首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kuo FT  Lu TL  Fu HW 《Cellular signalling》2006,18(11):1914-1923
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor for thrombin, is irreversibly proteolytically activated. beta-Arrestin1 and beta-arrestin2 have been reported to have different effects on signal desensitization and transduction of PAR1. In this study, we investigated whether beta-arrestin1 and beta-arrestin2 regulate Src-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) induced by PAR1 in HEK 293 cells. Our results show that PAR1-mediated activation of Src and ERK1/2 in HEK 293 cells was increased with overexpression of beta-arrestin1 or depletion of beta-arrestin2. PAR1-mediated activation of Src and ERK1/2 in HEK 293 cells was decreased or eliminated with depletion of beta-arrestin1 or overexpression of beta-arrestin2. Furthermore, depletion of beta-arrestin2 blocked PAR1-induced degradation of Src. Thus, beta-arrestin1 and beta-arrestin2 have opposing roles in regulating the activation of Src induced by PAR1. beta-Arrestin2 also appears to promote PAR1-induced degradation of Src. This degradation of Src provides a possible mechanism for terminating PAR1 signaling.  相似文献   

2.
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is the prototypic member of a family of protease-activated receptors. PAR1 is irreversibly proteolytically activated; thus, the magnitude and duration of thrombin cellular responses are determined primarily by mechanisms responsible for termination of receptor signaling. Both phosphorylation and beta-arrestins contribute to rapid desensitization of PAR1 signaling. However, the relative contribution of each of these pathways to the termination of PAR1 signaling is not known. Co-expression of PAR1 with beta-arrestin 1 (betaarr1) in COS-7 cells resulted in a marked inhibition of PAR1 signaling, whereas beta-arrestin 2 (betaarr2) was essentially inactive. Strikingly, signaling by a PAR1 cytoplasmic tail mutant defective in agonist-induced phosphorylation was also attenuated more effectively by betaarr1 compared with betaarr2. In contrast, both beta-arrestin isoforms were equally effective at desensitizing the substance P receptor, a classic reversibly activated GPCR. PAR1 coimmunoprecipitated betaarr1 in an agonist-dependent manner, whereas betaarr2 association was virtually undetectable. Remarkably, betaarr1 also interacted with phosphorylation defective PAR1 mutant, whereas betaarr2 did not. Moreover, constitutively active beta-arrestin mutants, betaarr1 R169E and betaarr2 R170E, that bind to activated receptor independent of phosphorylation failed to enhance either wild type or mutant PAR1 desensitization compared with normal versions of these proteins. In contrast, beta-arrestin mutants displayed enhanced activity at desensitizing the serotonin 5-hydroxytryptamine(2A) receptor. Taken together, these results suggest that, in addition to PAR1 cytoplasmic tail phosphorylation itself, beta-arrestin binding independent of phosphorylation promotes desensitization of PAR1 signaling. These findings reveal a new level of complexity in the regulation of protease-activated GPCR signaling.  相似文献   

3.
4.
The widely expressed beta-arrestin isoforms 1 and 2 bind phosphorylated G protein-coupled receptors (GPCRs) and mediate desensitization and internalization. Phosphorylation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, is important for desensitization and internalization, however, the role of beta-arrestins in signaling and trafficking of PAR1 remains unknown. To assess beta-arrestin function we examined signaling and trafficking of PAR1 in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin (betaarr) knockouts. Desensitization of PAR1 signaling was markedly impaired in MEFs lacking both betaarr1 and betaarr2 isoforms compared with wild-type cells. Strikingly, in cells lacking only betaarr1 PAR1 desensitization was also significantly impaired compared with betaarr2-lacking or wild-type cells. In wild-type MEFs, activated PAR1 was internalized through a dynamin- and clathrin-dependent pathway and degraded. Surprisingly, in cells lacking both betaarr1 and betaarr2 activated PAR1 was similarly internalized through a dynamin- and clathrin-dependent pathway and degraded, whereas the beta(2)-adrenergic receptor (beta(2)-AR) failed to internalize. A PAR1 cytoplasmic tail mutant defective in agonist-induced phosphorylation failed to internalize in both wild-type and beta-arrestin knockout cells. Thus, PAR1 appears to utilize a distinct phosphorylation-dependent but beta-arrestin-independent pathway for internalization through clathrin-coated pits. Together, these findings strongly suggest that the individual beta-arrestin isoforms can differentially regulate GPCR desensitization and further reveal a novel mechanism by which GPCRs can internalize through a dynamin- and clathrin-dependent pathway that is independent of arrestins.  相似文献   

