首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D T Piekut  S A Joseph 《Peptides》1986,7(5):891-898
New dual immunocytochemical staining procedures were used in the same tissue section to elucidate the distribution and co-existence of CRF and vasopressin in parvocellular neuronal perikarya in the paraventricular nucleus (PVN) of rat hypothalamus. CRF immunostained cells were for the most part concentrated in the medial parvocellular component of PVN. Few vasopressin-immunoreactive (ir) neurons were seen in this area in the normal and colchicine-treated animals. Vasopressin-containing neurons predominated in the magnocellular component of PVN. In the adrenalectomized and adrenalectomized-colchicine-treated animals, a dense accumulation of vasopressin-ir cells were observed in the medial parvocellular area of PVN; this region is normally vasopressin-ir poor and CRF-ir rich. The vasopressin immunostained cells appeared to have an anatomical distribution similar to that seen for CRF-containing cell bodies. Results of this study unequivocally establish the co-existence of vasopressin and CRF in the same parvocellular perikarya of PVN following pertubation of the pituitary-adrenal axis.  相似文献   

2.
J K Rao  H Hu  C Prasad  A Jayaraman 《Peptides》1987,8(2):327-334
The distribution pattern of alpha-melanocyte stimulating hormone-like immunoreactivity (alpha-MSH-Li) was studied in cats using avidin-biotin modification of immunocytochemical method. Cell bodies containing alpha-MSH-Li were observed in the medial basal hypothalamus, especially in the infundibular nucleus, the lateral hypothalamus and near zona incerta. Fibers with alpha-MSH-Li extended beyond the hypothalamus, into the paraventricular nucleus of the thalamus, rostral amygdala, periaqueductal gray, locus ceruleus, parabrachial nucleus and medial nucleus of the nucleus tractus solitarius. Axons with alpha-MSH-Li were also seen diffusely in various cortical areas, but more extensively in the limbic cortical regions. The distribution pattern of the cell bodies and fibers containing alpha-MSH-Li bears several similarities to that seen in rats, but differs in that the alpha-MSH-Li was not observed in cell bodies in locations other than the medial basal and lateral hypothalamus.  相似文献   

3.
A possible relation between activity of the main CRH-producing centers of hypothalamus and depressive-like behavior of animals was studied. We used genetically selected strains--KHA (Koltushi High Avoidance) and KLA (Koltushi Low Avoidance) rats, demonstrating active and passive strategy of adaptive behavior in novelty situaltions, respectively. Rats were exposed to inescapable stress to develop a "learned helplessness". We observed considerable differences between two strains of animals in CRH-expression in parvo-, magno-cellular parts of the paraventricular nucleus and in the supraoptic nucleus in the course of behavioral depression development. Significant differences between control groups were seen only in paraventricular nucleus. On the 1st post-stress day in hypothalamus of KLA rats, we detected decreased CRH immune reactivity that remained unchanged up to the 10th day. In KHA rats, there were no notable changes of CRH expression in all studied nuclei. These findings, including previous results on different dynamics of behavioral changes and different hypothalamo-pituitary-adrenocortical system activity during development of depression in KLA and KHA rats, indicate that "learned helplessness" in these two groups of animals provides the model analogues of different types of depression. Besides, these findings indicate different implication of hypothalamus CRH-system in the behavioral depression development in rats with divergent strategy of adaptive behavior.  相似文献   

4.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

5.
In Syrian hamsters (Mesocricetus auratus), oxytocin (OXT) activity within the medial preoptic-anterior hypothalamus (MPOA-AH) and the ventromedial hypothalamus (VMH) plays an important role in the expression of sexual receptivity. Immunocytochemical analysis with OXT-specific antibodies was used to identify the distribution of OXT-containing cell bodies and fibers in female hamster brain and to determine the possible sources of OXT important for sexual receptivity. Oxytocin-immunoreactive cell bodies and fibers were found in several regions of the preoptic area, including the medial preoptic area, the medial preoptic nucleus, and the bed nucleus of the stria terminalis. Large numbers of cell bodies and fibers were localized within the paraventricular and supraoptic nuclei, and in anterior hypothalamus. OXT-immunoreactive fibers were observed in the VMH and the ventral tegmental area. The anatomical data from the present study support the hypothesis that OXT activity in the MPOA-AH and the VMH plays an important role in the regulation of sexual receptivity in hamsters.  相似文献   

