首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The protein tau is found in an aggregated filamentous state in the intraneuronal paired helical filament deposits characteristic of Alzheimer's disease and other related dementias and mutations in tau protein and mRNA cause frontotemproal dementia. Tau isoforms include a microtubule‐binding domain containing either three or four imperfect tandem microtubule binding repeats that also form the core of tau filaments and contain hexapaptide motifs that are critical for tau aggregation. The tau microtubule‐binding domain can also engage in direct interactions with detergents, fatty acids, or membranes, which can greatly facilitate tau aggregation and may also mediate some tau functions. Here, we show that the alternatively spliced second microtubule‐binding repeat exhibits significantly different structural characteristics compared with the other three repeats in the context of the intact repeat domain. Most notably, the PHF6* hexapeptide motif located at the N‐terminus of repeat 2 has a lower propensity to form strand‐like structure than the corresponding PHF6 motif in repeat 3, and unlike PHF6 converts to partially helical structure in the micelle‐bound state. Interestingly, the behavior of the Module‐B motif, located at the beginning of repeat 4, resembles that of PHF6* rather than PHF6. Our observations, combined with previous results showing that PHF6* and Module‐B are both less effective than PHF6 in nucleating tau aggregation, suggest a hierarchy in the efficacy of these motifs in nucleating tau aggregation that originates in differences in their intrinsic propensities for extended strand‐like structure and the resistance of these propensities to changes in tau's environment.  相似文献   

2.
The microtubule-associated protein tau is a natively unfolded protein in solution, yet it is able to polymerize into the ordered paired helical filaments (PHF) of Alzheimer's disease. In the splice isoforms lacking exon 10, this process is facilitated by the formation of beta-structure around the hexapeptide motif PHF6 ((306)VQIVYK(311)) encoded by exon 11. We have investigated the structural requirements for PHF polymerization in the context of adult tau isoforms containing four repeats (including exon 10). In addition to the PHF6 motif there exists a related PHF6* motif ((275)VQIINK(280)) in the repeat encoded by the alternatively spliced exon 10. We show that this PHF6* motif also promotes aggregation by the formation of beta-structure and that there is a cross-talk between the two hexapeptide motifs during PHF aggregation. We also show that two of the tau mutations found in hereditary frontotemporal dementias, DeltaK280 and P301L, have a much stronger tendency for PHF aggregation which correlates with their high propensity for beta-structure around the hexapeptide motifs.  相似文献   

3.
The neuronal Tau protein is involved in stabilizing microtubules but is also the major component of the paired helical filaments (PHFs), the intracellular aggregates that characterize Alzheimer's disease (AD) in neurons. In vitro, Tau can be induced to form AD-like aggregates by adding polyanions such as heparin. While previous studies have identified the microtubule binding repeats (MTBRs) as the major player in Tau aggregation, the fact that the full-length protein does not aggregate by itself indicates the presence of inhibitory factors. Charge and conformational changes are of uttermost importance near the second (R2) and third (R3) MTBR that are thought to be involved directly in the nucleation of the aggregation. Recently, the positively charged regions flanking the MTBR were proposed to inhibit PHF assembly, where hyperphosphorylation neutralizes these basic inhibitory domains, enabling Tau-Tau interactions. Here we present results of an NMR study on the interaction between intact full-length Tau and small heparin fragments of well-defined size, under conditions where no aggregation occurs. Our findings reveal (i) micromolar affinity of heparin to residues in R2 and R3, (ii) two zones of strong interaction within the positively charged inhibitory regions flanking the MTBR, and (iii) another interaction site upstream of the two inserts encoded by exons 2 and 3. Three-dimensional heteronuclear NMR experiments demonstrate that the interaction with heparin induces beta-strand structure in several regions of Tau that might act as nucleation sites for its aggregation but indicate as well alpha-helical structure in regions outside the core of PHF. In the PHF, the residues outside of the core maintain sufficient mobility for NMR detection and recover their unbound chemical shift values after an overnight incubation at 37 degrees C with heparin. Heparin thus becomes integrated into the rigid core region of the PHF, probably providing the charge compensation for the lysine-rich stretches that form upon the in-register, parallel stacking of the repeat regions.  相似文献   

4.
The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.  相似文献   

5.

Background

Alzheimer's disease (AD) is the most common neurodegenerative disorder which is characterized by the deposits of intra-cellular tau protein and extra-cellular amyloid-β (Aβ) peptides in the human brain. Understanding the mechanism of protein aggregation and finding compounds that are capable of inhibiting its aggregation is considered to be highly important for disease therapy.

