首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
Expanded simple tandem repeat (ESTR) loci include some of the most unstable DNA in the mouse genome and have been extensively used in pedigree studies of germline mutation. We now show that repeat DNA instability at the mouse ESTR locus Ms6-hm can also be monitored by single molecule PCR analysis of genomic DNA. Unlike unstable human minisatellites which mutate almost exclusively in the germline by a meiotic recombination-based process, mouse Ms6-hm shows repeat instability both in germinal (sperm) DNA and in somatic (spleen, brain) DNA. There is no significant variation in mutation frequency between mice of the same inbred strain. However, significant variation occurs between tissues, with mice showing the highest mutation frequency in sperm. The size spectra of somatic and sperm mutants are indistinguishable and heavily biased towards gains and losses of only a few repeat units, suggesting repeat turnover by a mitotic replication slippage process operating both in the soma and in the germline. Analysis of male mice following acute pre-meiotic exposure to X-rays showed a significant increase in sperm but not somatic mutation frequency, though no change in the size spectrum of mutants. The level of radiation-induced mutation at Ms6-hm was indistinguishable from that established by conventional pedigree analysis following paternal irradiation. This confirms that mouse ESTR loci are very sensitive to ionizing radiation and establishes that induced germline mutation results from radiation-induced mutant alleles being present in sperm, rather than from unrepaired sperm DNA lesions that subsequently lead to the appearance of mutants in the early embryo. This single molecule monitoring system has the potential to substantially reduce the number of mice needed for germline mutation monitoring, and can be used to study not only germline mutation but also somatic mutation in vivo and in cell culture.  相似文献   

3.
4.
Mouse Pc-1 (Ms6-hm) is a hypervariable minisatellite locus that is unstable during intergenerational transmission. This hyper-instability of Pc-1 is useful for detecting germline mutation using a small number of experimental animals, although its molecular mechanism has not yet been elucidated. We examined the effect of severe combined immune deficiency (SCID) mutation on the spontaneous germline mutation at the Pc-1 locus using the CB17 mouse strain. Our results showed that the frequency of spontaneous germline mutation at Pc-1 in the offspring of wild-type parents was 9.7%. In F1 between SCID male and wild-type female, however, the frequency of germline mutation was drastically increased to 42.3%. When SCID female mice were mated with wild-type male, the frequency of germline mutation in F1 was slightly increased to 13.6%. These results suggest that DNA protein kinase catalytic subunit (DNA-PKcs), deficiency of which causes SCID mutation, plays an important role in the stable transmission of a genome containing hypervariable tandem repeats to progeny in male germ cells.  相似文献   

5.
Hypervariable human minisatellite loci show a substantial level of germline instability, and spontaneous mutation rates to new length alleles have been measured directly by pedigree analysis. We now show that mutation events altering the number of minisatellite repeat units are not restricted to the germline, but also arise in other tissues. Mutant alleles can be detected at a very low frequency in lymphoblastoid cell lines and at much higher frequencies in clonal tumor cell populations, most particularly in gastrointestinal adenocarcinomas. Mutant alleles in these tumors are usually present at a dosage equal to or greater than that of the progenitor allele, indicating that most or all of the tumor cells carry the same clonally derived mutant allele. As with germline mutation, the incidence of somatic mutations in tumors varies from locus to locus, with the same locus showing the highest level of germline and somatic instability. Most length changes, as those in the germline, are of only a few repeat units; however, very large changes are also observed, implying that such mutations can occur in the absence of meiosis.  相似文献   

6.
A J Jeffreys  R Neumann  V Wilson 《Cell》1990,60(3):473-485
Variation in internal minisatellite structure can be analyzed by mapping variant repeat units within amplified alleles. A system capable of distinguishing greater than 10(70) allelic states at the human hypervariable locus D1S8 has been developed. Population surveys of internal allelic structure indicate that D1S8 alleles evolve rapidly along haploid chromosome lineages. Internal mapping of deletion mutant alleles physically selected from genomic DNA provides further evidence that germline and somatic mutations altering the number of allelic repeat units seldom if ever arise by unequal exchange between alleles. The existence of low level germline mosaicism for new mutants further indicates that many germline mutation events are premeiotic. Physical selection of new mutants also allows minisatellite mutation rates to be estimated directly in human DNA.  相似文献   

