首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenium (Se) removal from polluted waters and soils is especially complicated and highly expensive. Phytoremediation has been suggested as a low-cost, efficient technology for Se removal. Plants remove Se by uptake and accumulation in their tissues, and by volatilization into the atmosphere as a harmless gas. Unraveling the mechanisms of Se uptake and volatilization in plants may lead to ways of increasing the efficiency of the phytoremediation process. The objectives of this study were: (i) to determine the effect of different Se forms in the root substrate on the capacity of some plant species to take up and volatilize Se; (ii) to determine the chemical species of Se in different plant parts after the plants were supplied with various forms of Se; and (iii) to determine the influence of increasing sulfate levels on plant uptake, translocation, and volatilization of different Se species. Plants of broccoli (Brassica oleracea var. botrytis L.), Indian mustard (Brassica juncea L.), sugarbeet (Beta vulgaris L.) and rice (Oryza sativa L.) were grown hydroponically in growth chambers and treated for 1 week with 20 μM Se as Na2SeO4, Na2SeO3 or L-selenomethionine (SeMeth) and increasing sulfate levels. The data show that shoots of SeO4-supplied plants accumulated the greatest amount of Se, followed by those supplied with SeMeth then SeO3. In roots, the highest Se concentrations were attained when SeMeth was supplied, followed by SeO3, then SeO4. The rate of Se volatilization by plants followed the same pattern as that of Se accumulation in roots, but the differences were greater. Speciation analysis (X-ray absorption spectroscopy) showed that most of the Se taken up by SeO4-supplied plants remained unchanged, whereas plants supplied with SeO3 or SeMeth contained only SeMeth-like species. Increasing the sulfate level from 0.25 mM to 10 mM inhibited SeO3 and SeMeth uptake by 33% and 15–25%, respectively, as compared to an inhibition of 90% of SeO4 uptake. Similar results were observed with regard to sulfate effects on volatilization. We conclude that reduction from SeO4 to SeO3 appears to be a rate-limiting step in the production of volatile Se compounds by plants. Inhibitory effects of sulfate on the uptake and volatilization of Se may be reduced substantially if Se is supplied as, or converted to, SeO3 and/or SeMeth rather than SeO4. Received: 27 February 1998 / Accepted: 30 March 1998  相似文献   

2.
3.
The expression and activity of cellular glutathione peroxidase (GPx1) are regulated by selenium (Se). Generally speaking, organic forms of Se have less toxicity and greater bioavailability compared with inorganic forms. In this study, the effects of different forms and concentrations of Se on the regulation of mRNA level and activity of GPx1 in bovine hepatocytes were evaluated, and the optimal doses of different forms of Se that supported the full expression of GPx1 were determined. Primary cultured bovine hepatocyte monolayers derived from neonatal male Holstein calves (aged 1–2 days) were incubated for 24 h with 0 (control), 0.5, 1, 1.5, 2, 3, 4 or 5 μmol/L of Se from dl-selenomethionine (Se-Met), sodium selenite (Na2SeO3) or Kappa-selenocarrageenan (Se-Car). Compared with controls, a significantly lower level of release of lactic dehydrogenase (LDH) was observed at 0.5–5 μmol/L of Se-Met, 0.5–1 μmol/L of Na2SeO3 and 0.5 μmol/L of Se-Car, but significantly higher LDH release was observed at 2–5 μmol/L of Na2SeO3 and 3–5 μmol/L of Se-Car, and the response occurred in a dose-dependent manner. The intracellular content of reduced glutathione in all hepatocytes treated with Se was significantly lower than that of controls. Significant increases in GPx1 mRNA were obtained in all hepatocytes treated with Se, with maximal effects at 3 μmol/L of Se-Met, 1.5 μmol/L of Na2SeO3 and 2 μmol/L of Se-Car, respectively. Furthermore, 3 μmol/L of Se from Se-Met resulted in peak levels of GPx1 mRNA. After reaching a maximal level, higher Se supplementation led to a reduction of GPx1 mRNA. The activity of GPx1 showed similar patterns but of lower magnitude. We conclude that (a) the regulation of mRNA level and activity of GPx1 in primary cultured bovine hepatocytes by different forms of Se varies and (b) the optimal doses of Se to support the full expression of GPx1 in bovine hepatocytes when supplied as Se-Met, Na2SeO3 and Se-Car are 3, 1.5 and 2 μmol/L, respectively.  相似文献   