Methods

We used an in vitro High-Throughput Screening for the identification of potent inhibitors of tau aggregation using a proxy model; a highly aggregation-prone hexapeptide fragment 306VQIVYK311 derived from tau. Using ThS fluorescence assay we screened a library of 2401 FDA approved, bio-active and natural compounds in attempt to find molecules which can efficiently modulate tau aggregation.

Results

Among the screened compounds, palmatine chloride (PC) alkaloid was able to dramatically reduce the aggregation propensity of PHF6 at sub-molar concentrations. PC was also able to disassemble preformed aggregates of PHF6 and reduce the amyloid content in a dose-dependent manner. Insights obtained from MD simulation showed that PC interacted with the key residues of PHF6 responsible for β-sheet formation, which could likely be the mechanism of inhibition and disassembly. Furthermore, PC could effectively inhibit the aggregation of full-length tau and disassemble preformed aggregates.

Conclusions

We found that PC possesses “dual functionality” towards PHF6 and full-length tau, i.e. inhibit their aggregation and disassemble pre-formed fibrils.

General significance

The “dual functionality” of PC is valuable as a disease modifying strategy for AD, and other tauopathies, by inhibiting their progress and reducing the effect of fibrils already present in the brain.  相似文献   

6.
The abnormal aggregation of the microtubule-associated protein Tau into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer disease (AD). Tau in solution behaves as a natively unfolded or intrinsically disordered protein while its aggregation is based on the partial structural transition from random coil to beta-structure. Our aim is to understand in more detail the unfolded nature of Tau, to investigate the aggregation of Tau under different conditions and the molecular interactions of Tau in filaments. We show that soluble Tau remains natively unfolded even when its net charge is minimized, in contrast to other unfolded proteins. The CD signature of the random-coil character of Tau shows no major change over wide variations in charge (pH), ionic strength, solvent polarity, and denaturation. Thus there is no indication of a hydrophobicity-driven collapse, neither in the microtubule-binding repeat domain constructs nor in full-length Tau. This argues that the lack of hydrophobic residues but not the net charge accounts for unfolded nature of soluble Tau. The aggregation of the Tau repeat domain (that forms the core of PHFs) in the presence of nucleating polyanionic cofactors (heparin) is efficient in a range of buffers and pH values between approximately 5 and 10 but breaks down beyond that range, presumably because the pattern of charged interactions disappears. Similarly, elevated ionic strength attenuates aggregation, and the temperature dependence is bell-shaped with an optimum around 50 degrees C. Reporter dyes ThS and ANS record the aggregation process but sense different states (cross-beta-structure vs hydrophobic pockets) with different kinetics. Preformed PHFs are surprisingly labile and can be disrupted by denaturants at rather low concentration ( approximately 1.0 M GdnHCl), much less than required to denature globular proteins. Partial disaggregation of Tau filaments at extreme pH values monitored by CD and EM indicate the importance of salt bridges in filament formation. In contrast, Tau filaments are remarkably resistant to high temperature and high ionic strength. Overall, the stability of PHFs appears to depend mainly on directed salt bridges with contributions from hydrophobic interactions as well, consistent with a recent structural model of the PHF core derived from solid state NMR (Andronesi, O. C., von Bergen, M., Biernat, J., Seidel, K., Griesinger, C., Mandelkow, E., and Baldus, M. (2008) Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy.  相似文献   

7.
Because tau aggregation likely plays a role in a number of neurodegenerative diseases, understanding the processes that affect tau aggregation is of considerable importance. One factor that has been shown to influence the aggregation propensity is the oxidation state of the protein itself. Tau protein, which contains two naturally occurring cysteine residues, can form both intermolecular disulfide bonds and intramolecular disulfide bonds. Several studies suggest that intermolecular disulfide bonds can promote tau aggregation in vitro. By contrast, although there are data to suggest that intramolecular disulfide bond formation retards tau aggregation in vitro, the precise mechanism underlying this observation remains unclear. While it has been hypothesized that a single intramolecular disulfide bond in tau leads to compact conformations that cannot form extended structure consistent with tau fibrils, there are few data to support this conjecture. In the present study we generate oxidized forms of the truncation mutant, K18, which contains all four microtubule binding repeats, and isolate the monomeric fraction, which corresponds to K18 monomers that have a single intramolecular disulfide bond. We study the aggregation propensity of the oxidized monomeric fraction and relate these data to an atomistic model of the K18 unfolded ensemble. Our results argue that the main effect of intramolecular disulfide bond formation is to preferentially stabilize conformers within the unfolded ensemble that place the aggregation-prone tau subsequences, PHF6* and PHF6, in conformations that are inconsistent with the formation of cross-β-structure. These data further our understanding of the precise structural features that retard tau aggregation.  相似文献   