7.
Cederberg H  Rannug U 《Mutation research》2006,598(1-2):132-143
Minisatellites are tandem repeat loci, with repeat units ranging in size from 5 bp to 100 bp. The total lengths of repeat arrays vary from about 0.5 kb to 30 kb, and excessive variability in allele length at human minisatellite loci is the result of germline-specific complex recombination events generating new length alleles. Minisatellite alleles also mutate to new lengths in somatic cells, but this occurs at a much lower rate than in the germline. Since recombination is involved in minisatellite mutation, the yeast Saccharomyces cerevisiae is a suitable model organism that has been employed to further dissect the molecular basis of mutation events at human minisatellites. These studies have shown that the mutational behaviour of a minisatellite in meiosis is not determined by the intrinsic properties of the repeat array, but are highly dependent on the position of the minisatellite in the genome. The processes for minisatellite mutation in yeast and humans are identical in the sense that mutation is indeed driven by meiotic recombination, but differ with regard to the types of structural changes that are generated by the recombination events. Tetrad analyses showed that inter-allelic transfers of repeats occur by conversion and not crossing over, and that several chromatids can be involved in successive recombination events in one meiosis, resulting in mutant alleles in several spores. It has been demonstrated that the genes SPO11 and RAD50, involved in the initiation of recombination events, are required for human minisatellite mutation in yeast meiosis. Intrinsic properties of the repeat array appear to determine the stability of human minisatellites in yeast mitosis, since mitotic mutation rates in yeast are highly variable between minisatellites. The repair genes RAD27 and DNA2 stabilise human minisatellites in yeast mitosis, while RAD5 has no effect on mitotic stability. MSH2 depresses human minisatellite frequency in meiotic cells of yeast.  相似文献   

8.
Buard J  Collick A  Brown J  Jeffreys AJ 《Genomics》2000,65(2):95-103
The most variable human minisatellites show extreme germline instability dominated by complex intra-allelic rearrangements plus a lower frequency of inter-allelic transfers of repeat units. In contrast, little is known about somatic instability at such loci. We have therefore used single-molecule PCR to analyze mutation at minisatellite CEB1 (D2S90) in human blood DNA. Somatic mutants were rare and involved only relatively simple intra-allelic events, with no bias toward expansions, in sharp contrast to the complex gain-biased rearrangements seen in sperm. Somatic and germline mutation processes were further analyzed in mice transgenic for a cosmid insert containing CEB1. Mutant molecules in transgenic sperm and blood were detected but only at the low frequencies seen in human blood and arose mainly by simple duplications and deletions as seen for somatic mutations in human. These data suggest distinct pathways for germline and somatic CEB1 mutations with germline instability involving recombination-based repair of meiotic double-strand breaks and somatic mutation arising by replication slippage or mitotic recombination. The problem of transferring germline-specific features of minisatellite instability from human to mouse suggests, with other recent observations, that long-range chromatin conformation may be required for the recombination-based mode of germline instability at human minisatellites.  相似文献   

9.
The human hypervariable minisatellite MS32 has a well characterised internal repeat unit array and high mutation rates have been observed at this locus. Analysis of MS32 mutants has shown that male germline mutations are polarised to one end of the array and frequently involve complex gene conversion-like events, suggesting that tandem repeat instability may be modulated by cis-acting sequences flanking the locus. In order to investigate the processes affecting MS32 mutation rate and mechanism, we have created transgenic mice harbouring an MS32 allele. Here we describe the organisation of eight transgenic insertions. Analysis of these transgenic loci by MVR-PCR and structural analysis of the junctions between mouse flanking DNA and the transgenic loci has shed light on mechanisms of integration and rearrangement of the tandem repeated transgenes. Sequence analysis of the mouse DNA flanking these transgenes has shown that 5 of the 8 insertions have integrated into mouse gamma satellite repeated sequence. This suggests a non-random integration of the MS32 transgene construct into the mouse genome.  相似文献   