4.
An experiment is conducted to investigate the effects of selenium (Se) source and level on growth performance, tissue Se concentrations, antioxidation, and immune functions of heat-stressed broilers from 22 to 42?days of age. A total of 210 22-day-old Arbor Acres commercial male chicks were assigned by body weight to one of seven treatments with six replicates of five birds each in a completely randomized design involving a 3?×?2 factorial arrangement plus one Se-unsupplemented basal diet control (containing 0.027?mg of Se/kg). The three Se sources were sodium selenite (Na2SeO3), Se yeast, and AMMS Se (Se protein), and the two supplemental Se levels were 0.15 or 0.30?mg Se/kg. All birds were reared under heat-stressed condition (33?±?1?°C during 0900?C1700?hours and 27?±?1?°C during 1900?C0700?hours with a relative humidity of 60?C80?%). The results showed that heat-stressed chicks fed Se-supplemented diets had higher (P?<?0.10) average daily feed intake, Se concentrations in liver and breast muscle, liver glutathione peroxidase (GSH-Px) activity, serum antibody titers against H5N1(Re-4 strain), H5N1(Re-5 strain) and lower (P?<?0.01) mortality compared with the control. Chicks fed the diets supplemented with 0.30?mg/kg of Se had higher (P?<?0.05) Se concentrations in liver and breast muscle, liver GSH-Px activity, and serum antibody titer against H5N1 (Re-4 strain) than those fed the diets supplemented with 0.15?mg/kg of Se. Broilers fed the diets supplemented with Se yeast had higher (P?<?0.001) Se concentrations in liver and breast muscle than those fed the diets supplemented with Na2SeO3 or AMMS Se. However, broilers fed the diets supplemented with AMMS Se had higher (P?<?0.05) serum antibody titers against H5N1 (Re-4 strain) and H5N1 (Re-5 strain) than those fed the diets supplemented with Na2SeO3. These results indicated that Se yeast was more effective than Na2SeO3 or AMMS Se in increasing tissue Se retention; however, AMMS Se was more effective than Na2SeO3 or Se yeast in improving immune functions of heat-stressed broilers.  相似文献   

5.
Illuminated intact pea chloroplasts in the presence of O-acetylserine (OAS) catalysed incorporation of SeO32- and SO32- into selenocysteine and cysteine at rates of ca 0.36 and 6 μmol/mg Chl per hr respectively. Sonicated chloroplasts catalysed SeO32- and SO32- incorporation at ca 3.9 and 32% respectively of the rates of intact chloroplasts. Addition of GSH and NADPH increased the rates to ca 91 and 98% of the intact rates, but SeO32- incorporation under these conditions was essentially light-independent. In the absence of OAS, intact chloroplasts catalysed reduction of SO32- to S2- at rates of ca 5.8 μmol/mg Chl per hr. In the presence of OAS, S2- did not accumulate. Glutathione (GSH) reductase was purified from peas and was inhibited by ZnCl2. This enzyme, in the presence of purified clover cysteine synthase, OAS, GSH and NADPH, catalysed incorporation of SeO32- into selenocysteine (but not SO32- into cysteine). The reaction was inhibited by ZnCl2. Incorporation of SeO32- into selenocysteine by illuminated intact chloroplasts and sonicated chloroplasts (with NADPH and GSH) was also inhibited by ZnCl2 but not by KCN. Conversely, incorporation of SO32- into cysteine was inhibited by KCN but not by ZnCl2. It was concluded that SeO32- and SO32- are reduced in chloroplasts by independent light-requiring mechanisms. It is proposed that SeO32- is reduced by light-coupled GSH reductase and that the Se2- produced is incorporated into selenocysteine by cysteine synthase.  相似文献   