6.
Norepinephrinergic function in the medial hypothalamus is important for the regulation of feeding behavior in chicks as well as in rats. This study was conducted to clarify the variation of extracellular norepinephrine (NE) in the medial hypothalamus, including the paraventricular nucleus (PVN) and the ventromedial hypothalamic nucleus (VMN), during feeding behavior of layer-type chicks. To measure extracellular NE and 4-hydroxy-3-methoxyphenylglycol (MHPG), a major metabolite of NE, we used microdialysis and high-pressure liquid chromatography (HPLC) with electrochemical detection. After the collection of baseline samples, food-deprived animals were allowed access to the food for 3 h. Extracellular NE significantly increased during the first hour of access to food, and then returned to baseline levels. MHPG also increased during the feeding, but its increase continued throughout the remainder of the experiment. This study suggests that the variation of NE in the medial hypothalamus may be involved in the control of feeding in layer-type chicks.  相似文献   

7.
电刺激兔肾脏传入神经对血压,心率及加压素释放的影响   总被引:1,自引:0,他引:1  
吕敏  魏顺光 《生理学报》1995,47(5):471-477
本工作以兔为实验对象,观察电刺激肾脏传入神经(ARN)对血压、心率、颈交感神经放电、以及加压素(AVP)合成和释放的影响,并对ARN进入中枢的通路作了观察。结果显示,电刺激ARN可以引起血压下降、心率减慢、颈交感神经放电抑制等反应,ARN的兴奋还可使下丘脑的视上核、室旁核中的AVP含量增加,垂体中AVP含量下降,血浆AVP水平升高。硝普钠的降压实验和静脉注射AVP受体阻断剂AVPa的实验均证实了A  相似文献   

8.
The distribution of growth hormone releasing factor (GHRF) immunoreactive structures in the rat hypothalmus was studied after colchicine treatment with PAP immunocytochemistry in vibratome sections using an antiserum directed to rat hypothalamic GHRF. The majority of the GHRF-immunoreactive cell bodies were found in the arcuate nucleus, the medial perifornical region, and the ventral premammillary nuclei of the hypothalamus. Scattered cells were seen in the lateral basal hypothalamus, the medial and lateral portions of the ventromedial nucleus, and the dorsomedial and paraventricular nuclei. Immunoreactive fibers were observed in all the regions mentioned above. GHRF terminals were located in the central region of the median eminence. In addition, GHRF-immunoreactive neuronal processes were seen in the ventral region of the dorsomedial nucleus, the medial preoptic and suprachiasmatic regions, dorsal portion of the suprachiasmatic nucleus, bed nucleus of the stria terminals and the hypothalamic portion of the stria terminals. The localization of GHRF-immunoreactive terminals in the median eminence reinforces the view that GHRF plays a physiological role in the regulation of pituitary function. In addition, the localization of GHRF-immunoreactive structures in areas not usually considered to project to the median eminence suggest that GHRF may act as a neuromodulator or neurotransmitter.  相似文献   

9.
Quantitative receptor autoradiography using Bolton-Hunter iodinated substance P (SP) was used to localize specific sites in the rat hypothalamus. The amount of SP and neurokinin A (NkA) in extracts from discrete areas of the hypothalamus was measured using specific radioimmunoassays. A high density of SP binding sites was observed in the perimeter of the magnocellular paraventricular and supraoptic nuclei, while the magnocellular nuclei themselves possessed a low receptor density. In control animals, the number of SP binding sites was also low in the arcuate nucleus and the median eminence. Substance P and NkA peptide concentrations were highest in the paraventricular nucleus (PVN), decreasing in the following order: arcuate nucleus (Arc) greater than median eminence (ME) greater than supraoptic nucleus (SON) greater than subfornical organ (SFO). In animals given 340 mmol/l NaCl instead of tap water to drink for 12 days, significant increases in the number of SP binding sites occurred in the medial parvocellular subdivision of the PVN, periamygdaloid cortex, medial preoptic nucleus, Arc, and ME, but other hypothalamic areas were unaffected. In saline-treated animals, significant increases in SP and NkA peptide concentrations were observed in the ME, while in the SFO only the concentration of NkA increased significantly. In the SON, substance P and neurokinin A levels were doubled, whereas in the PVN and Arc no changes in peptide levels were observed. Chronic osmotic stimulation is associated with lowered circulating levels of adrenocorticotropin releasing hormone (ACTH), and the present data further substantiate the hypothesis that hypothalamic tachykinin-containing neuronal terminals are centrally involved in the inhibition of anterior pituitary ACTH release observed during chronic osmotic stimulation.  相似文献   

