首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Expression of the Evi-1 gene is frequently activated in murine myeloid leukemias by retroviral insertions immediately 5' or 90 kb 5' of the gene. The Evi-1 gene product is a nuclear, DNA-binding zinc finger protein of 145 kDa. On the basis of the properties of the myeloid cell lines in which the Evi-1 gene is activated, it has been hypothesized that its expression blocks normal differentiation. To explore this proposed role, we have constructed a retrovirus vector containing the gene and examined its effects on an interleukin-3-dependent myeloid cell line that differentiates in response to granulocyte colony-stimulating factor (G-CSF). Expression of the Evi-1 gene in these cells did not alter the normal growth factor requirements of the cells. However, expression of the Evi-1 gene blocked the ability of the cells to express myeloperoxidase and to terminally differentiate to granulocytes in response to G-CSF. This effect was not due to altered expression of the G-CSF receptor or to changes in the initial responses of the cells to G-CSF. These results support the hypothesis that the inappropriate expression of the Evi-1 gene in myeloid cells interferes with the ability of the cells to terminally differentiate.  相似文献   

5.
The c-abl proto-oncogene is ubiquitously expressed during mammalian development. Activated forms of c-Abl proteins are oncogenic and have been shown to suppress apoptosis. The biological role of normal c-Abl protein is unknown. In this study, we have introduced c-abl antisense sequences into various hemopoietic cells by retroviral gene transfer. Introduction and expression of the antisense sequence effectively reduced the amount of c-Abl protein in a number of transduced hemopoietic cells, that consequently underwent apoptosis. When factor-dependent cell lines were examined, we observed that the addition of sufficient amounts of growth factors could suppress apoptosis in myeloid but not in lymphoid lines. The ability of myeloid cells to be rescued by growth factors correlated with upregulation of mRNA level of IL-3 receptor subunits. Our data suggest that c-Abl provides an anti-apoptotic signal during mammalian cell growth, and that myeloid and lymphoid cells are different in their resistance to apoptosis.  相似文献   

6.
Interleukin 3 (IL-3) is required for the proliferation of growth factor-dependent myeloid cell lines. To determine the possible signal transduction mechanisms involved in IL-3 growth regulation, we have examined the effects of IL-3 on tyrosine phosphorylation. Using a monoclonal antibody against phosphotyrosine, IL-3 was found to specifically and rapidly induce tyrosine phosphorylation of cytoplasmic proteins of 70, 56, and 38 kDa and a membrane-associated glycoprotein of 140 kDa. Minor and/or variable detected phosphoproteins of 120, 85, 51, and 28 kDa were also seen. Oncogenes encoding tyrosine protein kinases abrogate the requirement of factor-dependent myeloid cells for IL-3. We therefore compared the phosphoprotein profiles of a transformed, IL-3-independent cell line with the IL-3-induced profile. In cells transformed with trk, the 56-, 51-, and 38-kDa cytoplasmic phosphoproteins were constitutively phosphorylated, whereas the 140-kDa phosphoprotein was only phosphorylated in the presence of IL-3. Taken together, these results support a role for tyrosine phosphorylation in the IL-3 signal transduction pathway and suggest that growth factor abrogation by oncogenes encoding tyrosine protein kinases may be due to the phosphorylation of substrates which are normally phosphorylated in response to IL-3.  相似文献   

7.
8.
9.
10.
J Lotem  L Sachs 《The EMBO journal》1986,5(9):2163-2170
There are clones of myeloid leukemic cells which are different from normal myeloid cells in that they have become independent of hematopoietic growth factor for cell viability and growth. The ability of these clones to bind three types of hematopoietic growth factors (MGI-1GM = GM-CSF, IL-3 = multi-CSF and MGI-1M = M-CSF = CSF-1) was measured using the method of quantitative absorption at 1 degree C and low pH elution of cell-bound biological activity. Results of binding to normal myeloid and lymphoid cells were similar to those obtained by radioreceptor assays. The results indicate that the number of receptors on different clones of these leukemic cells varied from 0 to 1,300 per cell. The receptors have a high binding affinity. Receptors for different growth factors can be independently expressed in different clones. There was no relationship between expression of receptors for these growth factors and the phenotype of the leukemic cells regarding their ability to be induced to differentiate. The number of receptors on the leukemic cells was lower than on normal mature macrophages. Myeloid leukemic cells induced to differentiate by normal myeloid cell differentiation factor MGI-2 (= DF), or by low doses of actinomycin D or cytosine arabinoside, showed an up-regulation of the number of MGI-1GM and IL-3 receptors. Induction of differentiation of leukemic cells by MGI-2 also induced production and secretion of the growth factor MGI-1GM, and this induced MGI-1GM saturated the up-regulated MGI-1GM receptors. It is suggested that up-regulation of these receptors during differentiation is required for the functioning of differentiated cells.  相似文献   

