首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphine-6beta-glucuronide (M6G) is well known as a potent active metabolite in humans. To clarify concentration-antinociceptive effect relationships for morphine and M6G, we evaluated comparatively the pharmacokinetics and antinociceptive effects of morphine and M6G. The spinal CSF concentration and antinociception were simultaneously measured by using the combination of a microdialysis method and the formalin test in conscious rats after the s.c. administration of morphine (0.3-3 mg/kg) and M6G (0.1-3 mg/kg). The plasma concentration of M6G after s.c. administration was higher than that of morphine, as shown by the 2.1 times greater value of area under the concentration-time curve (AUC(plasma)). The spinal CSF concentrations of morphine and M6G increased dose-dependently. The AUC(CSF) of M6G was 1.6-1.8 times higher than that of morphine at each dose. Administration of morphine and M6G dose-dependently suppressed the flinching behavior induced by formalin injection. The ED(50) values for M6G were 3 times lower than those of morphine, although the spinal CSF concentration versus antinociceptive effect curves of morphine and M6G were very similar, with similar EC(50) values. These results suggest that the antinociceptive potencies of morphine and M6G, evaluated by simultaneous measurements of spinal CSF drug concentration and antinociception, are equivalent. Simultaneous measurement of spinal CSF concentration and antinociception by using microdialysis should be useful for elucidating the relationship between pharmacokinetics and pharmacodynamics of various opioids.  相似文献   

2.
Morphine-6-glucuronide: analgesic effects and receptor binding profile in rats   总被引:16,自引:0,他引:16  
F V Abbott  R M Palmour 《Life sciences》1988,43(21):1685-1695
The antinociceptive effects of morphine-6-glucuronide (M6G) were examined in two animal models of pain, the tail immersion test (reflex withdrawal to noxious heat) and the formalin test (behavioral response to minor tissue injury). In the tail immersion test, M6G produced an increase in withdrawal latency that rose rapidly between 0.01 and 0.025 ug ICV or 1 and 2 mg/kg SC. A further increase occurred at doses greater than 0.2 ug ICV or 4 mg/kg SC and was associated with marked catalepsy and cyanosis. Naloxone, 0.1 mg/kg SC, shifted the lower component of the dose-effect relation by a factor of 24. In the formalin test, 0.01 ug M6G ICV produced hyperalgesia, while between 0.05 and 0.2 ug ICV, antinociception increased rapidly without toxicity. The dose effect relations for hyperalgesia and antinociception were shifted to the right by factors of 20- and 3-fold, respectively. By comparison, ICV morphine was 60 (formalin test) to 145-200 (tail immersion test) times less potent than M6G. At sub-nanomolar concentrations, M6G enhanced the binding of [3H]-etorphine, [3H]-dihydromorphine and [3H]-naloxone to rat brain membrane receptors by 20-40%. At higher concentrations, M6G displaced each ligand from binding sites, with Ki values of about 30 nM, as compared to morphine Ki values of about 3 nM. The data indicate that the in vivo and in vitro effects of M6G are complex and that M6G may play an important role in analgesia in experimental animals, and by implication, in man.  相似文献   

3.
Morphine-3- and morphine-6-glucuronide are morphine’s major metabolites. As morphine-6-glucuronide produces stronger analgesia than morphine, we investigated the effects of acute and chronic morphine glucuronides on adenylyl cyclase (AC) activity. Using COS-7 cells cotransfected with representatives of the nine cloned AC isozymes, we show that AC-I and V are inhibited by acute morphine and morphine-6-glucuronide, and undergo superactivation upon chronic exposure, while AC-II is stimulated by acute and inhibited by chronic treatment. Morphine-3-glucuronide had no effect. The weak opiate agonists codeine and dihydrocodeine are also addictive. These opiates, in contrast to their 3-O-demethylated metabolites morphine and dihydromorphine (formed by cytochrome P450 2D6), demonstrated neither acute inhibition nor chronic-induced superactivation. These results suggest that metabolites of morphine (morphine-6-glucuronide) and codeine/dihydrocodeine (morphine/dihydromorphine) may contribute to the development of opiate addiction.  相似文献   

