共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryptococcus neoformans causes life-threatening meningoencephalitis, particularly prevalent in AIDS patients. The interrelationship between C. neoformans and HIV-1 is intriguing, as both pathogens elicit severe neuropathological complications. We have previously demonstrated that the HIV-1 gp41 ectodomain fragments gp41-I33 (amino acids 579-611) and gp41-I90 (amino acids 550-639) can enhance C. neoformans binding to HBMECs (human brain microvascular endothelial cells). Both peptides contain the loop region of gp41. In the present study, we used immunofluorescence microscopy and transmission and scanning electron microscopy to explore the underlying mechanisms. Our findings indicated that both C. neoformans and gp41-I90 up-regulated ICAM-1 (intercellular adhesion molecule 1) on the HBMECs and elicited membrane ruffling on the surface of HBMECs. The HIV-1 gp41 ectodomain could also induce CD44 and β-actin redistribution to the membrane lipid rafts, but it could not enhance PKCα (protein kinase Cα) phosphorylation like C. neoformans. Instead, gp41-I90 was able to induce syncytium formation on HBMECs. The results of the present study suggest HIV-1 gp41-enhanced C. neoformans binding to HBMECs via gp41 core domain-induced membrane activities, revealing a potential mechanism of invasion for this pathogenic fungus into the brain tissues of HIV-1-infected patients. 相似文献
2.
HIV-1 entry into its host cell involves a sequential interaction whereby gp41 is in direct contact with the plasma membrane. Understanding the effect of membrane composition on the fusion mechanism can shed light on the unsolved phases of this complex mechanism. Here, we studied N36, a peptide derived from the N-heptad-repeat (NHR) of the gp41 ectodomain, its six helix bundle (SHB) forming counterpart C34, together with the N-terminal 70-mer wild-type peptide (N70), and additional gp41 ectodomain-derived peptides in the presence of two membranes, modeling inner and outer leaflets of the plasma membrane. Information on the structure of these peptides, their affinity towards phospholipids and their ability to induce vesicle fusion was gathered by a variety of fluorescence, spectroscopic and microscopy methods. We found that N36, having strong affinity towards phospholipids, prominently shifts conformation from alpha-helix in an outer leaflet-like zwitterionic membrane to beta-sheet in a membrane mimicking the negatively charged inner leaflet environment, leading to pronounced fusion-activity. Real-time atomic force microscopy (AFM) was used to study the peptides' effect on the membrane morphology, revealing severe bilayer perturbation and extensive pore formation.We also found, that the N36/C34 core is destabilized by electronegative, but not zwitterionic phospholipids. Taken together, our data suggest that the fusion-active pore forming conformation of gp41 is extended, upstream of the SHB. In this manner, folding of the ectodomain into a SHB might also serve as a negative regulator of fusion by impeding gp41 fusion-active surfaces, thus preventing irreversible damage to the cell membrane. This assumption is supported by the finding that pre-incubation of large unilamellar vesicles (LUV) with C-heptad repeat (CHR)-derived fusion inhibitors reduces the fusogenic activity of N-terminal peptides in a dose-dependant manner, and suggests that CHR-derived fusion inhibitors inhibit HIV entry in an analogous mechanism. 相似文献
3.
The peptide of HIV-1 envelope gp41 (a.a 628-683), referred to herein as P5, contains P1, a conserved galactose-specific lectin domain for binding the mucosal HIV-1-receptor, galactosyl ceramide (GalCer), as shown earlier, and a potential calcium-binding site (a.a 628-648). P1 contains contiguous epitopes recognized by the broadly neutralizing antibodies 2F5, 4E10, Z13. However, similar neutralizing antibodies could not be raised in animal model using immunogens based on these epitopes. We now show that the structure of both P5 and P1 peptides, as measured by circular dichroism, differs according to their environment: aqueous or lipidic, and as a function of calcium concentration. P5, but not P1, binds to calcium with a low binding affinity constant in the order of 2.5x10(4). Calcium binding results in a conformational change of P5, leading in turn to a decrease in affinity for GalCer. Hence, the affinity of the gp41-lectin site for the galactose harbored by the mucosal HIV-1 receptor GalCer is modulated by the peptide secondary and tertiary structure and the local environment. Therefore, definition of the conformation of this novel extended gp41 membrane proximal region, containing the conserved peptide P1 and the Ca(2+) binding site, could help designing an immunogen efficient at inducing neutralizing anti-HIV-1 antibodies. 相似文献
4.
