首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
To better understand the mechanism(s) whereby antibody and complement and cytotoxic lymphocytes lyse infected cells, we studied the structure, interrelationship and turnover of measles virus polypeptides expressed on the cell's surface. Of the 6 major viral structural polypeptides, L, HA, P, NC, F, and M, found in purified virions or infected cells, only 2, the HA and F, resided on the surface of infected cells. The HA was present primarily in the form of a 160k dimer, and F was identified as a 64k polypeptide migrating distinct from other viral polypeptides. With reduction, the HA migrated as a 80k monomer, and F0, after cleavage, was found to be composed of a 42k nonglycosylated polypeptide, F1, and a 24k glycosylated protein, F2. The relationship between F0 and F1 and between the HA dimer and monomer was verified by tryptic peptide mapping. The turnover of HA and F from the cell's surface was 10 and 9 hr, respectively. However, in the presence of specific antibody after a marked loss of viral antigen from the surface, the turnover for HA and F was 15 and 12 hr, respectively. Despite being independent molecules, HA and F were closely linked, as they moved together (co-capped) over the plasma membrane when incubated with monospecific or monoclonal antibody. In contrast, neither HA nor F co-capped with the major histocompatibility antigens or with other host cell proteins, which indicates a separation between these host cell proteins and measles viral glycoproteins on the cell's surface.  相似文献   

2.
Intergenic antigenic relationships between measles virus and respiratory syncytial (RS) virus-specific structural components were studied by using monoclonal antibodies. Of 75 monoclonal antibodies against these components, only one, an anti-measles virus hemagglutinin monoclonal antibody, cross-reacted. Immunofluorescence analysis of measles virus- and RS virus-infected cells with this monoclonal antibody showed qualitatively different staining patterns which indicated that the antigen involved in cross-reaction was the RS virus nucleoprotein or phosphoprotein. A radioimmunoprecipitation assay showed the antigen to be the nucleoprotein.  相似文献   

3.
A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57- to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S]methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.  相似文献   

4.
Measles virus protein synthesis has been analyzed in acutely and persistently infected cells. To assess the role of measles in subacute sclerosing panencephalitis (SSPE), measles viral proteins synthesized in vivo or in vitro were tested for reactivity with serum from a guinea pig(s) immunized with measles virus and sera from patients with SSPE. Guinea pig antimeasles virus serum immunoprecipitates the viral polypeptides of 78,000 molecular weight (glycosylated [G]), 70,000 molecular weight (phosphorylated [P]), 60,000 molecular weight (nucleocapsid [N]), and 35,000 molecular weight (matrix [M]) from cells acutely infected with measles virus as well as from chronically infected cells, but in the latter case, immunoprecipitated M protein has a reduced electrophoretic migration. Sera of SSPE patients immunoprecipitated all but the G protein in acutely infected cells and only the P and N proteins from chronically infected cells. In immunoprecipitates of viral polypeptides synthesized in a reticulocyte cell-free translation system, in response to mRNA from acutely or persistently infected cells, the 78,000-molecular-weight form of the G protein was not detected among the cell-free products of either mRNA. Guinea pig antimeasles virus serum immunoprecipitated P, N, and M polypeptides from the products of either form of mRNA, whereas SSPE serum immunoprecipitated the P and N polypeptides but not the M polypeptide. The differences in immunoreactivity of the antimeasles virus antiserum and the SSPE serum are discussed in terms of possible modifications of measles virus proteins in SSPE.  相似文献   

5.
A cDNA library designed for high-level expression of measles virus-specific gene products in mammalian cells was generated. From this library, functional clones which contained the entire protein-coding sequences of the nucleocapsid (N) and the phosphoprotein (P) genes were isolated. By DNA-mediated gene transfer into a line of simian virus 40-transformed monkey kidney cells, the N-specific cDNA was expressed into a single polypeptide of about 60,000 Mr, which was immunoprecipitated by monoclonal antibodies against the measles virus N protein. In contrast, the P-specific cDNA could be expressed into either one or two species of polypeptides of 75,000 or 70,000 Mr, both of which were immunoprecipitated by monoclonal antibodies against the measles virus P protein.  相似文献   