11.
U Just  C Stocking  E Spooncer  T M Dexter  W Ostertag 《Cell》1991,64(6):1163-1173
Multipotent murine stem cell lines (FDC-Pmix) depend on IL-3 for self-renewal and proliferation and can be induced to differentiate into multiple hematopoietic lineages. Single FDC-Pmix cells infected with retroviral vectors expressing GM-CSF are induced to differentiate into granulocytes and macrophages. This results in a complete loss of clonogenic cells if IL-3 is not exogenously supplied; however, multipotent variants can be selected that do not terminally differentiate if cells are kept in the presence of IL-3. Unidirectional and synchronous granulocyte and macrophage differentiation accompanied with loss of self-renewal capacity is induced when IL-3 is removed. Our data indicate that activation of the GM-CSF receptor induces differentiation of stem cells by an instructive mechanism that can be blocked by the activated IL-3 receptor. A model of how receptors can induce proliferation and cell-specific differentiation by two separate pathways is discussed.  相似文献   

12.
13.
We have recently demonstrated that transforming growth factor (TGF)-beta 1 and TGF-beta 2 are potent inhibitors of the growth and differentiation of murine and human hematopoietic cells. The proliferation of primary unfractionated murine bone marrow by interleukin-3 (IL-3) and human bone marrow by IL-3 or granulocyte/macrophage colony-stimulating factor (GM-CSF) was inhibited by TGF-beta 1 and TGF-beta 2, while the proliferation of murine bone marrow by GM-CSF or murine and human marrow with G-CSF was not inhibited. Mouse and human hematopoietic colony formation was differentially affected by TGF-beta 1. In particular, CFU-GM, CFU-GEMM, BFU-E, and HPP-CFC, the most immature colonies, were inhibited by TGF-beta 1, whereas the more differentiated unipotent CFU-G, CFU-M, and CFU-E were not affected. TGF-beta 1 inhibited IL-3-induced growth of murine leukemic cell lines within 24 h, after which the cells were still viable. Subsequent removal of the TGF-beta 1 results in the resumption of normal growth. TGF-beta 1 inhibited the growth of factor-dependent NFS-60 cells in a dose-dependent manner in response to IL-3, GM-CSF, G-CSF, CSF-1, IL-4, or IL-6. TGF-beta 1 inhibited the growth of a variety of murine and human myeloid leukemias, while erythroid and macrophage leukemias were insensitive. Lymphoid leukemias, whose normal cellular counterparts were markedly inhibited by TGF-beta, were also resistant to TGF-beta 1 inhibition. These leukemic cells have no detectable TGF-beta 1 receptors on their cell surface. Last, TGF-beta 1 directly inhibited the growth of isolated Thy-1-positive progenitor cells. Thus, TGF-beta may be an important modulator of normal and leukemic hematopoietic cell growth.  相似文献   

14.
15.
The human epidermal growth factor-receptor (EGF-R) was introduced into primary mouse bone marrow cells (BMC), utilizing retrovirus mediated gene transfer. Cultivation of infected BMC in the presence of interleukin-3 (IL-3) led to the outgrowth of IL-3 dependent myeloid cells, which efficiently expressed functional EGF-R, exhibiting its two characteristic affinity states. EGF acts on these cells synergistically with IL-3 in stimulating DNA synthesis and cell proliferation even under IL-3 saturation conditions. However, EGF was not sufficient to replace the requirement for IL-3. In contrast, EGF was able to maintain proliferation of a factor-dependent hemopoietic cell line (FDC-P1) infected with the EGF-R retrovirus in the absence of IL-3, but these cells did not respond to EGF in the presence of IL-3. No influence of EGF on IL-3 induced mast cell differentiation of BMC expressing the EGF-R could be observed by histological criteria. These data show that the expression of EGF-R alone is not sufficient to induce or maintain cell proliferation in IL-3 dependent bone marrow derived cells, although it can do so in established hemopoietic cell lines.  相似文献   

