞,倒置相差显微镜下对细胞形态进行观察;根据第1、3、5、7、9代细胞的镜下增殖情况绘制出生长曲线;通过流式细胞仪检测细胞表面标志抗原CD34、CD44和CD90的表达率。结果:在倒置相差显微镜下观察,分离培养的骨髓间充质干细胞贴壁呈梭形或纺锤形;原代细胞生长丛集成片,5~7 d达到融合,进行传代;培养到第三代以后,细胞出现相对均匀的梭形扁平外观,迅速增殖的细胞呈涡流样排列;第3、5代骨髓间充质干细胞增殖能力强于第7、9代;采用流式细胞仪分析结果显示细胞的CD34、CD44和CD90阳性率分别为17.5%、97.9%和91%,这与骨髓间充质干细胞表面抗原的表达一致。结论:分离培养的细胞具有骨髓间充质干细胞特性,成分相对单一,第3、5代细胞纯度高,增殖能力强,适用于进一步的实验研究。  相似文献   

4.
目的体外分离培养、扩增人脐带间充质干细胞(h UC-MSC)和人骨髓间充质干细胞(h BM-MSC),并对其生物学特性进行比较。方法采用组织块贴壁法从足月胎儿脐带分离、纯化和培养h UC-MSC,健康成人骨髓肝素抗凝后,采用密度梯度离心法分离、纯化和培养h BM-MSC;用倒置显微镜观察两种细胞的形态及细胞生长增殖情况,流式细胞仪分析检测第3代细胞表面标志的表达,Von?Kossa染色及油红O染色检测分化潜能。结果镜下两种细胞均为贴壁生长,形态为均一的成纤维细胞样,取相同数量的细胞传代接种后,h UC-MSC的增殖速率快于h BM-MSC,两种细胞具有均一的细胞表型,均表达CD29、CD44、CD105,不表达CD45、CD34、HLA-DR、HLA-G、CD80、CD86,两种细胞都有成骨、成脂分化潜能,但h UC-MSC的分化潜能更强。结论 h UC-MSC与h BM-MSC具有相似的生物学特性,且前者具有更强的增殖能力和分化潜能,h UC-MSC有望成为h BMMSC理想的替代来源。  相似文献   

5.
为比较猫的脂肪、骨髓、羊膜、脐带等器官组织4种不同器官来源间充质干细胞(Mesenchymal stem cells,MSC)的生物学特性,本研究通过全血培养法分离培养骨髓来源的间充质干细胞,并采用消化法分离培养脂肪、脐带和胎盘来源的间充质干细胞,比较它们的细胞形态、生长曲线、成脂成骨分化能力以及细胞表面标志物等生物学特性。结果显示,分离得到的4种不同来源的MSC均呈贴壁生长,细胞形态呈梭形、多棱形;均具有成脂成骨分化能力;脂肪源和骨髓源MSC的细胞增殖速度较快,细胞倍增时间较短,而羊膜与脐带源的MSC增殖能力较差,细胞倍增时间较长,4种细胞中脂肪来源MSC的增长活性最好,细胞传至第9代的时候依然保持良好的增殖活性,提示AD-MSC的临床应用可能比较好;4种MSC细胞表面均高表达CD105、CD90和CD44等标志物,低表达CD34。  相似文献   

6.
目的:研究再生障碍性贫血(aplasticanemia,从)患者骨髓间充质干细胞(mesenchymalstemcells,MSCs)的生物学特性和初步探讨其异常和AA发生的可能关系。方法:取AA患者骨髓间充质干细胞,测定其生长曲线和倍增时间;流式细胞仪检测其细胞周期和免疫表型;体外定向诱导其向脂肪、成骨、内皮和神经细胞分化;用real-timePCR及油红O染色法比较AA和正常对照组MSCs的成脂分化的不同。结果:AA患者和正常成人的MSCs均呈梭形贴壁生长;AA组细胞倍增时间长于对照组;CD105、CD44、CD29、CD106、FlK-1均阳性;96.51%的细胞处在G0/G1期;AA患者的MSCs保持了多向分化潜能,体外诱导形成脂滴较对照组早,诱导早期的脂蛋白脂酶表达增高。结论:再生障碍性贫血患者的骨髓间充质干细胞增殖能力较正常成人弱,骨髓间充质干细胞的易成脂性可能参与了再障的发病环节。  相似文献   