5.
6.
In endothelial cells, transforming growth factor beta (TGF-beta) signals through two distinct pathways to regulate endothelial cell proliferation and migration, the ALK-1/Smads 1/5/8 pathway and the ALK-5/Smads 2/3 pathway. TGF-beta signaling through these pathways is further regulated in endothelial cells by the endothelial specific TGF-beta superfamily co-receptor, endoglin. The importance of endoglin, ALK-1, and ALK-5 in endothelial biology is underscored by the embryonic lethal phenotypes of knock-outs in mice due to defects in angiogenesis, and by the presence of disease-causing mutations in these genes in human vascular diseases. However, the mechanism of action of endoglin is not well defined. Here we define a novel interaction between endoglin and the scaffolding protein beta-arrestin2. Both co-immunoprecipitation and fluorescence confocal studies demonstrate the specific interaction between endoglin and beta-arrestin2 in endothelial cells, enhanced by ALK-1 and to a lesser extent by the type II TGF-beta receptor. The endoglin/beta-arrestin2 interaction results in endoglin internalization and co-accumulation of endoglin and beta-arrestin2 in endocytic vesicles. Whereas endoglin did not have a direct impact on either Smad 2/3 or Smad 1/5/8 activation, endoglin antagonized TGF-beta-mediated ERK signaling, altered the subcellular distribution of activated ERK, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with beta-arrestin2. Reciprocally, small interfering RNA-mediated silencing of endogenous beta-arrestin2 expression restored TGF-beta-mediated ERK activation and increased endothelial cell migration in an endoglin-dependent manner. These studies define a novel function for endoglin, and further expand the roles mediated by the ubiquitous scaffolding protein beta-arrestin2.  相似文献   

7.
8.
Beta-arrestin mediates desensitization and internalization of beta-adrenergic receptors (betaARs), but also acts as a scaffold protein in extracellular signal-regulated kinase (ERK) cascade. Thus, we have examined the role of beta-arrestin2 in the betaAR-mediated ERK signaling pathways. Isoproterenol stimulation equally activated cytoplasmic and nuclear ERK in COS-7 cells expressing beta1AR or beta2AR. However, the activity of nuclear ERK was enhanced by co-expression of beta-arrestin2 in beta2AR-but not beta1AR-expressing cells. Pertussis toxin treatment and blockade of Gbetagamma action inhibited beta-arrestin2-enhanced nuclear activation of ERK, suggesting that beta-arrestin2 promotes nuclear ERK localization in a Gbetagamma dependent mechanism upon receptor stimulation. beta2AR containing the carboxyl terminal region of beta1AR lost the beta-arrestin2-promoted nuclear translocation. As the carboxyl terminal region is important for beta-arrestin binding, these results demonstrate that recruitment of beta-arrestin2 to carboxyl terminal region of beta2AR is important for ERK localization to the nucleus.  相似文献   

9.
A major characteristic of prostate cancer is the elevation of serum levels of prostate-specific antigen (hK3) and hK2, which are tumor markers that correlate with advancing stages of disease. Including hK4, these three kallikrein serine proteases are almost exclusively produced by the prostate. Prostate cancer cells have been recently shown to overexpress protease-activated receptors (PAR), which can be potentially activated by kallikreins and can regulate tumor growth. Here, we show that recombinant hK2 and hK4 activate ERK1/2 signaling of DU-145, PC-3, and LNCaP prostate cancer cells, which express both PAR1 and PAR2. These kallikreins also stimulate the proliferation of DU-145 cells. Pretreatment of hK2 and hK4 with the serine protease inhibitor, aprotinin, blocks the responses in DU-145 cells, and small interfering RNA against PAR1 and PAR2 also inhibits ERK1/2 signaling. To determine which PAR is activated by hK2 and hK4, a cell line that expresses a single PAR, a PAR1 knockout mouse lung fibroblast cell line transfected with PAR1 (KOLF-PAR1) or PAR2 (KOLF-PAR2) was used. hK4 activates both PAR1 and PAR2, whereas hK2 activates PAR2. hK4 generates more phosphorylated ERK1/2 than hK2. These data indicate that prostatic kallikreins (hK2 and hK4) directly stimulate prostate cancer cell proliferation through PAR1 and/or PAR2 and may be potentially important targets for future drug therapy for prostate cancer.  相似文献   