4.
Hao S  Takahata O  Iwasaki H 《Life sciences》2000,66(15):PL195-PL204
It is known that spinal morphine produces antinociception that is modulated by alpha 2-adrenoceptors. Endomorphin-1, a newly-isolated endogenous opioid ligand, shows the greatest selectivity and affinity for the mu-opiate receptor of any endogenous substance found to date and may serve as a natural ligand for the mu-opiate receptor. We examined the antinociceptive effects of endomorphin-1 administered intrathecally (i.t.) in the rat tail flick, tail pressure and formalin tests. Intrathecal endomorphin-1 produced dose-dependent antinociceptive effects in the three tests. ED50 (CI95) values for antinociception of i.t. endomorphin-1 in the tail flick test and tail pressure test were 1.9 (0.96-3.76) nmol and 1.8 (0.8-4.2) nmol, respectively. ED50 (CI95) values for phase 1 and phase 2 in the formalin test were 12.5 (7.9-19.8) nmol and 17.5 (10.2-30) nmol, respectively. Pretreatment with i.t. beta-funaltrexamine (a mu-opioid receptor selective antagonist) significantly antagonized the antinociceptive effects of endomorphin-1 in the three tests. Beta-funaltrexamine alone had not effects on the three tests. The antinociceptive effects of endomorphin-1 were also antagonized by i.t. yohimbine (an alpha 2-adrenoceptor selective antagonist). The combination of ineffective doses of i.t. clonidine (an alpha 2-adrenoceptor agonist) and endomorphin-1 produced a significant antinociception in the three tests. The results showed that intrathecal endomorphin-1 produced antinociception in a dose-dependent manner in the rat tail flick, tail pressure and formalin tests, which was mediated by spinal mu-opioid receptors and modulated by alpha 2-adrenoceptors.  相似文献   

5.
角蒿生物碱及镇痛活性物质   总被引:1,自引:0,他引:1  
角蒿(Incarvillea sinensis)为透骨草的主要来源之一,称为“羊角透骨草”,具有祛风除湿、消肿止痛之功效。从其全草分离得到了多种新的单萜生物碱和大环精胺类生物碱,其中单萜生物碱之一角蒿酯碱(incarvillateine),具有很强的镇痛活性,且作用机理不同于吗啡。角蒿酯碱已成为开发新型非麻醉性镇痛新药的重要先导化合物,本文对角蒿的化学成分、镇痛活性、作用机理和构效关系的研究作一综述。  相似文献   

6.
S Gupta  S Pasha  Y K Gupta  D K Bhardwaj 《Peptides》1999,20(4):471-478
A synthetic chimeric peptide of Met-enkephalin and FMRFamide (YGGFMKKKFMRFa), based on MERF was synthesized. This peptide was tested for possible antinociceptive effects using the tail flick test in mice. The effect of the chimeric peptide on morphine antinociception and development of tolerance to the antinociceptive action of morphine was also investigated. The chimeric peptide produced significant, dose-dependent antinociception (40, 60 and 90 mg/kg) in the tail flick test. Pretreatment with naloxone (5 mg/kg, IP) significantly attenuated the antinociceptive effect induced by the chimeric peptide (90 mg/kg, IP), indicating involvement of an opioidergic mechanism. In combination experiments with morphine, the antinociceptive dose of the chimeric peptide (60 mg/kg, IP) potentiated morphine (7 mg/kg, IP) antinociception. A low dose of the chimeric peptide (10 mg/kg, IP), that did not produce significant antinociception on its own, also potentiated morphine antinociception. In the tolerance studies, male albino mice received twice daily injections of morphine (20 mg/kg, IP) followed by either saline (0.1 ml) or chimeric peptide (80 mg/kg, IP) for a period of 4 days. A control group received twice daily injections of saline (0.1 ml) for the same period. When tested on Day 5, tolerance to antinociceptive action of morphine (15 mg/kg, IP) was evidenced by decreased response in chronic morphine plus saline treated mice compared to control group. Concurrent administration of chimeric peptide (80 mg/kg, IP) with morphine significantly attenuated the development of tolerance to the antinociceptive action of morphine. The preliminary results of this study demonstrate that peripherally administered chimeric peptide can produce dose dependent, naloxone reversible, antinociception; potentiate morphine antinociception and attenuate morphine tolerance, indicating a possible role of these type of amphiactive sequences in antinociception and its modulation. These chimeric peptides may also prove to be useful tools for further ascertaining the role of FMRFa family of peptides in mechanisms leading to opiate tolerance and dependence.  相似文献   