7.
赵迪诚  杜鹃  陈红  卢连梅  苏江 《生物磁学》2011,(24):4837-4840
目的:研究脐血间充质干细胞生物学特性及向神经元样细胞分化的潜能。方法:采用密度梯度离心结合贴壁培养法自脐血中分离间充质干细胞,观察细胞生长情况,描绘生长曲线,流式细胞仪检测细胞表面标志物,分别向成骨细胞、脂肪细胞、神经元样细胞进行诱导分化,通过茜素红染色、油红O染色检测脐血间充质干细胞成骨、成脂肪细胞诱导分化能力,而以免疫组织化学检测诱导后细胞表面神经标志物的表达。结果:纯化的脐血间充质干细胞贴壁生长,呈均一梭形,生长曲线呈S型,并以P3代增殖能力最强,细胞表面不表达或弱表达CD34、CD35、CD106,高表达CD29、CD44、CD105。成骨诱导2周后,可检测到钙化基质的形成,成脂肪诱导3周后,可检测到脂滴的形成。向神经元样细胞诱导分化后,可观察到典型的神经元样形态改变,且NSE、NF、GFAP阳性表达。结论:分离纯化的脐血间充质干细胞具有较强的增殖能力与分化潜能,并在体外诱导条件下可以向神经元样细胞定向分化。  相似文献   

8.
目的建立一种从小鼠骨髓中分离培养间充质干细胞(MSCs)的高效方法。方法采取贴壁细胞分离法分离和纯化小鼠骨髓间充质干细胞(mMSCs),检测mMSCs在不同诱导条件下向成骨细胞及脂肪细胞分化能力,用流式细胞术及显微镜分别检测mMSCs纯度和形态特征。结果mMSCs贴壁生长后形态较均一,细胞形态呈成纤维细胞样,流式细胞术检测:CD45、CD11b、CD44及CD29分别为(3.34)%、(2.41)%、(98.46)%及(99.36)%。第4代mMSCs经诱导后可向成骨细胞和脂肪细胞分化。结论通过贴壁培养可以从小鼠骨髓中分离培养出高纯度mMSCs,该方法效率高,稳定性好。  相似文献   

9.
目的:探讨体外大鼠骨髓间充质干细胞(rBMMSCs)的分离培养和血管内皮生长因子(VEGF)、碱性成纤维细胞生长因子(bFGF)对其定向诱导为内皮样细胞(ELCs)的可行性。方法:采用Percoll(1.073g/ml)分离液分离骨髓单个核细胞,用含10%胎牛血清(FBS)的LG-DMEM培养基贴壁纯化培养,倒置显微镜、免疫细胞化学法、流式细胞仪、MTT法、透射电镜(TEM)联合对rBMMSCs形态、表型、生长曲线、细胞周期以及超微结构进行鉴定;诱导后的细胞,采用倒置显微镜观察细胞形态,免疫细胞化学法检测CD31、CD144(VE-cadherin)和CD34表达以及摄取Dil-ac-LDL、结合FITC-UEA-1的功能特点。结果:rBMMSCs呈长梭形,漩涡状排列。细胞生长曲线显示潜伏期、对数生长期和平台期,符合干细胞的生长规律。透射电镜结果表明:rBMMSCs有两种不同的形态结构,其中体积较小、核质比大、胞质内细胞器稀少者为处于未分化或分化较低状态的幼稚型rBMMSCs。细胞周期分析显示:第4代细胞G0/G1期为95.67%,表明绝大部分细胞处于非增殖状态;诱导后的部分细胞形态可见类似ELCs改变,表达血管内皮细胞(ECs)特异性表面标志CD31、CD34和CD144,具有摄取Dil-ac-LDL以及结合FITC-UEA-1的功能特点。结论:采用Percoll密度梯度离心与贴壁培养相结合的方法所培养的rBMMSCs在体外具有定向诱导分化为ELCs的潜能,可能成为血管组织工程理想的种子细胞来源。  相似文献   