16.
Interleukin-3 (IL-3)-dependent cell lines (FDCP-mix) were cloned and isolated from long-term bone-marrow cultures infected with src-MoMuLV. These cell lines have many of the characteristics of hematopoietic stem cells. Early isolates of the FDCP-mix cells form spleen colonies in irradiated mice and establish long-term hematopoiesis on irradiated marrow stroma in vitro in the absence of IL-3. These two properties of the cells are lost within 15 weeks of establishing the cell lines, but the cell lines retain their ability to differentiate in a multilineage response to hematopoietic growth factors and to hematopoietic stromal cells, as well as to self-renew in the presence of IL-3. The choice between differentiation and self-renewal in FDCP-mix cells can clearly be modified by culture conditions: in particular, cultures containing horse serum preferentially promote self-renewal, whereas cultures containing fetal calf serum preferentially promote differentiation. The FDCP-mix cell lines are not leukemic, nor do they contain the src oncogene. Their ability to respond to hematopoietic growth factors and stroma in a similar manner to normal hematopoietic cells makes them a valuable model for studying the regulation of hemopoietic cell self-renewal and differentiation.  相似文献   

17.
Sprouty/Spred family proteins have been identified as negative regulators of growth factor-induced ERK/mitogen-activated protein (MAP) kinase activation. However, it has not been clarified whether these proteins regulate cytokine-induced ERK activity. We found that Spred-1 is highly expressed in interleukin-3 (IL-3)-dependent hematopoietic cell lines and bone marrow-derived mast cells. To investigate the roles of Spred-1 in hematopoiesis, we expressed wild-type Spred-1 and a dominant negative form of Spred-1, DeltaC-Spred, in IL-3- and stem cell factor (SCF)-dependent cell lines as well as hematopoietic progenitor cells from mouse bone marrow by retrovirus gene transfer. In IL-3-dependent Ba/F3 cells expressing c-kit, forced expression of Spred-1 resulted in a reduced proliferation rate and ERK activation in response to not only SCF but also IL-3. In contrast, DeltaC-Spred augmented IL-3-induced cell proliferation and ERK activation. Wild-type Spred-1 inhibited colony formation of bone marrow cells in the presence of cytokines, whereas DeltaC-Spred-1 expression enhanced colony formation. Augmentation of ERK activation and proliferation in response to IL-3 was also observed in Spred-1-deficient bone marrow-derived mast cells. These data suggest that Spred-1 negatively regulates hematopoiesis by suppressing not only SCF-induced but also IL-3-induced ERK activation.  相似文献   

18.
Interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor induce the rapid phosphorylation of the c-raf protein in the growth factor-dependent FDC-P1 and DA-3 murine myeloid cell lines. Furthermore, immunoprecipitates of c-raf isolated from growth factor-stimulated cells demonstrate a marked increase in intrinsic protein kinase activity as measured in vitro. IL-3 and granulocyte-macrophage colony-stimulating factor induce phosphorylation of c-raf at both serine and tyrosine residues. Antiphosphotyrosine immunoprecipitates from IL-3-stimulated cells demonstrate the rapid and coordinate phosphorylation of both c-raf and a protein co-migrating with the 140-kDa putative IL-3 receptor component. Collectively, the findings of rapid and coordinate ligand-induced phosphorylation of a potential IL-3 growth factor receptor component and cytoplasmic c-raf with concomitant c-raf activation provide a cogent sequential molecular model for linking external growth stimuli to intracellular signal transduction events.  相似文献   

19.
Pescadillo (PES1) and the upstream binding factor (UBF1) play a role in ribosome biogenesis, which regulates cell size, an important component of cell proliferation. We have investigated the effects of PES1 and UBF1 on the growth and differentiation of cell lines derived from 32D cells, an interleukin-3 (IL-3)-dependent murine myeloid cell line. Parental 32D cells and 32D IGF-IR cells (expressing increased levels of the type 1 insulin-like growth factor I [IGF-I] receptor [IGF-IR]) do not express insulin receptor substrate 1 (IRS-1) or IRS-2. 32D IGF-IR cells differentiate when the cells are shifted from IL-3 to IGF-I. Ectopic expression of IRS-1 inhibits differentiation and transforms 32D IGF-IR cells into a tumor-forming cell line. We found that PES1 and UBF1 increased cell size and/or altered the cell cycle distribution of 32D-derived cells but failed to make them IL-3 independent. PES1 and UBF1 also failed to inhibit the differentiation program initiated by the activation of the IGF-IR, which is blocked by IRS-1. 32D IGF-IR cells expressing PES1 or UBF1 differentiate into granulocytes like their parental cells. In contrast, PES1 and UBF1 can transform mouse embryo fibroblasts that have high levels of endogenous IRS-1 and are not prone to differentiation. Our results provide a model for one of the theories of myeloid leukemia, in which both a stimulus of proliferation and a block of differentiation are required for leukemia development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号