The gp41 subunit of the human immunodeficiency virus type 1 envelope glycoprotein mediates fusion of the cellular and viral membranes. The gp41 ectodomain is a trimer of alpha-helical hairpins, where N-terminal helices form a parallel three-stranded coiled-coil core and C-terminal helices pack around the core. A deep hydrophobic pocket on the N-terminal core represents an attractive target for antiviral therapeutics. We have employed a soluble derivative of the gp41 core ectodomain and small cyclic disulfide D-peptide inhibitors to define the stoichiometry, affinity, and thermodynamics of ligand binding to this pocket using isothermal titration calorimetry. These inhibitors bind with micromolar affinity to the pocket with the expected stoichiometry of three peptides per gp41 core trimer. There are no cooperative interactions among the three binding sites. Linear eight- or nine-residue D-peptides derived from the pocket-binding domain of the cyclic molecules also bind specifically. A negative heat capacity change is observed and is consistent with burial of hydrophobic surface upon binding. Contrary to expectations for a reaction dominated by the classical hydrophobic effect, peptide binding is enthalpically driven and is opposed by an unfavorable negative entropy change. The calorimetry data support models whereby dominant negative inhibitors bind to a transiently exposed surface on the prefusion intermediate state of gp41 and disrupt subsequent resolution to the fusion-active six-stranded hairpin conformation. 相似文献
5.
To address the structure-function relationship of discrete regions within the gp41 ectodomain, 70-residue peptide constructs corresponding to the N-terminal subdomain of the HIV-1 gp41 ectodomain were examined in a membrane-associated context. These fragments encompass both fusion peptide (FP) and N-terminal heptad repeat (NHR) regions, and model the N-terminal half of the pre-hairpin intermediate (PHI), which is believed to be the target of the potent entry inhibitor DP-178, recently approved by the FDA. Using mutants, we attempted to map the structural organization of the N-terminal subdomain. Our results suggest that the N-terminal subdomain contains two discrete structural regions: the FP adopts a beta-sheet conformation and the NHR is alpha-helical. This structural make-up is essential for fusogenic function, since loss of function mutants exhibit both a significant reduction in region-specific secondary structure as well as significant impairment in lipid mixing of large unilamellar vesicles. Our results, delineating membrane-associated structure of the FP region differ from previous ones by inclusion of the autonomous oligomerization domain (NHR), which likely contributes to stabilization of the FP structure. Correspondingly, the alpha-helical structure for the NHR, in context of the FP, correlates with structural predictions for this region in both the hairpin and PHI conformations during fusion. Based on our results, we postulate how oligomerization of regions in this sub-domain is essential for fusion pore formation. 相似文献
6.