10.
目的:建立并优化人脐带间充质干细胞分离纯化方法,并对其表面标志与多向分化潜能进行鉴定。方法:收集健康足月产胎儿脐带组织,采用组织块贴壁法进行原代培养,流式细胞仪对其表面标志进行检测,通过向成骨成脂分化对其多向分化潜能进行鉴定,RT-PCR对其干细胞特性基因Oct4、Nanog、Sox2、Nestin进行检测。结果:采用组织块贴壁法可在2周左右获得大量间充质干细胞,培养的细胞经流式细胞仪检测,高表达CD29、CD44、CD105、CD106,低表达CD34、CD45;经成骨成脂诱导2周后可分化为成骨细胞和成脂细胞,RT-PCR检测发现原代细胞表达Oct4、Nanog、Sox2、Nestin基因。结论:人脐带间充质干细胞可在体外扩增培养,具有多向分化潜能,可作为组织工程种子细胞来源。  相似文献   

11.
Fan ZX  Lu Y  Deng L  Li XQ  Zhi W  Li-Ling J  Yang ZM  Xie HQ 《The FEBS journal》2012,279(13):2455-2465
Tissue-engineered bones (TEBs) constructed with bone-marrow-derived mesenchymal stem cells (BMSCs) seeded on biomaterial scaffolds have achieved good results for bone defect repair in both animal experiments and clinical trials. This has been limited, however, by the source and quantity of BMSCs. We here explored TEBs constructed by placenta-derived mesenchymal stem cells (PMSCs) and compared their effect for the repair of critical-sized segmental osteoperiosteal defects with TEBs constructed with BMSCs. PMSCs were isolated from rabbit placenta by gradient centrifugation and in vitro monolayer culturing, and BMSCs were isolated from the hindlimb bone marrow of newborn rabbit. Primary cultured PMSCs and BMSCs were uniformly in a spindle shape. Immunocytochemistry indicated that both types of cells are positive for CD44 and CD105, and negative for CD34 and CD40L, confirming that they are mesenchymal stem cells. BrdU-labeled PMSCs and BMSCs were respectively co-cultured with bio-derived bone materials to construct TEBs in vitro. Critical-sized segmental osteoperiosteal defects of radii were created in 24 rabbits by surgery. The defects were repaired with TEBs constructed with PMSCs and BMSCs. The results showed that TEBs constructed by both PMSCs and BMSCs could repair the osteoperiosteal defects in a 'multipoint' manner. Measurement of radiography, histology, immunohistochemistry, alkaline phosphatase activity, osteocalcin assaying and biomechanical properties have found no significant difference between the two groups at 2, 4, 8 and 12 weeks after the transplantation (P > 0.05). Taken together, our results indicate that PMSCs have similar biological characteristics and osteogenic capacity to BMSCs and can be used as a new source of seeding cells for TEBs.  相似文献   