7.
The peripheral antinociceptive effect of the selective COX-2 inhibitor celecoxib in the formalin-induced inflammatory pain was compared with that of resveratrol (COX-1 inhibitor) and diclofenac (non-selective COX inhibitor). Rats received local pretreatment with saline, celecoxib, diclofenac or resveratrol followed by 50 microl of either 1% or 5% formalin. Peripheral administration of celecoxib did not produce antinociception at either formalin concentration. In contrast, diclofenac and resveratrol produced a dose-dependent antinociceptive effect in the second phase of both 1% and 5% formalin test. The peripheral antinociception produced by diclofenac or resveratrol was due to a local action, as drug administration in the contralateral paw was ineffective. Results indicate that the selective COX-2 inhibitor celecoxib does not produce peripheral antinociception in formalin-induced inflammatory pain. In contrast, selective COX-1 and non-selective COX inhibitors (resveratrol and diclofenac, respectively) are effective drugs in this model of pain.  相似文献   

8.
Opioid analgesics devoid of central side effects are unmet medical need in the treatment of acute pain (e.g. post-operative pain). Recently, we have reported on 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU), a novel opioid agonist of high efficacy producing peripheral antinociception in subchronic inflammatory pain in certain doses. The present study focused on the antinociceptive effect of 14-O-MeM6SU compared to morphine in formalin test of an early/acute (Phase I) and late/tonic (Phase II) pain phases. Subcutaneous 14-O-MeM6SU (253–1012 nmol/kg) and morphine (3884–31075 nmol/kg) dose dependently reduced the pain behaviors of both phases. Co-administered naloxone methiodide (NAL-M), a peripherally acting opioid antagonist, abolished the antinociceptive effect of 506 nmol/kg 14-O-MeM6SU. On the other hand, the effects of 14-O-MeM6SU (1012 nmol/kg) and morphine (15538 nmol/kg) were only partially affected by NAL-M, indicating the contribution of CNS to antinociception. Locally injected test compounds into formalin treated paws caused antinociception in both phases. Locally effective doses of test compounds were also injected into contralateral paws. Morphine showed effects in both phases, 14-O-MeM6SU in certain doses failed to produce antinociception in either phase. A NAL-M reversible systemic dose of 14-O-MeM6SU and the lowest systemic effective dose of morphine were evaluated for their sedative effects following isoflurane-induced sleeping (righting reflex). In contrast to morphine, 14-O-MeM6SU in certain antinociceptive doses showed no impact on sleeping time. These data highlight that high efficacy opioids of limited CNS penetration in certain doses mitigate somatic and inflammatory pain by targeting MOR at the periphery.  相似文献   