The identification of membrane-active regions of the ectodomain of the HIV-1 envelope glycoprotein gp41 has been made by determining the effect on membrane integrity of a 15-mer gp41-derived peptide library. By monitoring the effect of this peptide library on membrane leakage, we have identified three regions on the gp41 ectodomain with membrane-interacting capabilities: Region 1, which would roughly correspond to the polar sequence which follows the fusion domain and extends to the N-terminal heptad repeat region; Region 2, which would correspond to the immunodominant loop; and Region 3, which would correspond to the pre-transmembrane region of gp41. The identification of these three regions supports their direct role in membrane fusion as well as facilitating the future development of HIV-1 entry inhibitors. 相似文献
7.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is composed of a complex between the surface subunit gp120, which binds to cellular receptors, and the transmembrane subunit gp41. Upon activation of the envelope glycoprotein by cellular receptors, gp41 undergoes conformational changes that mediate fusion of the viral and cellular membranes. Prior to formation of a fusogenic "trimer-of-hairpins" structure, gp41 transiently adopts a prefusogenic conformation whose structural features are poorly understood. An important approach toward understanding structural conformations of gp41 during HIV-1 entry has been to analyze the structural targets of gp41 inhibitors. We have constructed epitope-tagged versions of 5-Helix, a designed protein that binds to the C-peptide region of gp41 and inhibits HIV-1 membrane fusion. Using these 5-Helix variants, we examined which conformation of gp41 is the target of 5-Helix. We find that although 5-Helix binds poorly to native gp41, it binds strongly to gp41 activated by interaction of the envelope protein with either soluble CD4 or membrane-bound cellular receptors. This preferential interaction with activated gp41 results in the accumulation of 5-Helix on the surface of activated cells. These results strongly suggest that the gp41 prefusogenic intermediate is the target of 5-Helix and that this intermediate has a remarkably "open" structure, with exposed C-peptide regions. These results provide important structural information about this intermediate that should facilitate the development of HIV-1 entry inhibitors and may lead to new vaccine strategies. 相似文献
8.
Miguel R. Moreno 《生物化学与生物物理学报:生物膜》2004,1661(1):97-105
The identification of membrane-active regions of the ectodomain of the HIV-1 envelope glycoprotein gp41 has been made by determining the effect on membrane integrity of a 15-mer gp41-derived peptide library. By monitoring the effect of this peptide library on membrane leakage, we have identified three regions on the gp41 ectodomain with membrane-interacting capabilities: Region 1, which would roughly correspond to the polar sequence which follows the fusion domain and extends to the N-terminal heptad repeat region; Region 2, which would correspond to the immunodominant loop; and Region 3, which would correspond to the pre-transmembrane region of gp41. The identification of these three regions supports their direct role in membrane fusion as well as facilitating the future development of HIV-1 entry inhibitors. 相似文献
9.
Liu Y Regula LK Stewart A Lai JR 《Biochemical and biophysical research communications》2011,(4):611-615
Recent work has demonstrated that antibody phage display libraries containing restricted diversity in the complementarity determining regions (CDRs) can be used to target a wide variety of antigens with high affinity and specificity. In the most extreme case, antibodies whose combining sites are comprised of only two residues – tyrosine and serine – have been identified against several protein antigens. [F.A. Fellouse, B. Li, D.M. Compaan, A.A. Peden, S.G. Hymowitz, S.S. Sidhu, J. Mol. Biol. 348 (2005) 1153–1162.] Here, we report the isolation and characterization of antigen-binding fragments (Fabs) from such “minimalist” diversity synthetic antibody libraries that bind the heptad repeat regions of human immunodeficiency virus type 1 (HIV-1) gp41. We show that these Fabs are highly specific for the HIV-1 epitope and comparable in affinity to a single chain variable fragment (scFv) derived from a natural antibody repertoire that targets the same region. Since the heptad repeat regions of HIV-1 gp41 are required for viral entry, these Fabs have potential for use in therapeutic, research, or diagnostic applications. 相似文献
10.
11.
Lin CH Lin CH Chang CC Wei TS Cheng SF Chen SS Chang DK 《Journal of biotechnology》2011,153(1-2):48-55
We demonstrated a high level expression and purification of recombinant human immunodeficiency virus type 1 gp41 ectodomain (gp41e-FP) using glass bead approach with a final yield of 12±2mg/L bacterial culture. The proper folding of gp41e-FP encompassing the fusion peptide (FP) was ascertained by circular dichroism (CD) measurement and recognition by NC-1 antibody. The latter assay revealed stabilization of the gp41 coiled coil structure in the presence of liposome dispersion. The differential affinity of gp41e-FP and gp41e (devoid of FP) by NC-1 suggested an aggregated state for gp41e-FP and/or possible proximity of the fusion peptide domain to the coiled coil structure of gp41 ectodomain. Perfluorooctanoate (PFO)-PAGE electrophoresis experiment revealed the trimeric propensity of the recombinant gp41e-FP. In comparison to gp41e, the lipid mixing activity of gp41e-FP was two-fold higher suggesting a role of FP in promoting membrane fusion. The present approach to efficiently and quantitatively preparing the functional full-length recombinant gp41 ectodomain protein can be employed for structural and biomedical investigations and the extraction of other inclusion body-embedded recombinant proteins. 相似文献
12.