12.
Multipotent mesenchymal stem cells have recently emerged as an attractive cell type for the treatment of diabetes-associated wounds. The purpose of this study was to examine the potential biological function of human placenta-derived mesenchymal stem cells (PMSCs) in wound healing in diabetic Goto-Kakizaki (GK) rats. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. A full-thickness circular excisional wound was created on the dorsum of each rat. Red fluorescent CM-DiI-labeled PMSCs were injected intradermally around the wound in the treatment group. After complete wound healing, full-thickness skin samples were taken from the wound sites for histological evaluation of the volume and density of vessels. Our data showed that the extent of wound closure was significantly enhanced in the PMSCs group compared with the no-graft controls. Microvessel density in wound bed biopsy sites was significantly higher in the PMSCs group compared with the no-graft controls. Most surprisingly, immunohistochemical studies confirmed that transplanted PMSCs localized to the wound tissue and were incorporated into recipient vasculature with improved angiogenesis. Notably, PMSCs secreted comparable amounts of proangiogenic molecules, such as VEGF, HGF, bFGF, TGF-β and IGF-1 at bioactive levels. This study demonstrated that PMSCs improved the wound healing rate in diabetic rats. It is speculated that this effect can be attributed to the PMSCs engraftment resulting in vascular regeneration via direct de novo differentiation and paracrine mechanisms. Thus, placenta-derived mesenchymal stem cells are implicated as a potential angiogenesis cell therapy for repair-resistant chronic wounds in diabetic patients.  相似文献   

13.
Mesenchymal stem cell‐based therapy has emerged as a promising approach for the treatment of peripheral arterial disease. The purpose of this study was to examine the potential effects of human placenta‐derived mesenchymal stem cells (PMSCs) on mouse hindlimb ischemia. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. An in vivo surgical ligation‐induced murine limb ischemia model was generated with fluorescent dye (CM‐DiI) labelled PMSCs delivered via intramuscular injection. Our data show that PMSCs treatment significantly enhanced microvessel density, improved blood perfusion and diminished pathologies in ischemic mouse hindlimbs as compared to those in the control group. Further immunostaining studies suggested that injected PMSCs can incorporate into the vasculature and differentiate into endothelial and smooth muscle cells to enhance angiogenesis in ischemic hind limbs. This may in part explain the beneficial effects of PMSCs treatment. Taken together, we found that PMSCs treatment might be an effective treatment modality for treatment of ischemia‐induced injury to mouse hind limbs by enhancement of angiogenesis.  相似文献   

14.
目的:探讨骨髓间充质干细胞(BMSCs)体外分离培养以及扩增的方法并鉴定。方法:取100g左右雄性SD大鼠后肢股骨、胫骨骨髓,原代全骨髓培养法,多次传代纯化,体外扩增后,观察细胞形态,并免疫组化及流式细胞仪检测cd34、cd90、cd105细胞因子,鉴定是否为BMSCs。结果:所获取的细胞呈长梭形,呈现特征性的漩涡状生长,CD34阴性,CD90、CD105阳性。结论:利用全骨髓培养法成功分离骨髓间充质干细胞,10代以内的细胞纯度高,活性好。全骨髓培养较为简便、易行。  相似文献   

15.
16.
Background: Mesenchymal stem cells are able to undergo adipogenic differentiation and present a possible alternative cell source for regeneration and replacement of adipose tissue. The human infrapatellar fat pad is a promising source of mesenchymal stem cells with many source advantages over from bone marrow. It is important to determine whether a potential mesenchymal stem‐cell exhibits tri‐lineage differentiation potential and is able to maintain its proliferation potential and cell‐surface characterization on expansion in tissue culture. We have previously shown that mesenchymal stem cells derived from the fat pad can undergo chondrogenic and osteogenic differentiation, and we characterized these cells at early passage. In the study described here, proliferation potential and characterization of fat pad‐derived mesenchymal stem cells were assessed at higher passages, and cells were allowed to undergo adipogenic differentiation. Materials and methods: Infrapatellar fat pad tissue was obtained from six patients undergoing total knee replacement. Cells isolated were expanded to passage 18 and proliferation rates were measured. Passage 10 and 18 cells were characterized for cell‐surface epitopes using a range of markers. Passage 2 cells were allowed to undergo differentiation in adipogenic medium. Results: The cells maintained their population doubling rates up to passage 18. Cells at passage 10 and passage 18 had cell‐surface epitope expression similar to other mesenchymal stem cells previously described. By staining it was revealed that they highly expressed CD13, CD29, CD44, CD90 and CD105, and did not express CD34 or CD56, they were also negative for LNGFR and STRO1. 3G5 positive cells were noted in cells from both passages. These fat pad‐derived cells had adipogenic differentiation when assessed using gene expression for peroxisome proliferator‐activated receptor γ2 and lipoprotein lipase, and oil red O staining. Discussion: These results indicate that the cells maintained their proliferation rate, and continued expressing mesenchymal stem‐cell markers and pericyte marker 3G5 at late passages. These results also show that the cells were capable of adipogenic differentiation and thus could be a promising source for regeneration and replacement of adipose tissue in reconstructive surgery.  相似文献   