10.
In neurophysiological and histochemical experiments on rats, amygdalo-fugal modulation of cells within NO-producing areas of the hypothalamus was studied. Electrical stimulation of the medial area of the central nucleus caused obvious excitatory neuronal reactions within the medial part of the paraventricular nucleus and rostral portion of the lateral hypothalamic area. The observed amygdala-induced neuronal responses were enhanced after i.v. N-nitro-1-arginine methyl ester (L-NAME, 10 mg/kg). The nistochemical study revealed that the central nucleus stimulation caused an increase in number and optical density of the NADPH-d-positive cells within the parvicellular zone of the paraventricular nucleus and in the medial part of the lateral hypothalamic area. The NO-producing cells within the ventrolateral part of the lateral hypothalamic area were inhibited. The described phenomenon may underlie the amygdalo-fugae modulation of autonomic outflow.  相似文献   

11.
The distribution of neuropeptide Y-immunoreactive (NPY-IR) perikarya, fibers, and terminals was investigated in the brain of two species of hibernatory ground squirrels, Spermophilus tridecemlineatus and S. richardsonii, by means of immunohistochemistry. In the telencephalic and diencephalic structures studied, distinct patterns of NPY-IR were observed which were essentially identical in male and female animals of both species. No differences in amount or distribution of NPY-IR structures were observed between animals which had been in induced hibernation for several months before sacrifice in March/April and those sacrificed one week after their capture in May. In some brain structures (e.g., the hypothalamic arcuate nucleus), IR cell bodies were observed only after pretreatment with colchicine. NPY-IR perikarya and fibers were found in the cerebral cortex, caudate nucleus-putamen, and dorsal part of the lateral septal nucleus. Dense fiber plexuses were seen in the lateral and medial parts of the bed nucleus of the stria terminalis. The numbers of IR perikarya observed in the medial part of the nucleus increased following intraventricular colchicine injections. The accumbens nucleus exhibited few IR cells and many fibers. Claustrum and endopiriform nuclei showed a considerable number of stained cells and fibers that increased in number and staining intensity in colchicine-treated ground squirrels. The induseum griseum showed a small band of IR cell bodies and varicose fibers. Bipolar of multipolar IR cells and varicose fibers were found in the basal nucleus of the amygdala. Dense fiber plexuses as well as IR terminals were seen in the median, medial, and lateral preoptic areas of the hypothalamus. Terminals and relatively few fibers were located in the periventricular, paraventricular, and supraoptic nuclei. The anterior, lateral, dorsomedial, and ventromedial hypothalamic nuclei contained relatively large numbers of terminals and fibers. In the suprachiasmatic nuclei, dense terminals were distributed mainly in the ventromedial subdivision. In the median eminence, immunoreactive terminals were concentrated in the external layer, with fibers predominant in the internal layer. NPY-IR perikarya were observed only in the arcuate nucleus of the hypothalamus and only following colchicine treatment. In the epithalamus (superficial part of the pineal gland and habenular nuclei), varicose fibers appeared mainly in perivascular locations (pineal) or as a dense plexus (habenular nuclei). These results from ground squirrels are discussed in comparison to those obtained in other species and with regard to considerations of the physiological role of NPY.  相似文献   

12.
Birth is characterized by a surge in sympathetic outflow, heart rate (HR), mean arterial blood pressure (MABP) and circulating catecholamines. The paraventricular nucleus (PVN) of the hypothalamus is an important central regulatory site of sympathetic activity, but its role in the regulation of sympathoexcitation at birth is unknown. To test the hypothesis that the PVN regulates sympathetic activity at birth, experiments were performed in chronically instrumented near-term (137- to 142-day gestation, term 145 days) sheep before and after delivery by cesarean section. Stereotaxic guided electrolytic lesioning of the PVN (n = 6) or sham lesioning (n = 6) was performed 48 h before study. At 30 min after birth, renal sympathetic nerve activity (RSNA) increased 128 +/- 26% above fetal values in the sham-lesioned animals (P < 0.05). In contrast, at a similar time point, RSNA decreased to 52 +/- 12% of the fetal value in the PVN-lesioned animals. Lesioning of the PVN did not affect the usual postnatal increases in MABP and epinephrine levels although HR failed to rise above fetal values. ANG II but not arginine vasopressin or norepinephrine levels increased in PVN-lesioned animals after birth, whereas all three hormones increased (P < 0.05) in sham-lesioned animals. Fetal and newborn HR baroreflex responses were similar in both groups. However, the usual postnatal attenuation of baroreflex-mediated inhibition of RSNA was blunted in the PVN-lesioned group. The results of this study demonstrate that ablation of the PVN abolishes sympathoexcitation with birth at near-term gestation. The PVN may play a critical role in physiological adaptation at birth.  相似文献   