8.
蛋白磷酸酯酶对Alzheimer神经原纤维缠结的松解作用   总被引:3,自引:0,他引:3  
神经原纤维缠结是Alzheimer患者的特征性脑病理损伤,其形成机制至今不明.根据神经原纤维缠结的基本组分是异常磷酸化tau蛋白的聚集形式双螺旋丝(pairedhelicalfilaments,PHF)的研究结果,推测蛋白磷酸酯酶与蛋白激酶的失衡可能与PHF的形成有关.将蛋白磷酸酯酶PP-2A和PP-2B与PHF一起在37℃保温30min可使PHF缠结结构松解,成为单个PHF原纤维,延长去磷酸化反应时间至3h可使PHF结构进一步松解,释放一些游离PHF原纤维片段.放免印迹定量分析结果表明:PP-2A处理的PHF样品比对照者释放游离tau蛋白的量增加25%.此外,PP-2A和PP-2B去磷酸化的PHF对脑中钙激活的中性蛋白水解酶的抗性降低.这些研究资料从结构上显示了Alzheimer病脑病理损伤的可逆性,为Alzheimer病治疗的可能性提供了实验依据  相似文献   

9.
The aggregation of Tau into paired helical filaments is involved in the pathogenesis of several neurodegenerative diseases, including Alzheimer disease. The aggregation reaction is characterized by conformational conversion of the repeat domain, which partially adopts a cross-β-structure in the resulting amyloid-like fibrils. Here, we report the selection and characterization of an engineered binding protein, β-wrapin TP4, targeting the Tau repeat domain. TP4 was obtained by phage display using the four-repeat Tau construct K18ΔK280 as a target. TP4 binds K18ΔK280 as well as the longest isoform of human Tau, hTau40, with nanomolar affinity. NMR spectroscopy identified two alternative TP4-binding sites in the four-repeat domain, with each including two hexapeptide motifs with high β-sheet propensity. Both binding sites contain the aggregation-determining PHF6 hexapeptide within repeat 3. In addition, one binding site includes the PHF6* hexapeptide within repeat 2, whereas the other includes the corresponding hexapeptide Tau(337–342) within repeat 4, denoted PHF6**. Comparison of TP4-binding with Tau aggregation reveals that the same regions of Tau are involved in both processes. TP4 inhibits Tau aggregation at substoichiometric concentration, demonstrating that it interferes with aggregation nucleation. This study provides residue-level insight into the interaction of Tau with an aggregation inhibitor and highlights the structural flexibility of Tau.  相似文献   

10.
Paired helical filaments (PHF) is an aberrant structure present in the brain of Alzheimer's disease patients which has been correlated with their degree of dementia. In order to determine the structure of PHF, several studies have been performed using atomic force microscopy (AFM). However, those studies have the limitation that they have not been done in solution and the sample could be far from the real physiological conditions. In this work we present an AFM analysis of PHF in liquid environment and we compare that analysis with that performed in dry conditions. PHF imaging in liquid was only possible by using jumping mode AFM as the imaging technique. Jumping mode AFM images of PHF in solution show first, a notable increase in the absolute values of the height of the filament, and second, a smaller ratio between the height measured at the upper and at the lower part of the PHF. Direct comparison of the experimental data with structural models has been performed. From this we conclude that the PHF structure is compatible with two coupled ribbons with an overall height of 20 nm and a width of 10 nm.  相似文献   

11.
Tau is an intrinsically disordered microtubule-associated protein that is implicated in several neurodegenerative disorders called tauopathies. In these diseases, Tau is found in the form of intracellular inclusions that consist of aggregated paired helical filaments (PHFs) in neurons. Given the importance of this irreversible PHF formation in neurodegenerative disease, Tau aggregation has been extensively studied. Several different factors, such as mutations or post translational modifications, have been shown to influence the formation of late-stage non-reversible Tau aggregates. It was recently shown that zinc ions accelerated heparin-induced oligomerization of Tau constructs. Indeed, in vitro studies of PHFs have usually been performed in the presence of additional co-factors, such as heparin, in order to accelerate their formation. Using turbidimetry, we investigated the impact of zinc ions on Tau in the absence of heparin and found that zinc is able to induce a temperature-dependent reversible oligomerization of Tau. The obtained oligomers were not amyloid-like and dissociated instantly following zinc chelation or a temperature decrease. Finally, a combination of isothermal titration calorimetry and dynamic light scattering experiments showed zinc binding to a high-affinity binding site and three low-affinity sites on Tau, accompanied by a change in Tau folding. Altogether, our findings stress the importance of zinc in Tau oligomerization. This newly identified Zn-induced oligomerization mechanism may be a part of a pathway different of and concurrent to Tau aggregation cascade leading to PHF formation.  相似文献   