9.
Morphine-6-glucuronide (M6G), a major metabolite of morphine with agonist opioid-receptor activity, was reported to be a substrate of P-glycoprotein (P-gp). Inhibition of P-gp may thus result in higher brain uptake of M6G. The goal of this observer-blinded, placebo controlled study, was to compare the antinociceptive effects of M6G in homozygous P-gp knockout (mdr1a(-/-)) and wildtype (mdr1a(+/+)) mice. M6G was injected intraperitoneally as a single dose of 0, 0.5, 1, 2.5, 5, and 10 mg/kg. Eight P-gp knockout and eight wildtype mice were studied per dose. A hot plate test was performed before and 5, 15, 30, 60, 90, 120, and 150 min after M6G administration. Plasma-concentrations of M6G, morphine, and morphine-3-glucuronide (M3G) were measured after intraperitoneal injection of 5 mg/kg M6G in another 14 P-gp knockout and 14 wildtype mice. No difference neither in the dose response relationship, nor in the time course of response latency times were observed between P-gp knockout and wildtype mice. However, latency times increased with higher doses of M6G, with antinociception significantly different from placebo at a M6G dose of 5 and 10 mg/kg. P-gp knockout mice tended to have higher plasma concentrations than the wildtype. However, plasma concentrations widely overlapped between groups and therefore no statistical significant group difference could be detected. We conclude that despite reported doubling of M6G brain uptake, absence of mdr1a coded P-gp does not enhance antinociceptive effects of M6G in the hotplate test after acute single-dose administration in mdr1a(-/-) knockout mice.  相似文献   

10.
TRK-820, a new type of 4,5-epoxymorphinan derivative, was investigated in vivo for antinociceptive activities and its selectivity on various opioid receptors in mice. TRK-820 given s.c. or p.o. was found to be 351- and 796-fold more potent than U50,488H with acetic acid-induced abdominal constriction test. The duration of the antinociceptive effect produced by TRK-820 was longer than that produced by mu-opioid receptor agonist morphine or other kappa-opioid receptor agonists. In addition, with four other antinociceptive assays, low temperature hot plate (51 degrees C), thermal tail flick, mechanical tail pressure and tail pinch tests, TRK-820 was also found to be 68- to 328-fold more potent than U-50488H, and 41- to 349-fold more potent than morphine in producing antinociception, as comparing the weight of the different compound. However, TRK-820 was less active in inhibiting the high temperature (55 degrees C) hot plate response. The antinociceptive effects produced by TRK-820 were inhibited by nor-BNI, but not by naloxone or naltrindole (NTI) with the abdominal constriction test, indicating that the antinociception is selectively mediated by the stimulation of kappa-, but not mu- or delta-opioid receptors. Co-administration of TRK-820 with morphine slightly enhanced the antinociception induced by morphine in the mouse hot plate test. On the other hand, pentazocine significantly reduced the morphine-induced antinociception. TRK-820 produced sedation at doses, which are much higher than the doses for producing antinociception. These results indicate that the potent antinociception induced by TRK-820 is mediated via the stimulation of kappa-, but not mu- or delta-opiod receptors.  相似文献   

11.
This study assesses the antinociceptive effect induced by different dosages of topiramate (TP), an anticonvulsant drug that is orally administered in models of neuropathic pain and acute pain in rats and mice, respectively. Orally administered TP (80 mg/Kg) in mice causes antinociception in the first and second phases of a formalin test, while in doses of 20 and 40 mg/Kg it was only effective in the second phase. TP (80 mg/Kg, p.o) also exhibited antinociceptive action in the hot plate test, however, it did not have an effect in the capsaicin test in mice, nor in the model of neuropathic pain in diabetic rats. The antinociceptive effect caused by TP (80 mg/Kg, p.o) in the formalin test was reversed by prior treatment with naloxone (opioid antagonist), but not with glibenclamide (antagonist of the potassium channel), ondansetron (antagonist of the serotonin 5HT3 receptor) or cyproheptadine (antagonist of the serotonin 5HT2A receptor).The data show that TP has an important antinociceptive effect in the models of nociception induced by chemical (formalin) or thermal (hot plate) stimuli, and that the opioid system plays a part in the antinociceptive effect, as shown by formalin.  相似文献   