10.
11.
The seven-membrane-spanning angiotensin II type 1A receptor activates the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1/2) by distinct pathways dependent on either G protein (likely G(q)/G(11)) or beta-arrestin2. Here we sought to distinguish the kinetic and spatial patterns that characterize ERK1/2 activated by these two mechanisms. We utilized beta-arrestin RNA interference, the protein kinase C inhibitor Ro-31-8425, a mutant angiotensin II receptor (DRY/AAY), and a mutant angiotensin II peptide (SII-angiotensin), which are incapable of activating G proteins, to isolate the two pathways in HEK-293 cells. G protein-dependent activation was rapid (peak <2 min), quite transient (t((1/2)) approximately 2 min), and led to nuclear translocation of the activated ERK1/2 as assessed by confocal microscopy. In contrast, beta-arrestin2-dependent activation was slower (peak 5-10 min), quite persistent with little decrement noted out to 90 min, and entirely confined to the cytoplasm. Moreover, ERK1/2 activated via beta-arrestin2 accumulated in a pool of cytoplasmic endosomal vesicles that also contained the internalized receptors and beta-arrestin. Such differential regulation of the temporal and spatial patterns of ERK1/2 activation via these two pathways strongly implies the existence of distinct physiological endpoints.  相似文献   

12.
Physiological effects of beta adrenergic receptor (beta2AR) stimulation have been classically shown to result from G(s)-dependent adenylyl cyclase activation. Here we demonstrate a novel signaling mechanism wherein beta-arrestins mediate beta2AR signaling to extracellular-signal regulated kinases 1/2 (ERK 1/2) independent of G protein activation. Activation of ERK1/2 by the beta2AR expressed in HEK-293 cells was resolved into two components dependent, respectively, on G(s)-G(i)/protein kinase A (PKA) or beta-arrestins. G protein-dependent activity was rapid, peaking within 2-5 min, was quite transient, was blocked by pertussis toxin (G(i) inhibitor) and H-89 (PKA inhibitor), and was insensitive to depletion of endogenous beta-arrestins by siRNA. beta-Arrestin-dependent activation was slower in onset (peak 5-10 min), less robust, but more sustained and showed little decrement over 30 min. It was insensitive to pertussis toxin and H-89 and sensitive to depletion of either beta-arrestin1 or -2 by small interfering RNA. In G(s) knock-out mouse embryonic fibroblasts, wild-type beta2AR recruited beta-arrestin2-green fluorescent protein and activated pertussis toxin-insensitive ERK1/2. Furthermore, a novel beta2AR mutant (beta2AR(T68F,Y132G,Y219A) or beta2AR(TYY)), rationally designed based on Evolutionary Trace analysis, was incapable of G protein activation but could recruit beta-arrestins, undergo beta-arrestin-dependent internalization, and activate beta-arrestin-dependent ERK. Interestingly, overexpression of GRK5 or -6 increased mutant receptor phosphorylation and beta-arrestin recruitment, led to the formation of stable receptor-beta-arrestin complexes on endosomes, and increased agonist-stimulated phospho-ERK1/2. In contrast, GRK2, membrane translocation of which requires Gbetagamma release upon G protein activation, was ineffective unless it was constitutively targeted to the plasma membrane by a prenylation signal (CAAX). These findings demonstrate that the beta2AR can signal to ERK via a GRK5/6-beta-arrestin-dependent pathway, which is independent of G protein coupling.  相似文献   

13.
Agonist-mediated activation of the type 1 parathyroid hormone receptor (PTH1R) results in several signaling events and receptor endocytosis. It is well documented that arrestins contribute to desensitization of both G(s)- and G(q)-mediated signaling and mediate PTH1R internalization. However, whether PTH1R trafficking directly contributes to signaling remains unclear. To address this question, we investigated the role of PTH1R trafficking in cAMP signaling and activation of extracellular signal-regulated kinases ERK1/2 in HEK-293 cells. Dominant negative forms of dynamin (K44A-dynamin) and beta-arrestin1 (beta-arrestin1-(319-418)) abrogated PTH1R internalization but had no effect on cAMP signaling; neither acute cAMP production by PTH nor desensitization and resensitization of cAMP signaling were affected. Therefore, PTH1R trafficking is not necessary for regulation of cAMP signaling. PTH-(1-34) induced rapid and robust activation of ERK1/2. A PTHrP-based analog ([p-benzoylphenylalanine1, Ile5,Arg(11,13),Tyr36]PTHrP-(1-36)NH2), which selectively activates the G(s)/cAMP pathway without inducing PTH1R endocytosis, failed to stimulate ERK1/2 activity. Inhibition of PTH1R endocytosis by K44A-dynamin dampened ERK1/2 activation in response to PTH-(1-34) by 69%. Incubation with the epidermal growth factor receptor inhibitor AG1478 reduced ERK1/2 phosphorylation further. In addition, ERK1/2 phosphorylation occurred following internalization of a PTH1R mutant induced by PTH-(7-34) in the absence of G protein signaling. Collectively, these data indicate that PTH1R trafficking and G(q) (but not G(s)) signaling independently contribute to ERK1/2 activation, predominantly via transactivation of the epidermal growth factor receptor.  相似文献   