6.
Human cellular immune response to measles virus polypeptides   总被引:7,自引:3,他引:4       下载免费PDF全文
Measles virus polypeptides were separated by polyacrylamide gel electrophoresis and electroeluted from gel sections. The antigenicity of the polypeptides was determined by enzyme-linked immunosorbent assays. The ability of these measles virus antigens to stimulate lymphoproliferation was measured in both high- and low-responder individuals. In contrast to the low-responder lymphocytes which did not proliferate when stimulated with measles virus antigens, the high-responder lymphocytes proliferated when challenged with hemagglutinin, nucleocapsid-associated phosphoprotein, nucleocapsid protein, matrix protein, and fusion protein.  相似文献   

7.
Rustigian, Robert (Tufts University School of Medicine, Boston, Mass.). Persistent infection of cells in culture by measles virus. II. Effect of measles antibody on persistently infected HeLa clonal line persistently infected with incomplete virus. J. Bacteriol. 92:1805-1811. 1966.-The effect of viral antibody on persistent infection of HeLa cells by the Edmonston strain of measles virus was investigated by culturing cells from three persistently infected clones in medium supplemented with human immune globulin. The three infected HeLa clones were isolated from a persistently infected parent line. Two sublines which were grown in the presence of measles antibody developed a nonyielder state, wherein there is no detectable virus infectious for normal HeLa cultures. There is, however, continued synthesis of intracellular viral antigen and formation of viral intracytoplasmic inclusion bodies. The development of a nonyielder state was associated with a marked decrease in the degree of hemadsorption in cultures of both sublines. Further studies of the viral properties of non-yielder HeLa cell populations were made with a clone obtained from one of these sublines by plating under antibody. Persistent infection in this line was characterized by synthesis of incomplete virus even when the cells were cultured thereafter in anti-body-free medium. This was evidenced by (i) failure to recover infectious virus from the clonal population despite continued formation of intracellular viral antigen and viral intracytoplasmic inclusion bodies in a majority of the cells, (ii) the presence of only a few cells with surface viral antigen(s) including hemagglutinin, and (iii) the relatively weak antibody response to viral envelope antigen(s) after injection of cells into guinea pigs.  相似文献   

8.
We have investigated the site of surface expression of the neuraminidase (NA) glycoprotein of influenza A virus, which, in contrast to the hemagglutinin, is bound to membranes by hydrophobic residues near the NH2-terminus. Madin-Darby canine kidney or primary African green monkey kidney cells infected with influenza A/WSN/33 virus and subsequently labeled with monoclonal antibody to the NA and then with a colloidal gold- or ferritin-conjugated second antibody exhibited specific labeling of apical surfaces. Using simian virus 40 late expression vectors, we also studied the surface expression of the complete NA gene (SNC) and a truncated NA gene (SN10) in either primary or a polarized continuous line (MA104) of African green monkey kidney cells. The polypeptides encoded by the cloned NA cDNAs were expressed on the surface of both cell types. Analysis of [3H]mannose-labeled polypeptides from recombinant virus-infected MA104 cells showed that the products of cloned NA cDNA comigrated with glycosylated NA from influenza virus-infected cells. Both the complete and the truncated glycoproteins were found to be preferentially expressed on apical plasma membranes, as detected by immunogold labeling. These results indicate that the NA polypeptide contains structural features capable of directing the transport of the protein to apical cell surfaces and the first 10 amino-terminal residues of the NA polypeptide are not involved in this process.  相似文献   