6.
ProjectBoth septic shock and sodium selenite (Na2SeO3) lead to multiple organ failure through oxidation. Na2SeO3 has direct oxidant effects above the nutritional level and indirect anti-oxidant properties.In a lipopolysaccharide (LPS) rat model we assessed margin of safety, toxicity and beneficial effect of pentahydrate Na2SeO3 (5H2O·Na2SeO3) at oxidant doses.ProcedureIn a three-step study on 204 rats we: (i) observed toxic effects of Na2SeO3 injected intraperitoneously (IP) and determined its Minimum Dose Without Toxic effect (MDWT) 0.25–0.35 mg/kg selenium (Se) content; (ii) injected IP LPS at 70% lethal dose (LD) followed, or not, one hour later by IP Na2SeO3 at MDWT and (iii) by doses > MDWT. At 48 h, in survivors, we measured plasma creatinine, lactate, aspartate and alanine aminotransferase (AST, ALT), nitric oxide (NO) and Se concentrations.Results(i) Na2SeO3 alone did not increase NO and lactate. Encephalopathy appeared at 1 mg Se/kg. Creatinine increased at 1–1.75 mg Se/kg, AST, ALT at 3–4.5 mg Se/kg, and the minimum LD was 3 mg Se/kg. (ii) Mortality after LPS was 37/50 (74%, [62–86%]) vs. 20/30 (67%, [50–84%]) when followed by Na2SeO3 at MDWT (p = 0.483) with a decreased in NO (−31%, p = 0.038) a trend for lactate decrease (−19%, p = 0.068) and an increased Se in plasma of survivals. (iii) All rats died at doses ≥0.6 mg/kg (p < 0.001).ConclusionMechanisms of LPS and Na2SeO3 toxicity differ (i.e. NO, lactate). In septic shock 5H2O·Na2SeO3 toxicity increased, margin of safety decrease, but IP administration of dose considered as oxidant of 5H2O·Na2SeO3 showed beneficial effects.  相似文献   

7.
A number of selenium compounds have been found to inhibit tumorigenesis in a variety of animal and cell models. In order to explore the molecular mechanism involved in the anticarcinogenesis activity of selenium, we examined the effects of sodium selenite on cell viabilty, generation of reactive oxygen species (ROS), and mitochondrial transmembrane potential (Δω m ) in human colonic carcinoma cells SW480. The result from MTT test showed that sodium selenite reduced cell viability. Morophologic and flow cytometric results indicated that Na2SeO3 induced the apoptosis of SW480 cells. Na2SeO3 increased the generation of intracellular ROS, whereas BAPTA-AM, rotenone, and NaCN completely inhibited the increase of ROS induced by Na2SeO3. Na2SeO3 also caused the disruption of Δω m . The intracellular ROS increase and apoptosis induced by Na2SeO3 were significantly decreased by superoxide dismutase (SOD), catalase. These data suggest that the ROS mediate apoptosis induced by Na2SeO3 and mitochondria may be a major source of Na2SeO3-induced ROS.  相似文献   

8.
To improve the nutritional value of chickpea food, selenium (Se)-rich chickpea sprouts were produced by germination of chickpea seeds for 6 days at 28 centigrade in the presence of various concentrations of Na2SeO3 in germination solution. High concentrations of selenite were found to inhibit the growth of chickpea sprout and the biosynthesis of isoflavones formononetin and biochanin A. However, chickpea sprouts could tolerate up to ∼50 mg/L of Na2SeO3, under which condition the product chickpea sprouts contained a high Se content (2.14 μg/g dry weight) and a moderate high content of isoflavones (601.56 μg biochanin A/g dry weight and 578.11 μg formononetin/g dry weight). Se was incorporated in chickpea sprout in the form of selenomethionine. Thus, Se-enriched chickpea sprouts may serve as a convenient dietary source of Se and of isoflavones, including formononetin and biochanin A.  相似文献   

9.
10.
The formation of the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase in Clostridium thermoaceticum is stimulated by the presence of molybdate and selenite in the growth medium. The highest formate dehydrogenase activity was obtained with 2.5 × 10−4 M Na2MoO4 and 5 × 10−5 Na2SeO3. Tungstate but not vanadate could replace molybdate and stimulate the formation of formate dehydrogenase. Tungstate stimulated activity more than molybdate, and in combination with molybdate the stimulation of formation of formate dehydrogenase was additive. Formate dehydrogenase was isolated from cells grown in the presence of Na275SeO2, and a correlation was observed between bound 75Se and enzyme activity.  相似文献   