Beutler JA McMahon JB Johnson TR O'Keefe BR Buzzell RA Robbins D Gardella R Wilson J Boyd MR 《Journal of biomolecular screening》2002,7(2):105-110
The human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein gp41 is an important mediator of viral entry into host cells. Previous studies showed that the virucidal protein cyanovirin-N (CV-N) bound to both gp120 and gp41, and that this binding was associated with its antiviral activity. We constructed an HTS assay based on the interaction of europium-labeled CV-N with recombinant glycosylated gp41 ectodomain to support identification of small-molecule mimetics of CV-N that might be developed as antiviral drug leads. Primary screening of over 107,000 natural product extracts in the assay yielded 347 confirmed hits. Secondary assays eliminated extracts that bound directly to labeled CV-N or for which the simple sugars mannose and N-acetylglucosamine blocked the interaction with gp41 (lectin activity). Extracts were further prioritized based on anti-HIV activity and other biological, biochemical, and chemical criteria. The distribution of source organism taxonomy of active extracts was analyzed, as was the cross-correlation of activity between the CV-N-gp41 binding competition assay and the previously reported CV-N-gp120 binding competition assay. A limited set of extracts was selected for bioassay-guided fractionation. 相似文献
13.
The HIV-1 gp41 core, a six-helix bundle formed between the N- and C-terminal heptad repeats, plays a critical role in fusion between the viral and target cell membranes. Using N36(L8)C34 as a model of the gp41 core to screen phage display peptide libraries, we identified a common motif, HXXNPF (X is any of the 20 natural amino acid residues). A selected positive phage clone L7.8 specifically bound to N36(L8)C34 and this binding could be blocked by a gp41 core-specific monoclonal antibody (NC-1). JCH-4, a peptide containing HXXNPF motif, effectively inhibited HIV-1 envelope glycoprotein-mediated syncytium-formation. The epitope of JCH-4 was proven to be linear and might locate in the NHR regions of the gp41 core. These data suggest that HXXNPF motif may be a gp41 core-binding sequence and HXXNPF motif-containing molecules can be used as probes for studying the role of the HIV-1 gp41 core in membrane fusion process. 相似文献
14.
I Quinkal J F Hernandez S Chevallier G J Arlaud T Vernet 《European journal of biochemistry》1999,265(2):656-663
The human immunodeficiency virus type 1 transmembrane envelope glycoprotein gp41 has been previously shown to activate the C1 complex of human complement through direct interaction with its C1q subunit. The major interaction site has been located within the gp41 immunodominant region (residues 590-620), and a synthetic peptide overlapping residues 601-613 of gp41 (sequence GIWGCSGKLICTT) was shown to inhibit binding of gp41 to C1q in vitro (Thielens, N.M., Bally, I.M., Ebenbichler, C.F., Dierich, M.P. & Arlaud, G.J. (1993) J. Immunol. 151, 6583-6592). The ectodomain of gp41 (s-gp41) was secreted from the methylotrophic yeast Pichia pastoris and purified by immunoaffinity chromatography. Enzymatic deglycosylation of the recombinant s-gp41 was necessary to allow its in vitro interaction with C1q. A solid-phase competition assay was used to monitor the effect of mutant peptides derived from segment 601-613 of gp41 on the binding of deglycosylated s-gp41 to C1q. Whereas mutation of Ser606 had no effect, replacement of Ile602, Trp603, Lys608, Leu609 and Ile610 by Ala abolished the ability of the resulting peptides to inhibit binding of s-gp41 to C1q, suggesting that these residues participate in the interaction between gp41 and C1q. These findings are discussed in the light of a structural model of the immunodominant loop of gp41. It is proposed that the recognition of gp41 by C1q is driven by hydrophobic interactions, and that the sites of gp41 responsible for interaction with gp120 and C1q partly overlap. 相似文献
15.