12.
The aim of this study was to examine the antinociceptive potential of leaves of Ixora coccinea (family: Rubeaceae). One of four doses (500, 750, 1000 or 1500 mg/kg, n = 8/dose) of aqueous leaf extract (ALE) or 1 ml of distilled water was orally administered to male rats and antinociceptive activity was ascertained using three models ofnociception (tail flick, hot plate and formalin tests). The results showed that ALE possesses considerable antinociceptive activity (when evaluated in hot plate and formalin test but not in tail flick test). The antinociceptive activity of the ALE had a rapid onset (within 1h) and a fairly long duration of action (up to 5 h) with a peak effect at 3 h. Further, the antinociceptive activity was dose-dependent and was not associated with harmful side-effects or toxicity even following subchronic administration. The antinociceptive action was mediated centrally at the supraspinal level mainly via dopaminergic mechanism. In addition, it is likely that antioxidant activity of the ALE could have played an auxiliary role in inducing antinociception. Dopaminergic and antioxidative activities of ALE could arise, respectively, from its quaternary base alkaloid and flavonoid constituents.  相似文献   

13.
In humans, hydromorphone (HMOR) is metabolised principally by conjugation with glucuronic acid to form hydromorphone-3-glucuronide (H3G), a close structural analogue of morphine-3-glucuronide (M3G), the major metabolite of morphine. In a previous study we described the biochemical synthesis of H3G together with a preliminary evaluation of its pharmacology which revealed that it is a neuroexcitant in rats in a manner analogous to M3G. Thus the aims of the current study were to quantify the neuro-excitatory behaviours evoked by intracerebroventricular (icv) H3G in the rat and to define its potency relative to M3G. Groups of adult male Sprague-Dawley rats received icv injections (1 microL) of H3G (1 - 3 microg), M3G (2 - 7 microg) or vehicle via a stainless steel guide cannula that had been implanted stereotaxically seven days prior to drug administration. Behavioural excitation was monitored by scoring fifteen different behaviours (myoclonic jerks, chewing, wet-dog-shakes, rearing, tonic-clonic-convulsions, explosive motor behaviour, grooming, exploring, general activity, eating, staring, ataxia, righting reflex, body posture, touch evoked agitation) immediately prior to icv injection and at the following post-dosing times: 5, 15, 25, 35, 50, 65 and 80 min. H3G produced dose-dependent behavioural excitation in a manner analogous to that reported previously for M3G by our laboratory and reproduced herein. H3G was found to be approximately 2.5-fold more potent than M3G, such that the mean (+/- S.D.) ED50 values were 2.3 (+/- 0.1) microg and 6.1 (+/- 0.6) microg respectively. Thus, our data clearly imply that if H3G crosses the BBB with equivalent efficiency to M3G, then the myoclonus, allodynia and seizures observed in some patients dosed chronically with large systemic doses of HMOR, are almost certainly due to the accumulation of sufficient H3G in the central nervous system, to evoke behavioural excitation.  相似文献   

14.
J A Qi  H I Mosberg  F Porreca 《Life sciences》1990,47(11):PL43-PL47
The present study has characterized the antinociceptive actions of [D-Ala2]deltorphin II following intracerebroventricular (i.c.v.) administration in the mouse tail-flick test. [D-Ala2]deltorphin II produced dose- and time-related antinociception, with maximal effects at +10 min and significant antinociception which lasted for 40-60 min. [D-Ala2]deltorphin II was 13-fold more potent than i.c.v. [D-Pen2, D-Pen5]enkephalin (DPDPE), a second highly selective delta agonist, and approximately equipotent with i.c.v. morphine in producing antinociception. The antinociceptive effects of i.c.v. [D-Ala2]deltorphin II and DPDPE, but not those of morphine, were antagonized by the selective delta antagonist, ICI 174,864. In contrast, pretreatment with the non-equilibrium mu antagonist, beta-funaltrexamine blocked morphine antinociception, but failed to antagonize [D-Ala2]deltorphin II and DPDPE antinociception. These data indicate that [D-Ala2]deltorphin II produced its antinociceptive effects at a supraspinal delta receptor. [D-Ala2]deltorphin II appears to be the most appropriate delta opioid agonist currently available for studies in vivo and support the involvement of delta receptors in supraspinal antinociception.  相似文献   