12.
Derivatives of 2,4-thiazolidinedione have been reported to inhibit the aggregation of tau protein, in which compound 30 (C30) not only inhibit 80% of paired helical filament 6 (PHF6) aggregation, but also inhibit K18 and full-length tau aggregation. However, its inhibitory mechanism is unclear. In this study, to investigate the effect of C30 on tau protein, all-atom molecular dynamics simulation was performed on the PHF6 oligomer with and without C30. The results show that C30 can cause significant conformational changes in the PHF6 oligomer. The nematic order parameter P2 and secondary structure analyses show that C30 destroys the ordered structure of PHF6 oligomer, reduces the content of β-sheet structure, and transforms β-sheet into random coil structure. By clustering analysis, it was found that C30 has four possible binding sites on the PFH6 oligomer, and the binding ability order is S1 > S2 > S4 > S3. Following a more in-depth analyses of each site, it was determined that the S1 site is the most possible binding site mainly located between layers of L1 and L3. The hydrophobic interaction is the driving force for the binding of C30 to PHF6 oligomer. In addition, L1P4_Y310, L1P5_Y310, L3P1_V309, and L3P2_V309 are key residues for C30 binding to oligomer. Moreover, π-π interaction formed by L1P4_Y310 and L1P5_Y310 with C30 and the hydrogen bonding interaction formed by C30 with L3P3_Q307 are beneficial to the combination of C30 and oligomer. The fully understanding disrupt the mechanism of 2,4-thiazolidinedione derivative on PHF6 oligomer and the identification of binding sites will help design and discover new AD inhibitors in the future.  相似文献   

13.
14.
Parathyroid hypertensive factor (PHF) has been implicated in regulation of vascular smooth muscle tone and pathogenesis of several forms of hypertension. Earlier studies have suggested that PHF enhances the actions of other vasoconstrictors, while it has no in vitro vasoconstrictor property of its own. PHF was previously found to enhance the L-type Ca channel currents and intracellular Ca responses to depolarization in vascular smooth muscle cells (VSMCs). The present study examined whether PHF might act on K channels in the plasma membrane of VSMCs. Primary cultured VSMCs from rat tail artery were used. The whole-cell version of the patch-clamp technique was used under conditions in which there was no contribution of Ca-activated K channels to the outward current. Both purified and semipurified PHF inhibited the delayed rectifier type potassium current in a dose-dependent manner. The effect was time dependent and was first significantly different from the control current after 30 min. The inhibition of the delayed rectifier K channel was associated with a time-dependent decrease in the resting membrane potential. Therefore, PHF may alter VSMC cellular Ca responses by reducing the membrane potential to a level closer to the activation potential of Ca channels.  相似文献   

15.
Pathological changes in the microtubule associated protein tau, leading to tau-containing filamentous lesions, are a major hallmark common to many types of human neurodegenerative diseases, including Alzheimer's disease (AD). No structural data are available which could rationalize the extensive conformational changes that occur when tau protein is converted to Alzheimer's paired helical filaments (PHF). The C-terminal portion of tau plays a crucial role in the aggregation of tau into PHF and in the truncation process that generates cytotoxic segments of tau. Therefore, we investigated the solution structure of the hydrophobic C-terminal segment 423-441 of tau protein (PQLATLADEVSASLAKQGL) by 1H 2D NMR spectroscopy. The peptide displays the typical NMR evidence consistent with a alpha-helix geometry with a stabilizing C-capping motif. The reported data represent the first piece of structural information on an important portion of the molecule and can have implications towards the understanding of its pathophysiology.  相似文献   