10.
Sensitive and precise models are needed to identify potential genotoxicity at environmentally relevant doses of mutagens. The size length alterations in expanded simple tandem repeat (ESTR) loci have been used as a biomarker of genetic instability caused by a variety of agents in the mouse germline. The mechanisms operating in both spontaneous and induced instability are poorly understood. We have developed a single-molecule polymerase chain reaction (SM-PCR) method to investigate mutation at the mouse ESTR locus Ms6-hm in the murine C3H/10T1/2 embryonic cell line. Growth of cells to levels of high cell density induced increased ESTR instability, with mutation frequencies 5.1-fold (+/-2.8) over sub-confluent cultures. Accordingly, cell cultures were maintained at sub-confluent levels for further investigations of the induction of ESTR mutation by genotoxic agents. Treatment with the DNA alkylating agent N-nitroso-N-ethylurea (ENU) resulted in a 1.94-fold (+/-1.1) increase in mutation frequency, similar to responses measured previously in the germline in vivo. Therefore, mutagen exposure can also affect somatic (non-meiotic) rapidly dividing mouse cells. This SM-PCR approach eliminates the requirement of sub-cloning individual treated cells, thereby, reducing the time needed to screen for ESTR mutation, and will be a very useful tool for future investigations into the mechanisms involved in ESTR mutation.  相似文献   

11.
To investigate the hypothesis that unequal exchange between homologous chromosomes is involved when new alleles are generated at VNTR loci, we used genetic linkage maps to identify flanking markers surrounding a VNTR marker locus. The minisatellite probe lambda MS1 was selected, as the hypervariable locus it detects undergoes spontaneous generation of new alleles in the germline at a rate of approximately 5%. Multipoint linkage analysis placed lambda MS1 within a cluster of polymorphic marker loci on chromosome 1p. Using the two closest flanking markers, CMM8 and YNZ2, we were able to characterize 12 new-allele events in terms of crossingover between the flanking markers. Statistical analysis of these data has allowed us to reject the model that assumes that events generating new alleles always involve unequal exchange between homologous chromosomes at meiosis.  相似文献   

12.
Q He  H Cederberg  J A Armour  C A May  U Rannug 《Gene》1999,232(2):143-153
Tandemly repeated DNA is a major component of the human genome, and includes loci contributing to human disease. Minisatellites include the most variable human loci described to date, and the mechanisms by which this variation is generated in humans have been studied in detail. Integration of human minisatellites into yeast not only provides a model for further dissecting the molecular basis of length change mutation at these loci, but also more generally allows the study of complex recombinational events in yeast. We have used human minisatellite MS205 integrated into yeast to study the structural details of length change mutations. Apart from showing that mutation at this locus in yeast has features similar to those observed at some minisatellites in humans, including meiosis-specificity, and polarity, in which exchange events are localised to one extremity of the array, we here, for the first time, directly demonstrate that a flanking element in yeast regulates the mutation process. The results therefore support the hypothesis that flanking initiators are involved in minisatellite mutation in humans. Furthermore, mutant alleles showed more complex rearrangements in one orientation than the other. The data also suggest that the mutational pathway for deletions might be different from the pathway generating inter-allelic exchanges and duplications.  相似文献   

13.
Minisatellites are arrays of tandemly repeated DNA sequences which occur at thousands of locations in the human genome. They are frequently hypervariable with respect to allele length as a result of high rates of complex and incompletely understood recombination-based germline mutation events that alter the repeat copy number. MS1 is one of the most variable minisatellites so far isolated from the human genome. We have integrated MS1, flanked by synthetic markers, in the vicinity of a hot spot for meiotic double-strand breaks upstream of the LEU2 locus in chromosome III of Saccharomyces cerevisiae. Here we present the first tetrad analysis of mutations at a human minisatellite locus. The data showed that mutant alleles occur as single mutants in one of the spores in a tetrad, also when the mutant structure was the result of a combination of intra- and inter-allelic rearrangements. The conversional transfer of repeat units from one allele to the other was associated with flanking marker conversion which always involved the same flank of the minisatellite. The results demonstrate that conversion is the predominant mechanism by which minisatellite alleles mutate to new lengths, and also support the assumption that cis-acting elements are involved in the regulation of the mutational process in humans.  相似文献   