13.
D T Piekut  S A Joseph 《Peptides》1985,6(5):873-882
The distribution of corticotropin-releasing factor (CRF), vasopressin (VP) and oxytocin (OXY) containing neurons within the magnocellular and parvocellular divisions in the paraventricular nucleus (PVN) of rat hypothalamus is described in brains from normal untreated, colchicine treated and adrenalectomized animals. Double immunostained preparations using glucose oxidase-antiglucose oxidase (GAG) complex combined with PAP complex to visualize two antigens with contrasting colors in the same tissue sections were employed. Separate and distinct populations of cells containing the immunoreactive (ir) elements were seen. Immunostained CRF neurons present in the ventral medial portion of the posterior magnocellular division were juxtaposed to oxytocin-ir perikarya in colchicine treated and adrenalectomized animals. CRF-ir cells were for the most part concentrated in the medial parvocellular component of PVN. An intimate anatomical proximity between CRF-ir and VP-ir perikarya was evident in this medial parvocellular division in brains of adrenalectomized animals; this area is normally VP-ir poor except in the adrenalectomized rats. This extension of VP-ir cells into this CRF rich region and the very close approximation between the two cell bodies suggests potential cell to cell communication following perturbation of the brain-pituitary-adrenal axis. No evidence for the co-existence of two peptidergic systems in the same neuron was apparent in the present study.  相似文献   

14.
The anatomical distribution of neurons containing galanin has been studied in the central nervous system of the chicken by means of immunocytochemistry using antisera against rat galanin. Major populations of immunostained perikarya were detected in several brain areas. The majority of galanin-immunoreactive cell bodies was present in the hypothalamus and in the caudal brainstem. Extensive groups of labeled perikarya were found in the paraventricular, periventricular, dorsomedial and tuberal hypothalamic nuclei, and in the nucleus of the solitary tract in the medulla oblongata. In the telencephalon, immunoreactive perikarya were observed in the preoptic area, in the lateral septal nucleus and in the hippocampus. The mesencephalon contained only a few galanin-positive perikarya located in the interpeduncular nucleus. Immunoreactive nerve fibers of varying density were detected in all subdivisions of the brain. Dense accumulations of galanin-positive fibers were seen in the preoptic area, periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the central gray of the brainstem, and the dorsomedial caudal medulla. The distributional pattern of galanin-immunoreactive neurons suggests a possible involvement of a galanin-like peptide in several neuroregulatory mechanisms.  相似文献   

15.
郑坚  潘敬运 《生理学报》1991,43(4):330-337
The purpose of this study is to investigate the role of paraventricular nucleus of the hypothalamus (PVN) and alpha 1 adrenergic receptor of PVN in the pressor responses to stimulation of renal afferent nerve in alpha 1-chloralose-anesthetized cats with carotid sinoaortic denervation and vagotomy. The pressor response to stimulation of renal afferent nerve consisted of a primary and a second components. The primary component response was completely blocked while the second component was not blocked by autonomic blocking agents (hexomethonium and atropine). Bilateral lesions of PVN greatly attenuated the pressor response before and after autonomic blockade. Intracerebroventricular and PVN injection alpha 1, adrenergic antagonist (prazosin) significantly decreased in the pressor response to stimulation of renal afferent nerve. These results indicate that paraventricular nucleus of the hypothalamus and alpha 1 adrenergic receptors in central nervous system, especially in PVN, play an important role in the pressor responses to stimulation of renal afferent nerve.  相似文献   