15.
Ortiz MI 《Life sciences》2012,90(1-2):8-12
AimsRecent evidence has shown that systemic administration of sulfonylureas and biguanides block the diclofenac-induced antinociception, but not the effect produced by indomethacin. However, there are no reports about the peripheral interaction between analgesics and the biguanides metformin and phenformin. Therefore, this work was undertaken to determine whether glibenclamide and glipizide and the biguanides metformin and phenformin have any effect on the peripheral antinociception induced by diclofenac and indomethacin.Main methodsDiclofenac and indomethacin were administered locally in the formalin-injured rat paw, and the antinociceptive effect was evaluated using the 1% formalin test. To determine whether peripheral antinociception induced by diclofenac or indomethacin was mediated by either the ATP-sensitive K+ channels or biguanides-induced mechanisms, the effect of pretreatment with the appropriates vehicles or glibenclamide, glipizide, metformin and phenformin on the antinociceptive effect induced by local peripheral diclofenac and indomethacin was assessed.Key findingsLocal peripheral injections of diclofenac (50–200 μg/paw) and indomethacin (200–800 μg/paw) produced a dose-dependent antinociception during the second phase of the test. Local pretreatment with glibenclamide, glipizide, metformin and phenformin blocked the diclofenac-induced antinociception. On the other hand, the pretreatment with glibenclamide and glipizide did not prevent the local antinociception produced by indomethacin. Nonetheless, metformin and phenformin reversed the local antinociception induced by indomethacin.SignificanceData suggest that diclofenac could activate the K+ channels and biguanides-dependent mechanisms to produce its peripheral antinociceptive effects in the formalin test. Likewise, a biguanides-dependent mechanism could be activated by indomethacin consecutively to generate its peripheral antinociceptive effect.  相似文献   

16.
Sex differences have been observed in antinociception after morphine administered into either the lateral ventricles, rostral ventromedial medulla, or ventrolateral periaqueductal gray such that male rats exhibit significantly greater antinociception than female rats. Adult gonadectomy produced small, but significant changes in morphine antinociception relative to same-sex sham-operated controls. The present study examined whether sex and adult gonadectomy differences were observed in antinociceptive responses after D-Pro(2)-Endomorphin-2 (1-50 microg) elicited from the ventrolateral periaqueductal gray (vlPAG) on the tail-flick and jump tests in rats, and compared these effects with morphine antinociception. D-Pro(2)-Endomorphin-2 antinociception in the vlPAG was significantly greater in estrous-phase, sham-operated and ovariectomized female rats relative to sham-operated and castrated male rats on the tail-flick, but not jump test that differed markedly from the greater magnitude of morphine antinociception noted for male rats on both tests. In testing whether D-Pro(2)-Endomorphin-2's antinociceptive sex differences were secondary to alterations in activity, similar decreases in the pattern of total activity were observed after D-Pro(2)-Endomorphin-2 in the vlPAG in male and female rats. In evaluating whether male and female rats differed in their behavioral activation responses after D-Pro(2)-Endomorphin-2 in the vlPAG, significantly more excessive grooming, seizures, barrel rolls and explosive running behaviors were observed after D-Pro(2)-Endomorphin-2 in male, but not female rats during the precise periods of time when they were failing to display robust antinociceptive responses on the tail-flick test. Thus, the different patterns of sex differences after D-Pro(2)-Endomorphin-2 in the vlPAG appear to be attributable to sex-dependent alterations in behavioral activation rather than nociceptive processing per se.  相似文献   