9.
10.
The biological activity of monoclonal antibodies specific for the hemagglutinin protein of measles virus strain CAM recognizing six epitope groups according to their binding properties to measles virus strain CAM/R401 was investigated in vivo in our rat model of measles encephalitis. When injected intraperitoneally into measles virus-infected suckling rats, some monoclonal antibodies modified the disease process and prevented the necrotizing encephalopathy seen in untreated animals. The analysis of measles virus brain isolates revealed emergence of variants that resisted neutralization with the passively transferred selecting monoclonal antibody but not with other monoclonal antibodies. Monoclonal antibody escape mutants were also isolated in vitro, and their neurovirulence varied in the animal model. Sequence data from the hemagglutinin gene of measles virus localize a major antigenic surface determinant of the hemagglutinin protein between amino acid residues 368 and 396, which may be functionally important for neurovirulence. The data indicate that the interaction of antibodies with the measles virus H protein plays an important role in the selection of neurovirulent variants. These variants have biological properties different from those of the parent CAM virus.  相似文献   

11.
Influenza virus stimulates a vigorous cytolytic T lymphocyte (CTL) response in the mouse that is directed to several virion polypeptides. This report examines the fine specificity of a panel of murine influenza-specific CTL clones restricted by MHC class I products of the H-2d haplotype. Ten of 22 A/JAPAN/305/57-specific CTL clones analyzed were directed to the A/JAPAN/305/57 hemagglutinin protein as detected by using target cells infected with a recombinant vaccinia virus containing hemagglutinin gene. Based on their fine specificity of hemagglutinin recognition, these clones defined four functional epitopes on the hemagglutinin. The remaining 12 cytolytic clones exhibited cross-reactivity for type A influenza viruses of the major human subtypes, and approximately 60% of these clones were directed to the nucleocapsid protein. KJ16-133 monoclonal antibody analysis of the utilization of the T cell receptor V beta 8 gene segment subfamily revealed that members of this V beta gene subfamily are expressed by both hemagglutinin- and nucleocapsid-specific MHC class I-restricted CTL (and by influenza-specific MHC class II-restricted T lymphocytes as well). These results suggest that CTL detect several distinct antigenic sites on the hemagglutinin. In addition, these results reveal no direct correlation between viral antigenic specificity and V beta gene expression by these virus-specific CLT clones.  相似文献   

12.
13.
The persistence of measles virus in selected areas of the brains of four patients with subacute sclerosing panencephalitis (SSPE) was characterized by immunohistological and biochemical techniques. The five measles virus structural proteins were never simultaneously detectable in any of the brain sections. Nucleocapsid proteins and phosphoproteins were found in every diseased brain area, whereas hemagglutinin protein was detected in two cases, fusion protein was detected in three cases, and matrix protein was detected in only one case. Also, it could be shown that the amounts of measles virus RNA in the brains differed from patient to patient and in the different regions investigated. In all patients, plus-strand RNAs specific for these five viral genes could be detected. However, the amounts of fusion and hemagglutinin mRNAs were low compared with the amounts in lytically infected cells. The presence of particular measles virus RNAs in SSPE-infected brains did not always correlate with mRNA activity. In in vitro translations, the matrix protein was produced in only one case, and the hemagglutinin protein was produced in none. These results indicate that measles virus persistence in SSPE is correlated with different defects of several genes which probably prevent assembly of viral particles in SSPE-infected brain tissue.  相似文献   

14.
Murine monoclonal antibodies were produced which coimmunoprecipitated, under reducing conditions, 130,000- and 55,000-dalton (Da) polypeptides from cells infected with human cytomegalovirus (CMV) strain AD169. A 92,000-Da species, possibly a biosynthetic intermediate, was also detectable. One of the monoclonal antibodies, 15D8, neutralized CMV AD169 only in the presence of guinea pig complement. A second monoclonal antibody, 14E10, coimmunoprecipitated the 130,000- and 55,000-Da polypeptides but did not neutralize viral infectivity. By sequential immunoprecipitation, both monoclonal antibodies have been shown to recognize the same polypeptides. Monoclonal antibody 15D8 detected the 130,000- and 55,000-Da polypeptides in five of six clinical strains and three laboratory strains tested. The 14E10 monoclonal antibody detected the 130,000-Da protein in four of six CMV clinical isolates and in strain AD169 but did not immunoprecipitate any polypeptides from extracts of cells infected with either Towne or Davis laboratory strains. In kinetic studies, the synthesis of the 130,000-Da polypeptide preceded the appearance of the 55,000-Da polypeptide. In infected cells radiolabeled with a pulse of L-[35S]methionine, the isotope was initially detected in the 130,000-Da polypeptide but could be chased into the 55,000-Da polypeptide. These polypeptides exist in the intracellular and extracellular virus as disulfide-linked multimers. Extracellular virus contained a high-molecular-weight (greater than 200,000 Da) multimer composed entirely of 55,000-Da polypeptides. In extracts from infected cells an additional high-molecular-weight multimer was detected consisting of disulfide-linked 130,000-Da polypeptides.  相似文献   