17.
Numerous challenges remain in the successful clinical translation of cell-based therapeutic studies for skeletal tissue repair, including appropriate cell sources and viable cell delivery systems. Poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) amphiphilic block copolymers have been extensively explored in microspheres preparation. Due to the introduction of hydrophilic PEG segments into PCL backbones, these copolymers have shown much more potentials in carrying protein, lipophilic drugs or genes than commonly used poly (ε-caprolactone) (PCL) and poly (lactic acid). The aim of this study is to investigate the attachment and osteogenic differentiation of human placenta derived mesenchymal stem cells (PMSCs) on PEG-PCL triblock copolymers nanofiber scaffolds. Here we demonstrated that PMSCs proliferate robustly and can be effectively differentiated into osteogenic-like cells on nanofiber scaffolds. This study provides evidence for the use of nanofiber scaffolds as an ideal supporting material for in vitro PMSCs culture and an in vivo cell delivery vehicle for bone repair.  相似文献   

18.
19.
Yuan W  Zong C  Huang Y  Gao Y  Shi D  Chen C  Liu L  Wang J 《Stem cell research》2012,9(2):110-123
It has been verified that placenta contains multi-lineage mesenchymal stem cells (MSCs). We have used a time-gradient attachment method to isolate placenta-derived MSCs (PMSCs). The morphology, differentiation potential, immunogenicity and xenogenic reconstruction potential of these PMSCs were examined. The results showed that PMSCs isolated using the time-gradient attachment method showed higher potential of in vitro proliferation and multi-lineage differentiation. PMSCs isolated using the time-gradient attachment method showed a low immunogenicity. HLA-A gene fragment and no HLA-DR gene fragment were detected in PMSCs isolated using the time-gradient attachment method, and the mixed lymphocyte reaction (MLR) assay identified that these cells inhibited the proliferation of the allogeneic T-lymphocytes induced by PHA. The transplantation in calvaria of rats showed that PMSCs had the higher xenogenic reconstruction potential. Finally, the significance of PMSCs isolated using the time-gradient attachment method in experimental and clinical applications is discussed.  相似文献   

20.
Aim of the present study was the isolation, culture, and characterization of amniotic membrane-derived epithelial cells (AE) from term placenta collected postpartum in buffalo. We found that cultured cells were of polygonal in shape, resistance to trypsin digestion and expressed cytokeratin-18 indicating that they were of epithelial origin. These cells have negative expression of mesenchymal stem cell markers (CD29, CD44, and CD105) and positive for pluripotency marker (OCT4) genes indicated that cultured cells were not contaminated with mesenchymal stem cells. Immunofluorescence staining with pluripotent stem cell surface markers, SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81 indicated that these cells may retain pluripotent stem cell characteristics even after long period of differentiation. Differentiation potential of these cells was determined by their potential to differentiate into cells of neurogenic lineages using retinoic acid. In conclusion, we demonstrate that AE cells expressed pluripotent stem cell markers and have propensity to differentiate into cells of neurogenic lineage upon directed differentiation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号