Sáez-Cirión A Nir S Lorizate M Agirre A Cruz A Pérez-Gil J Nieva JL 《The Journal of biological chemistry》2002,277(24):21776-21785
The interfacial sequence DKWASLWNWFNITNWLWYIK, preceding the transmembrane anchor of gp41 glycoprotein subunit, has been shown to be essential for fusion activity and incorporation into virions. HIV(c), a peptide representing this region, formed lytic pores in liposomes composed of the main lipids occurring in the human immunodeficiency virus, type 1 (HIV-1), envelope, i.e. 1-palmitoyl-2-oleoylphosphatidylcholine (POPC):sphingomyelin (SPM):cholesterol (Chol) (1:1:1 mole ratio), at low (>1:10,000) peptide-to-lipid mole ratio, and promoted the mixing of vesicular lipids at >1:1000 peptide-to-lipid mole ratios. Inclusion of SPM or Chol in POPC membranes had different effects. Whereas SPM sustained pore formation, Chol promoted fusion activity. Even if partitioning into membranes was not affected in the absence of both SPM and Chol, HIV(c) had virtually no effect on POPC vesicles. Conditions described to disturb occurrence of lateral separation of phases in these systems reproduced the high peptide-dose requirements for leakage as found in pure POPC vesicles and inhibited fusion. Surface aggregation assays using rhodamine-labeled peptides demonstrated that SPM and Chol promoted HIV(c) self-aggregation in membranes. Employing head-group fluorescent phospholipid analogs in planar supported lipid layers, we were able to discern HIV(c) clusters associated to ordered domains. Our results support the notion that the pretransmembrane sequence may participate in the clustering of gp41 monomers within the HIV-1 envelope, and in bilayer architecture destabilization at the loci of fusion. 相似文献
16.
The gp41 envelope protein mediates entry of human immunodeficiency virus type 1 (HIV-1) into the cell by promoting membrane fusion. The crystal structure of a gp41 ectodomain core in its fusion-active state is a six-helix bundle in which a N-terminal trimeric coiled coil is surrounded by three C-terminal outer helices in an antiparallel orientation. Here we demonstrate that the N34(L6)C28 model of the gp41 core is stabilized by interaction with the ionic detergent sodium dodecyl sulfate (SDS) or the nonionic detergent n-octyl-beta-D-glucopyranoside (betaOG). The high resolution x-ray structures of N34(L6)C28 crystallized from two different detergent micellar media reveal a six-helix bundle conformation very similar to that of the molecule in water. Moreover, N34(L6)C28 adopts a highly alpha-helical conformation in lipid vesicles. Taken together, these results suggest that the six-helix bundle of the gp41 core displays substantial affinity for lipid bilayers rather than unfolding in the membrane environment. This characteristic may be important for formation of the fusion-active gp41 core structure and close apposition of the viral and cellular membranes for fusion. 相似文献
17.
Moreno MR Pérez-Berná AJ Guillén J Villalaín J 《Biochimica et biophysica acta》2008,1778(5):1298-1307
The membrane fusion protein of HIV-1 is the envelope transmembrane gp41 glycoprotein, which is the responsible of the membrane fusion between the virus and the target cell. Gp41 has an unusual cytoplasmic tail, the endodomain, containing highly helicoidal segments with large hydrophobic moments, the so called lentivirus lytic peptides or LLPs. According to our previous work, one of the most membranotropic regions along the whole gp41 glycoprotein was located in the LLP3 region of the gp41. In order to get new insights into the viral membrane fusion mechanism, a peptide pertaining to the LLP3 domain has been studied by infrared, fluorescence and calorimetry regarding its structure, its ability to induce membrane rupture and aggregation, as well as its affinity towards specific phospholipids. Our results demonstrate that this peptide interacts with phospholipid-containing model membranes, affects the phase-behavior of membrane phospholipids and induces leakage and aggregation of liposomes. The membrane-perturbing properties of LLP3, together with the possibility that the Kennedy sequence could be part of an external loop, open the possibility that these domains might function in modulating viral membrane fusion or budding, synergistically with other membranotropic regions of the gp41 glycoprotein. 相似文献
18.