16.
Tau protein was scanned for highly amyloidogenic sequences in amphiphilic motifs (X)(n)Z, Z(X)(n)Z (n ≥ 2), or (XZ)(n) (n ≥ 2), where X is a hydrophobic residue and Z is a charged or polar residue. N-Acetyl peptides homologous to these sequences were used to study aggregation. Transmission electron microscopy (TEM) showed seven peptides, in addition to well-known primary nucleating sequences Ac(275)VQIINK (AcPHF6*) and Ac(306)VQIVYK (AcPHF6), formed fibers, tubes, ribbons, or rolled sheets. Of the peptides shown by TEM to form amyloid, Ac(10)VME, AcPHF6*, Ac(375)KLTFR, and Ac(393)VYK were found to enhance the fraction of β-structure of AcPHF6 formed at equilibrium, and Ac(375)KLTFR was found to inhibit AcPHF6 and AcPHF6* aggregation kinetics in a dose-dependent manner, consistent with its participation in a hybrid steric zipper model. Single site mutants were generated which transformed predicted amyloidogenic sequences in tau into non-amyloidogenic ones. A M11K mutant had fewer filaments and showed a decrease in aggregation kinetics and an increased lag time compared to wild-type tau, while a F378K mutant showed significantly more filaments. Our results infer that sequences throughout tau, in addition to PHF6 and PHF6*, can seed amyloid formation or affect aggregation kinetics or thermodynamics.  相似文献   

17.
18.
Recent toxicological studies on carbon nanomaterials, including fullerenes, have led to concerns about their safety. Functionalized fullerenes, such as polyhydroxy fullerenes (PHF, fullerols, or fullerenols), have attracted particular attention due to their water solubility and toxicity. Here, we report surprisingly beneficial and/or specific effects of PHF on model organisms representing four kingdoms, including the green algae Pseudokirchneriella subcapitata, the plant Arabidopsis thaliana, the fungus Aspergillus niger, and the invertebrate Ceriodaphnia dubia. The results showed that PHF had no acute or chronic negative effects on the freshwater organisms. Conversely, PHF could surprisingly increase the algal culture density over controls at higher concentrations (i.e., 72% increase by 1 and 5 mg/L of PHF) and extend the lifespan and stimulate the reproduction of Daphnia (e.g. about 38% by 20 mg/L of PHF). We also show that at certain PHF concentrations fungal growth can be enhanced and Arabidopsis thaliana seedlings exhibit longer hypocotyls, while other complex physiological processes remain unaffected. These findings may open new research fields in the potential applications of PHF, e.g., in biofuel production and aquaculture. These results will form the basis of further research into the mechanisms of growth stimulation and life extension by PHF.  相似文献   

19.
Are Alzheimer neurofibrillary tangles insoluble polymers?   总被引:3,自引:0,他引:3  
The two methods currently available for the bulk isolation of Alzheimer tangles of paired helical filaments (PHF) are based on a brief treatment of a neuronal-enriched preparation with sodium dodecyl sulfate (SDS) (Method I) and on heating of whole brain homogenate with SDS and beta-mercaptoethanol (Method II). PHF were isolated from the same Alzheimer brain by these two methods, subjected to SDS-polyacrylamide gel electrophoresis and immuno-labelled with monoclonal antibodies to PHF after transferring from the gel to nitrocellulose paper. The PHF isolated by method I revealed the presence of 45 kilodalton to 62 kilodalton PHF polypeptides, whereas the PHF isolated by method II were excluded from the gel. However, PHF isolated by both methods were digested with proteinase-K, though the degradation of PHF of method I was considerably more rapid than that of PHF isolated by method II. These findings should establish that the solubility of PHF might depend on the methods employed for their isolation and that they might not be insoluble polymers of covalently crosslinked polypeptides which accumulate irreversibly in the brain of patients with Alzheimer disease.  相似文献   

20.
Immunocytochemical and peptide sequencing studies indicate that the regulatory protein ubiquitin (Ub) is incorporated into the paired helical filaments (PHF) of Alzheimer disease. In this study, we showed that some antibodies raised to PHF recognize epitopes of Ub. Analysis of the Ub sequences recognized by the antibodies raised to PHF, along with the known specificity of several monoclonal antibodies raised to artificial Ub conjugates, indicates the immunochemical representation of Ub residues 34-76 in PHF. The Ub epitopes recognized by antibodies raised to PHF are distinct from those recognized by antibodies raised to artificial Ub conjugates in two respects. First, antibodies that are raised to PHF and that recognize Ub react with PHF equally, whether denatured or not, whereas those raised to artificial Ub conjugates show greater reaction after denaturation. Second, mapping of the epitopes recognized by two monoclonal antibodies to PHF onto Ub indicates a distinction in the Ub residues recognized, compared with monoclonal antibodies raised to artificial Ub conjugates. The proximity of their epitopes to the site of conjugation, as well as their affinity for PHF polypeptides, suggests that the PHF antibodies that recognize Ub may be directed specifically to Ub epitopes defined by the protein conjugated to Ub.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号