15.
Autoimmunity to the central nervous system (CNS), especially to myelin basic protein (MBP), may play a causal role in autism, a neurodevelopmental disorder. Because many autistic children harbor elevated levels of measles antibodies, we conducted a serological study of measles-mumps-rubella (MMR) and MBP autoantibodies. Using serum samples of 125 autistic children and 92 control children, antibodies were assayed by ELISA or immunoblotting methods. ELISA analysis showed a significant increase in the level of MMR antibodies in autistic children. Immunoblotting analysis revealed the presence of an unusual MMR antibody in 75 of 125 (60%) autistic sera but not in control sera. This antibody specifically detected a protein of 73-75 kD of MMR. This protein band, as analyzed with monoclonal antibodies, was immunopositive for measles hemagglutinin (HA) protein but not for measles nucleoprotein and rubella or mumps viral proteins. Thus the MMR antibody in autistic sera detected measles HA protein, which is unique to the measles subunit of the vaccine. Furthermore, over 90% of MMR antibody-positive autistic sera were also positive for MBP autoantibodies, suggesting a strong association between MMR and CNS autoimmunity in autism. Stemming from this evidence, we suggest that an inappropriate antibody response to MMR, specifically the measles component thereof, might be related to pathogenesis of autism.  相似文献   

16.
Previous research showed that the expression of measles virus receptor CD46 was downregulated after expression of measles virus hemagglutinin protein on the surface of the virus infected cell or triggered by infected cell-to-cell contact. We reported here that the mRNA level of CD46 in MV infected cells was not changed which was tested by real-time quantitative PCR. To further analyse the surface expression alteration of CD46 after MV infection, flow cytometric analysis and indirect immunofluorescence were used to detect the protein level of CD46. Altogether, our results provided a demonstration that the expression of CD46 was not downregulated by the infection of MV strain S191 both on mRNA level and cellular surface protein level. Previous results reported that the "downregulation" of CD46 expression on the cell surface may take place because H protein masks the antibody recognition site on CD46 which results in "downregulation" of the expression of CD46.  相似文献   

17.
Traditionally, immunoglobulin A (IgA) was thought to neutralize virus by forming complexes with viral attachment proteins, blocking attachment of virions to host epithelial cells. Recently we have proposed an intracellular action for dimeric IgA, which is actively transported through epithelial cells by the polymeric immunoglobulin receptor (pIgR), in that it may be able to bind to newly synthesized viral proteins within the cell, preventing viral assembly. To this effect, we have previously demonstrated that IgA monoclonal antibodies against Sendai virus, a parainfluenza virus, colocalize with the viral hemagglutinin-neuraminidase protein within infected epithelial cells and reduce intracellular viral titers. Here we determine whether IgA can interact with influenza virus hemagglutinin (HA) protein within epithelial cells. Polarized monolayers of Madin-Darby canine kidney epithelial cells expressing the pIgR were infected on their apical surfaces with influenza virus A/Puerto Rico/8-Mount Sinai. Polymeric IgA anti-HA, but not IgG anti-HA, delivered to the basolateral surface colocalized with HA protein within the cell by immunofluorescence. Compared with those of controls, viral titers were reduced in the supernatants and cell lysates from monolayers treated with anti-HA IgA but not with anti-HA IgG. Furthermore, the addition of anti-IgA antibodies to supernatants did not interfere with the neutralizing activity of IgA placed in the basal chamber, indicating that IgA was acting within the cell and not in the extracellular medium to interrupt viral replication. Thus, these studies provide additional support for the concept that IgA can inhibit replication of microbial pathogens intracellularly.  相似文献   