17.
The oxidation of morphine by whole-cell suspensions and cell extracts of Cylindrocarpon didymum gave rise to the formation of 2,2′-bimorphine. The identity of 2,2′-bimorphine was confirmed by mass spectrometry and 1H nuclear magnetic resonance spectroscopy. C. didymum also displayed activity with the morphine analogs hydromorphone, 6-acetylmorphine, and dihydromorphine, but not codeine or diamorphine, suggesting that a phenolic group at C-3 is essential for activity.  相似文献   

18.
Pang CS  Tsang SF  Yang JC 《Life sciences》2001,68(8):943-951
The possible analgesic effect of melatonin was investigated in young male ICR mice. The formalin test which elicits typically 2 phases of pain response, the acute (first) phase and tonic (second) phase, was used. The test was performed in the late light period when the mice have been reported to be more sensitive to pain. Compared to control mice, no significant difference in nociceptive response was observed when melatonin was injected intraperitoneally at doses of 0.1, 5, and 20, mg/kg body weight. The combined effects of melatonin with diazepam and/or morphine, were also investigated. Melatonin, injected at 20 mg/kg 15 min before formalin test, significantly increased the antinociceptive response of diazepam (1 mg/kg) or morphine (5 mg/kg) in the second phase. In addition, when melatonin was given at 20 mg/kg together with diazepam and morphine, antinociceptive responses in both the first and second phase were increased. These data indicate the synergistic analgesia effect of melatonin with morphine and diazepam and suggest the possible involvement of melatonin as an adjunct medicine for pain patients.  相似文献   

19.
Involvement of T-type voltage dependent Ca2+ channels (VDCCs) on morphine antinociception, in the development of tolerance and dependence to morphine, and naloxone-precipitated abstinence syndrome in morphine dependent mice was examined by using mibefradil, a T-type VDCCs blocker. Mice were rendered tolerant and dependent on morphine by subcutaneous (s.c.) implantation of a morphine pellet containing 75 mg of morphine base for 72 hr. The tail-flick test was used to assess the nociceptive threshold. Coadministration of acute mibefradil (10 mg/kg, i.p.) with morphine enhanced the antinociceptive effects of acute morphine. Repeated mibefradil administration (10 mg/kg, i.p., just before, 24 and 48 hr after morphine pellet implantation) completely blocked the development of tolerance to the antinociceptive effect of morphine and even by this effect reached supersensitivity to morphine. However, repeated mibefradil treatment did not alter the development of dependence to morphine assessed by the A(50) values of naloxone (s.c.) required to precipitate withdrawal jumping 72 hr after morphine pellet. But, acute mibefradil (10, 30, and 50 mg/kg, i.p.) dose dependently decreased the expression of morphine abstinence syndrome when given directly 30 min prior to naloxone (0,05 mg/kg, s.c.) 72 hr after morphine pellet. These results indicate a critical role of T-type VDCCs in morphine antinociception, the development of tolerance to the antinociceptive effects of morphine and in morphine abstinence syndrome.  相似文献   

20.
The antinociceptive activity of a 3(2H)-pyridazinone derivative (18a) was investigated in mice. 18a administered at doses which did not change either motor coordination or locomotor activity was able to induce antinociceptive effects in four nociceptive tests, the hot plate test, the tail flick test, the writhing test, and the formalin test. In the hot plate and tail flick test, 18a-induced antinociception was observed both after intraperitoneal administration and after intracerebroventricular injection thus indicating 18a has a central site of action. The pretreatment with the opioid antagonist naloxone, the alpha2-antagonist yohimbine or the GABA(B) antagonist CGP 35348 did not change 18a-induced antinociception in the hot plate test and in the tail flick test. Pretreatment with nicotinic antagonist mecamylamine did not change 18a effects either. A reversion of the 18a effects was observed after pretreatment with the muscarinic antagonists atropine and pirenzepine. Binding experiments revealed that 18a binds to muscarinic receptors, suggesting that 18a antinociception is mediated by central muscarinic receptors. The above findings together with the lack of parasympathomimetic cholinergic side effects indicate useful clinical application for this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号