Miguel R. Moreno 《生物化学与生物物理学报:生物膜》2008,1778(5):1298-1307
The membrane fusion protein of HIV-1 is the envelope transmembrane gp41 glycoprotein, which is the responsible of the membrane fusion between the virus and the target cell. Gp41 has an unusual cytoplasmic tail, the endodomain, containing highly helicoidal segments with large hydrophobic moments, the so called lentivirus lytic peptides or LLPs. According to our previous work, one of the most membranotropic regions along the whole gp41 glycoprotein was located in the LLP3 region of the gp41. In order to get new insights into the viral membrane fusion mechanism, a peptide pertaining to the LLP3 domain has been studied by infrared, fluorescence and calorimetry regarding its structure, its ability to induce membrane rupture and aggregation, as well as its affinity towards specific phospholipids. Our results demonstrate that this peptide interacts with phospholipid-containing model membranes, affects the phase-behavior of membrane phospholipids and induces leakage and aggregation of liposomes. The membrane-perturbing properties of LLP3, together with the possibility that the Kennedy sequence could be part of an external loop, open the possibility that these domains might function in modulating viral membrane fusion or budding, synergistically with other membranotropic regions of the gp41 glycoprotein. 相似文献
19.
During human immunodeficiency virus entry, gp41 undergoes a series of conformational changes that induce membrane fusion. Immediately prior to fusion, gp41 exists in a prehairpin intermediate in which the N- and C-peptide regions of gp41 are exposed. Rearrangement of this intermediate into a six-helix bundle composed of a trimeric coiled coil from the N-peptide region (N-trimer) surrounded by three peptides from the C-peptide region provides the driving force for membrane fusion, whereas prevention of six-helix bundle formation inhibits viral entry. Because of its central role in mediating viral entry, the N-trimer region of gp41 is a key vaccine target. Extensive efforts to discover potent and broadly neutralizing antibodies (Abs) against the N-trimer region have, thus far, been unsuccessful. In this study, we attached a potent C-peptide inhibitor that binds to the N-trimer region to cargo proteins of various sizes to examine the steric accessibility of the N-trimer during fusion. These inhibitors show a progressive loss of potency with increasing cargo size. Extension of the cargo/C-peptide linker partially restores inhibitory potency. These results demonstrate that the human immunodeficiency virus defends its critical hairpin-forming machinery by steric exclusion of large proteins and may explain the current dearth of neutralizing Abs against the N-trimer. In contrast, previous results suggest the C-peptide region is freely accessible during fusion, demonstrating that the N- and C-peptide regions are in structurally distinct environments. Based on these results, we also propose new strategies for the generation of neutralizing Abs that overcome this steric block. 相似文献
20.
HIV-1跨膜蛋白gp41的截短及表达 总被引:2,自引:0,他引:2
将HIV-1跨膜蛋白gp41进行截短,在大肠杆菌中进行表达并纯化。PCR扩增gp41的部分编码基因,回收的PCR产物纯化后克隆到连接载体pGEM-T上,然后用EcoRI和Sal I切下目的基因,并构建到表达载体pGEX-4T3上,导入宿主细胞BL21(DE3),用IPTG诱导表达,表达产物用亲和层析进行纯化并作相应鉴定。截短的HIV-1跨膜蛋白gp41能直接在大肠杆菌内进行表达,利用亲和层析能方便地将目的蛋白进行纯化,为跨膜蛋白的进一步应用打下基础。 相似文献