18.
The transmembrane association of the measles virus hemagglutinin and hemolysin surface proteins with intracellular viral antigens was studied. Rabbit antisera monospecific for measles virus matrix and nucleocapsid proteins and a human antiserum containing specificities for both the hemagglutinin and hemolysin proteins were used to study the co-capping of these proteins in human Lu 106 cell-line, chronically infected with measles virus. Capping of the surface-associated envelope components was accompanied by co-capping of the matrix and nucleocapsid proteins, the latter being localized mainly within the inclusions. This demonstrated transmembrane communication between surface-associated envelope components and the intracellular measles virus matrix and nucleocapsid proteins. The results demonstrated the existence of a linkage between viral inclusions and viral proteins associated with cell membranes. In the presence of cytochalasin B (1--2 micrograms/ml), co-capping of the matrix protein was unchanged or slightly enhanced, whereas co-capping of the nucleocapsid protein decreased, indicating that actin filaments may mediate the communication between viral nucleocapsids and the cell membrane.  相似文献   

19.
Antibodies to viral surface glycoproteins play a crucial role in immunity to measles by blocking both virus attachment and subsequent fusion with the host cell membrane. Here, we demonstrate that certain immunoglobulin G (IgG) antibodies can also enhance the entry of measles virus (MV) into monocytes and macrophages. Antibody-dependent enhancement of infectivity was observed in mouse and human macrophages using virions opsonized by a murine monoclonal antibody against the MV hemagglutinin (H) glycoprotein, polyclonal mouse anti-MV IgG, or diluted measles-immune human sera. Neither H-specific Fab fragments nor H-specific IgM could enhance MV entry in monocytes or macrophages, indicating involvement of a Fc γ receptor (FcγR)-mediated mechanism. Preincubation with an anti-fusion protein (anti-F) monoclonal antibody or a fusion-inhibitory peptide blocked infection, indicating that a functional F protein was required for viral internalization. Classical complement pathway activation did not promote infection through complement receptors and inhibited anti-H IgG-mediated enhancement. In vivo, antibody-enhanced infection allowed MV to overcome a highly protective systemic immune response in preimmunized IfnarKo-Ge46 transgenic mice. These data demonstrate a previously unidentified mechanism that may contribute to morbillivirus pathogenesis where H-specific IgG antibodies promote the spread of MV infection among FcγR-expressing host cells. The findings point to a new model for the pathogenesis of atypical MV infection observed after immunization with formalin-inactivated MV vaccine and underscore the importance of the anti-F response after vaccination.  相似文献   

20.
Acute measles in children can be prevented by immunization with the live attenuated measles vaccine virus. Although immunization is able to induce CD4 and CD8 T cells as well as neutralizing antibodies, only the latter have been correlated with protective immunity. CD8 T cells, however, have been documented to be important in viral clearance in the respiratory tract, whereas CD4 T cells have been shown to be protective in a mouse encephalitis model. In order to investigate the CD4 T-cell response in infection of the respiratory tract, we have defined a T-cell epitope in the hemagglutinin (H) protein for immunization and developed a monoclonal antibody for depletion of CD4 T cells in the cotton rat model. Although the kinetics of CD4 T-cell development correlated with clearance of virus, the depletion of CD4 T cells during the primary infection did not influence viral titers in lung tissue. Immunization with the H epitope induced a CD4 T-cell response but did not protect against infection. Immunization in the presence of maternal antibodies resulted in the development of a CD4 T-cell response which (in the absence of neutralizing antibodies) did not protect against infection. In summary, CD4 T cells do not seem to protect against infection after immunization and do not participate in clearance of virus infection from lung tissue during measles virus infection. We speculate that the major role of CD4 T cells is to control and clear virus infection from other affected organs like the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号