14.
beta-Arrestin2 not only plays essential roles in seven membrane-spanning receptor desensitization and internalization but also functions as a signal transducer in mitogen-activated protein kinase cascades. Here we show that the angiotensin II type 1A receptor-mediated activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in HEK-293 cells is increased when the cellular level of beta-arrestin1 is down-regulated by RNA interference but is decreased or eliminated when the cellular level of beta-arrestin2 is diminished. Such reciprocal effects of down-regulated levels of beta-arrestins 1 and 2 are primarily due to differences in the ability of the two forms of beta-arrestins to directly mediate ERK activation. These results are the first to demonstrate reciprocal activity of beta-arrestin isoforms on a signaling pathway and suggest that physiological levels of beta-arrestin1 may act as "dominant-negative" inhibitors of beta-arrestin2-mediated ERK activation.  相似文献   

15.
Many important physiological roles of the urocortin (UCN) family of peptides as well as CRH involve the type 2 CRH receptor (CRH-R2) and downstream activation of multiple pathways. To characterize molecular determinants of CRH-R2 functional activity, we used HEK293 cells overexpressing recombinant CRH-R2beta and investigated mechanisms involved in attenuation of CRH-R2 signaling activity and uncoupling from intracellular effectors. CRH-R2beta-mediated adenylyl cyclase activation was sensitive to homologous desensitization induced by pretreatment with either UCN-II or the weaker agonist CRH. CRH-R2beta activation induced transient beta-arrestin1 and beta-arrestin2, as well as clathrin, recruitment to the plasma membrane. Beta-arrestin2 appeared to be the main beta-arrestin subtype associated with the receptor. This was followed by CRH-R2beta endocytosis in a mechanism that exhibited distinct agonist-dependent temporal characteristics. CRH-R2beta also induced transient activation of the ERK1/2 and p38MAPK signaling cascades that peaked at 5 min and returned to basal within 20-30 min. Unlike p38MAPK, activated ERK1/2 was localized both in the cytoplasm and nucleus. Experiments employing inhibitors of receptor endocytosis showed that CRH-R2beta-MAPK interaction does not require beta-arrestin, clathrin, or receptor endocytosis. Site-directed mutagenesis studies on CRH-R2beta C terminus showed that the amino acid cassette TAAV at the end of the C terminus is important for CRH-R2beta signaling because loss of a potential phospho-acceptor site in mutant receptors containing deletion or Ala substitution of the cassette TAAV resulted in reduced ERK1/2 activation and accelerated receptor internalization. These findings provide new insights about the signaling mechanisms regulating CRH-R2beta functional activity and determining its biological responses.  相似文献   

16.
17.
Cell motility during wound healing and inflammation is often dependent on the ability of the cell to sense a gradient of agonist. The first step in this process is the extension of a pseudopod in the direction of the agonist, and a diverse set of signals mediate pseudopod extension by different receptors. We have reported previously that protease-activated receptor-2 (PAR-2), a proinflammatory receptor that is highly expressed in motile cells such as neutrophils, macrophages, and tumor cells, is one of a growing family of receptors that utilizes a beta-arrestin-dependent mechanism for activation of the 42-44-kDa members of the MAPK family (extracellular signal-regulated kinases 1 and 2; ERK1/2). beta-Arrestin-bound PAR-2 serves as a scaffold to sequester a pool of activated ERK1/2 in the cytosol; however, a specific role for the sequestered kinase activity has not been established. We now show that PAR-2 activation promotes ERK1/2- and beta-arrestin-dependent reorganization of the actin cytoskeleton, polarized pseudopodia extension, and chemotaxis. Using subcellular fractionation, confocal microscopy, and physical isolation of pseudopodial proteins, we demonstrate that the previously identified PAR-2/beta-arrestin/ERK1/2 scaffolding complex is enriched in the pseudopodia, where it appears to prolong ERK1/2 activation. These studies suggest that the formation of a beta-arrestin/ERK1/2 signaling complex at the leading edge may be involved in localized actin assembly and chemotaxis and provide the first example of a distinct cellular consequence of beta-arrestin-sequestered ERK1/2 activity.  相似文献   