14.
Hypermutable minisatellites,a human affair?   总被引:6,自引:0,他引:6  
Bois PR 《Genomics》2003,81(4):349-355
Minisatellites are a class of highly polymorphic GC-rich tandem repeats. They include some of the most variable loci in the human genome, with mutation rates ranging from 0.5% to >20% per generation. Structurally, they consist of 10- to 100-bp intermingled variant repeats, making them ideal tools for dissecting mechanisms of instability at tandem repeats. Distinct mutation processes generate rare intra-allelic somatic events and frequent complex conversion-like germline mutations in these repeats. Furthermore, turnover of repeats at human minisatellites is controlled by intense recombinational activity in DNA flanking the repeat array. Surprisingly, whereas other mammalian genomes possess minisatellite-like sequences, hypermutable loci have not been identified that suggest human-specific turnover processes at minisatellite arrays. Attempts to transfer minisatellite germline instability to the mouse have failed. However, yeast models are now revealing valuable information regarding the mechanisms regulating instability at these tandem repeats. Finally, minisatellites and tandem repeats provide exquisitely sensitive molecular tools to detect genomic insults such as ionizing radiation exposure. Surprisingly, by a mechanism that remains elusive, there are transgenerational increases in minisatellite instability.  相似文献   

15.
Influences of array size and homogeneity on minisatellite mutation.   总被引:8,自引:0,他引:8       下载免费PDF全文
Unstable minisatellites display high frequencies of spontaneous gain and loss of repeats in the human germline. Most length changes arise through complex recombination events including intra-allelic duplications/deletions and inter-allelic transfers of repeats. Definition of the factors modulating instability requires both measurement of mutation rate and detailed analysis of mutant structures at the level of individual alleles. We have measured mutation rates in sperm for a wide range of alleles of the highly unstable human minisatellite CEB1. Instability varies by three orders of magnitude between alleles and increases steadily with the size of the tandem array. Structural analysis of mutant molecules derived from six alleles revealed that it is the rate of intra-allelic rearrangements which increases with array size and that intra-allelic duplication events tend to cluster within homogeneous segments of alleles; both phenomena resemble features of trinucleotide repeat instability. In contrast, inter-allelic transfers occur at a fairly constant rate, irrespective of array length, and show a mild polarity towards one end of the minisatellite, suggesting the possible influence of flanking DNA on these conversion-like events.  相似文献   

16.
Minisatellites are composed of tandem repetitive DNA sequences and are present at many positions in the human genome. They frequently mutate to new length alleles in the germline, by complex and incompletely understood recombination mechanisms which may operate during meiosis. In several minisatellites the mutation events are restricted to one end of the repeat array, indicating a possible association with elements that act in cis. Mutant alleles do not show exchange of flanking regions. To construct a model system suitable for further investigations of the mutation process, we have integrated the human minisatellite MS32, flanked by synthetic markers, in the vicinity of a meiotic recombination hot spot upstream of the LEU2 locus in the yeast Saccharomyces cerevisiae. Here we provide direct evidence for a meiotic origin of MS32 mutations. Mutation events were polarised towards both ends of the minisatellite and varied from simple duplications and deletions to complex intra- and interallelic events. Interallelic events were frequently accompanied by exchange of regions flanking the minisatellite. The results also support the notion that cis-acting elements are involved in the mutational process. The fact that MS32 mutant structures are similar in yeast and human shows that meiotic recombination plays a crucial role in both organisms and emphasises the usefulness of yeast strains harbouring minisatellites as a model system for the study of minisatellite mutation. Received: 1 March 1997 / Accepted: 16 May 1997  相似文献   

17.
We have used small-pool PCR to analyse mutation in samples of sperm taken from men after mutagenic therapy. Small-pool PCR uses direct analysis of germline DNA at a highly unstable tandem-repeated "minisatellite" locus to measure rates of length-change mutation in individual sperm samples. The advantages of this approach are that the normal mutation rate is extremely high (about 0.4% per gamete at the locus analysed here), so that relatively small increases in mutation rate can be detectable in individual samples. It is known from work on sperm from untreated individuals that different alleles at this locus have different mutation rates. For this reason, we have analysed the germline mutation rates in sperm samples from two men, in each case comparing a post-treatment sample with a pre-treatment sample from the same individual. We find no evidence for altered mutation in the post-treatment sample, suggesting that the repopulation of the germ-cell compartment after treatment may be subject to stringent mechanisms for the detection and elimination of germ-cell damage.  相似文献   