16.
Summary The distribution of acetylcholinesterase (AChE) in the hypothalamus of the female guinea pig has been examined histochemically.Activity was found in neurones of the supraoptic, paraventricular and infundibular nuclei; in the lateral hypothalamic area, in cells dorsomedial to the fornix at the level of the paraventricular nucleus and in a large group of cells surrounding the fornix at the level of the in-fundibular nucleus. A small well-stained group of cells, not identified in histological preparations, was present ventral to the paraventricular nucleus. The neuropil stained at the lateral border of the paraventricular nucleus and in the medial mammillary, suprachiasmatic and dorsomedial nuclei. The walls of some blood vessels stained; activity was particularly strong in vessels in the preoptic area and at the base of the median eminence. Nerve fibres on blood vessels ventral to the hypothalamus also stained.The degree of enzyme activity in the cell groups was compared in immature, pregnant, lactating, ovariectomized and hysterectomized animals. The greatest variation occurred in the infundibular nucleus. Hypophysectomy markedly reduced staining in the supraoptic nucleus. The possibility that AChE may be involved in the elaboration or transport of releasing factors is discussed.The authors are indebted to Dr. J. S. Perry for doing the surgery involved in this work. They are also grateful to him and to Dr. R. B. Heap for helpful discussions and to Miss M. Hamon for excellent technical assistance.  相似文献   

17.
目的:我们最近的实验发现大鼠侧脑室注射氨甲酰胆碱引起显著的促钠排泄作用,本工作同时还观察了下丘脑内不同脑区的儿茶酚胺能神经元活性的变化。方法和结果:氨甲酰胆碱注射后40min,下丘脑室旁核的腹侧和内侧小细胞部、内侧视前区、尾核、苍白球的酪氨酸羟化酶免疫反应(thyrosinehydroxylaseimmunoreactivity,THIR)阳性细胞数减少,免疫反应染色强度降低;下丘脑室旁核的后部,下丘脑前区的后部、下丘脑室周核、弓状核、下丘脑外侧区的THIR阳性细胞数增多,免疫反应染色强度增强。结论:侧脑室注射氨甲酰胆碱对脑内不同脑区的内源性儿茶酚胺能神经元分别有兴奋或抑制作用,其与促钠排泄的关系将在本文中讨论  相似文献   

18.
Using immunohistochemical techniques, we demonstrated oxytocin (OT) and vasopressin (AVP) neurons in the cat hypothalamus. The OT immunoreactive neurons were found mainly in the paraventricular nucleus, supraoptic nucleus and dorsal accessory group located lateral to the fornix. In addition to these hypothalamic structures, the AVP immunoreactive neurons were observed in the suprachiasmatic nucleus, ventral accessory group located in the retrochiasmatic area and lateral accessory group, dorsal to the supraoptic nucleus caudally, and ventral to the medial part of the internal capsule rostrally. We further demonstrated a different localization of the OT and AVP immunoreactive neurons in the paraventricular and supraoptic nuclei.  相似文献   

19.
A study was made of the formation of catecholaminergic system in the medial basal hypothalamus of Wistar rat fetuses using histofluorescent method modified by de la Torre. In the periventricular region of 16-day fetuses the cells with green fluorescence characteristic for catecholamines were found. In 18-day fetuses catecholaminergic cells were found in paraventricular, arcuate and dorsomedial hypothalamic nuclei. In all the nuclei studied the number of catecholaminergic fibers and terminals of various size is greatly increased. The data obtained suggest that medial basal hypothalamus of 18-day fetuses has a complex catecholaminergic system.  相似文献   

20.
The hypothalamo-pituitary-adrenocortical (HPA) axis is recruitedby the organism in response to real or perceived threats tohomeostasis ("stress"). Regulation of this neuroendocrine systemis accomplished by modulation of secretory tone in hypophysiotrophicneurons of the medial parvocellular paraventricular nucleus.Excitation of these neurons is mediated by several sources:direct (and perhaps indirect) inputs from brainstem neuronsregulating autonomic tone/arousal; circumventricular organsmonitoring blood and CSF constituents; and local-circuit neuronswithin the hypothalamus and basal forebrain. The latter arepredominantly GABAergic; notably, these areas are targets fordescending GABAergic input from limbic structures, and may promotePVN secretory activity via disinhibition. Neurosecretory paraventricularnucleus neurons are inhibited by glucocorticoid–dependentand –independent mechanisms. Glucocorticoid negative feedbackappears to act both locally and in extrahypothalamic loci, andis likely integrated in a region- and stressor-specific manner.Inhibitory input to the medial parvocellular paraventricularnucleus emanate predominantly from the bed nucleus of the striaterminalis and hypothalamus, and are likely regulated by neuroendocrinehomeostats. Descending limbic inhibitory information appearsto act through excitation of these inhibitory inputs. Overall,integration of stressful information is a multi-faceted processintegrating prior experience and real or anticipated homeostaticdisruption into appropriate activation and deactivation of thehypothalamo-pituitary-adrenocortical axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号