18.
The functions of beta-arrestin1 to facilitate clathrin-mediated endocytosis of the beta2-adrenergic receptor and to promote agonist-induced activation of extracellular signal-regulated kinases (ERK) are regulated by its phosphorylation/dephosphorylation at Ser-412. Cytoplasmic beta-arrestin1 is almost stoichiometrically phosphorylated at Ser-412. Dephosphorylation of beta-arrestin1 at the plasma membrane is required for targeting a signaling complex that includes the agonist-occupied receptors to the clathrin-coated pits. Here we demonstrate that beta-arrestin1 phosphorylation and function are modulated by an ERK-dependent negative feedback mechanism. ERK1 and ERK2 phosphorylate beta-arrestin1 at Ser-412 in vitro. Inhibition of ERK activity by a dominant-negative MEK1 mutant significantly attenuates beta-arrestin1 phosphorylation, thereby increasing the concentration of dephosphorylated beta-arrestin1. Under such conditions, beta-arrestin1-mediated beta2-adrenergic receptor internalization is enhanced as is its ability to bind clathrin. In contrast, if ERK-mediated phosphorylation is increased by transfection of a constitutively active MEK1 mutant, receptor internalization is inhibited. Our results suggest that dephosphorylated beta-arrestin1 mediates endocytosis-dependent ERK activation. Following activation, ERKs phosphorylate beta-arrestin1, thereby exerting an inhibitory feedback control of its function.  相似文献   

19.
Beta-arrestin2 and its ubiquitination play crucial roles in both internalization and signaling of seven-transmembrane receptors (7TMRs). To understand the connection between ubiquitination and the endocytic and signaling functions of beta-arrestin, we generated a beta-arrestin2 mutant that is defective in ubiquitination (beta-arrestin2(0K)), by mutating all of the ubiquitin acceptor lysines to arginines and compared its properties with the wild type and a stably ubiquitinated beta-arrestin2-ubiquitin (Ub) chimera. In vitro translated beta-arrestin2 and beta-arrestin2(0K) displayed equivalent binding to recombinant beta(2)-adrenergic receptor (beta(2)AR) reconstituted in vesicles, whereas beta-arrestin2-Ub bound approximately 4-fold more. In cellular coimmunoprecipitation assays, beta-arrestin2(0K) bound nonreceptor partners, such as AP-2 and c-Raf and scaffolded phosphorylated ERK robustly but displayed weak binding to clathrin. Moreover, beta-arrestin2(0K) was recruited only transiently to activated receptors at the membrane, did not enhance receptor internalization, and decreased the amount of phosphorylated ERK assimilated into isolated beta(2)AR complexes. Although the wild type beta-arrestin2 formed ERK signaling complexes with the beta(2)AR at the membrane, a stably ubiquitinated beta-arrestin2-Ub chimera not only stabilized the ERK signalosomes but also led to their endosomal targeting. Interestingly, in cellular fractionation assays, the ubiquitination state of beta-arrestin2 favors its distribution in membrane fractions, suggesting that ubiquitination increases the propensity of beta-arrestin for membrane association. Our findings suggest that although beta-arrestin ubiquitination is dispensable for beta-arrestin cytosol to membrane translocation and its "constitutive" interactions with some cytosolic proteins, it nevertheless is a prerequisite both for the formation of tight complexes with 7TMRs in vivo and for membrane compartment interactions that are crucial for downstream endocytic and signaling processes.  相似文献   

20.
Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). The purpose of the present study was to identify the contributions of distinct signaling mechanisms to PTH-stimulated activation of the mitogen-activated protein kinases (MAPK) ERK1/2. In Human embryonic kidney 293 (HEK293) cells transiently transfected with hPTH1R, PTH stimulated a robust increase in ERK activity. The time course of ERK1/2 activation was biphasic with an early peak at 10 min and a later sustained ERK1/2 activation persisting for greater than 60 min. Pretreatment of HEK293 cells with the PKA inhibitor H89 or the PKC inhibitor GF109203X, individually or in combination reduced the early component of PTH-stimulated ERK activity. However, these inhibitors of second messenger dependent kinases had little effect on the later phase of PTH-stimulated ERK1/2 phosphorylation. This later phase of ERK1/2 activation at 30-60 min was blocked by depletion of cellular beta-arrestin 2 and beta-arrestin 1 by small interfering RNA. Furthermore, stimulation of hPTH1R with PTH analogues, [Trp1]PTHrp-(1-36) and [d-Trp12,Tyr34]PTH-(7-34), selectively activated G(s)/PKA-mediated ERK1/2 activation or G protein-independent/beta-arrestin-dependent ERK1/2 activation, respectively. It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through beta-arrestins. These findings imply the existence of distinct active conformations of the hPTH1R responsible for the two pathways, which can be stimulated by unique ligands. Such ligands may have distinct and valuable therapeutic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号