18.
Tandem repeat loci such as minisatellites and trinucleotide repeats frequently show instability. We have investigated mutation at human minisatellite MS32 (locus D1S8) transferred to transgenic mice. Three lines of hemizygous transgenic mice were studied. A single-copy line (110D) was seen to be relatively stable, whilst two multicopy lines showed structural instability of the transgene in pedigrees (lines 109 and 110A). For both these lines, mutant structures were detected as a result of mutation events having occurred in the germline or early embryo. Structural changes seen included gain or loss of minisatellite repeat units (110A and 109), alteration of DNA flanking the minisatellite repeat array (109 only) or deletion of the entire transgene (109 only). This work demonstrates that tandem repeat transgenes can show instability and thus provide additional systems for the analysis of repetitive DNA structural change in mice.  相似文献   

19.
Expanded simple tandem repeat (ESTR) sequences have proven useful biomarkers to detect genotoxicity in vivo. Their high sensitivity has been used to assess environmentally relevant doses of mutagens such as ionizing radiation, DNA alkylating agents and airborne particulate pollution, for germline mutations in mouse assays. The mutagenic response involves size alteration of these ESTR loci induced by agents causing a variety of cellular damage. The mechanistic aspects of this induced instability remain unclear and have not been studied in detail. Mechanistic knowledge is important to help understand the relevance of increased ESTR mutation frequencies. In this study, we applied a murine cell culture system to examine induced response to four agents exhibiting different modes of toxic action including: N-nitroso-N-ethylurea (ENU), benzo(a)pyrene (BaP), okadaic acid and etoposide at slightly sub-toxic levels. We used single-molecule-polymerase chain reaction (SM-PCR) to assess the relative mutant frequency after 4-week chemical treatments at the Ms6-hm ESTR sequence of cultured C3H/10T1/2 cells (a mouse embryonic cell line). Increased mutation was observed with both 0.64 mM ENU (1.95-fold increase, P<0.0001), 1 microM benzo(a)pyrene (1.87-fold increase, P=0.0006) and 3 nM etoposide (1.89-fold increase, P=0.0003). The putative ESTR mutagen okadaic acid (1.27-fold increase, P=0.2289), administered at 0.5 nM, did not affect the C3H/10T1/2 Ms6-hm locus. Therefore, agents inducing small and bulky adducts, and indirectly causing strand breaks through inhibition of topoisomerase, caused similar induction of instability at an ESTR locus at matched toxicities. As size spectra for induced mutations were identical, the data indicate that although these chemicals exhibit distinct modes of action, a similar indirect process is influencing ESTR instability. In contrast, a potent tumour promoter that is a kinase inhibitor does not contribute to induced ESTR instability in cell culture.  相似文献   

20.
J Buard  G Vergnaud 《The EMBO journal》1994,13(13):3203-3210
Some minisatellite structures are the site of high rates of DNA recombination in non-pathological situations, with an excess of motif insertion events and a locus-dependent sex-specific mutation bias. We previously reported the cloning of the hypermutable minisatellite locus CEB1 (D2S90), remarkable for its 13% mutation rate in the male germline (compared to approximately 0.4% in female). We have sought to analyse the mechanisms underlying the addition or deletion of motifs at this locus using the minisatellite variant repeat mapping technique. This is possible with a high precision due to the extreme sequence polymorphism seen between different motifs. No crossing-over event was observed among 38 informative neomutations. Four of the 19 informative mutant alleles with an addition of motifs are interallelic events, the others are intra-allelic. Overall, the insertion and deletion mutations are spread along the alleles, although the subset of interallelic events shows clustering towards the analysed end. The apparently complex recombination events observed can all be interpreted as a succession of elementary duplications-deletions of inter- as well as intra-chromosomal origin, suggesting a model in which sister chromatid as well as conversion-like exchanges are involved in these mutation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号