11.
Mucosal uptake of75Se-labeled selenate and selenite across the brush border was investigated in sheep and rat small intestine, using 3-min mucosal exposures. Uptake of selenate and selenite occurred faster in rat than in sheep small intestine. With the exception of sheep duodenum, mucosal selenate uptake was Na+-dependent in sheep and rat small intestine. Mucosal uptake of selenite across the brush border was Na+-dependent only in sheep midjejunum, whereas it was Na+-independent in sheep duodenum and ileum and the rat whole small intestine. Various anions inhibited selenate transport in the presence of Na+ in sheep midjejunum in the order S2O2 2- = CrO4 2- > MoO4 2- and in rat ileum in the order CrO4 2- = S2O3 2- > SC4 2- > MoO4 2-. Thiosulfate also inhibited mucosal selenite uptake in the presence of Na+ in sheep midjejunum. Preincubation of rat ileum with glutathione (GSH) enhanced mucosal selenite uptake, whereas selenate uptake remained unaffected. These results indicate that selenate transport across the brush border membrane is energized in part by the Na+-gradient. Moreover, the Na+-dependent transport mechanism for the Se salts apparently has an affinity for other anions (S2O3 2-, SO4 2-, CrO4 2-, MOo4 2-). The findings further indicate that intracellular GSH plays a role in the absorption of selenite, probably by an increase of intracellular selenite metabolism. The Na+-independent mucosal uptake of selenate and selenite probably represents diffusion.  相似文献   

12.
A comparison of two methods of selenium application, banding and foliar spray, of sodium selenite (Na2SeO3) on total glycoalkaloid (TGA) and nitrate nitrogen (NO3-N) was studied during each of two consecutive years. The levels of application used were 0.0, 1.6 (0.75), 3.36 (1.5), and 5.6 (2.5) kg/ha (ppm soil). Both TGA and NO3-N were significantly reduced by application of 1.5 and 2.5 ppm of sodium selenite. Tuber selenium levels were significantly increased at all levels of application, using either banding or foliar spray, but were well below the toxic range for human consumption. Banding resulted in greater uptake of Se, and greater decreases in TGA and NO3-N as compared to foliar spray.  相似文献   

13.
Selenium (Se) is a chemo-preventive agent that has been shown to have a protective role against cancer. The inorganic form of Se, sodium selenite (Na2SeO3), has frequently been included in various chemo-prevention studies, and this commercially available form of Se is used as dietary supplement by the public. Because high doses of this Se compound can be toxic, the underlying molecular mechanisms of sodium selenite toxicity need to be elucidated. Recently, we have reported that sodium selenite is acting as an oxidizing agent in the budding yeast Saccharomyces cerevisiae, producing oxidative damage to DNA. This pro-oxidative activity of sodium selenite likely accounted for the observed DNA double-strand breaks (DSB) and yeast cell death. In this study we determine the genetic factors that are responsible for repair of sodium selenite-induced DSB. We report that the Rad52 protein is indispensable for repairing sodium selenite-induced DSB, suggesting a fundamental role of homologous recombination (HR) in this repair process. These results provide the first evidence that HR may have a fundamental role in the repair of sodium selenite-induced toxic DNA lesions.  相似文献   

14.
Bacillus licheniformis, B. subtilis, B. cereus, Bacillus pumilus and Exiguobacterium sp., which were resistant up to 20 mg Na2SeO3/ml in nutrient broth and 40 mg/ml on nutrient agar plates, were isolated from contaminated soil and water. They grew from 25 to 45°C and pH 5 to 9. They had multiple metal and antibiotic resistances. All strains reduced selenite (SeIV) to elemental selenium (Se0) aerobically with a maximum reduction of 97% by B. pumilus after 144 h with Na2SeO3 at 500 μg/ml.  相似文献   

15.
Two strains of E. coli K-12 which grew in 0.01 m Na2SeO4 were compared to Wild E. coli K-12 which does not grow in 0.01 m Na2SeO4. Although the growth and SO42? uptake in the absence of SeO42? were similar in the three strains, the growth and uptake of SO42? in the presence of SeO42? were severely restricted in the Wild while not being affected at all in the tolerant strains. On the other hand, the uptake of SeO42? took place to a much greater extent in the Wild than in the tolerant strains in either the absence or presence of SO42?. The tolerant strains seemed to be able to control their SeO42? contents. Efflux of both SO42? and SOe42? took place in the tolerant strains but not in the Wild indicating that both SO42? and SeO42? are quickly tied up into a nondiffusible form in the Wild but not in the other strains. Proteins of the Wild strain were found to be about 2.5× as high in Se as were the proteins of the tolerant strains. Studies with initial rates of SO42? and SeO42? uptake into sulfur-starved E. coli indicated that the initial uptake of SO42? seemed to be an active transport process in all three strains while initial SeO42? uptake seemed to be a diffusion process. The transport of SO42? was strongly inhibited by SeO42? in the Wild but only weakly in the tolerant strains. Sulfur amino acids and peptides were able to overcome SeO42? toxicity in the Wild.  相似文献   

16.
Nitrogen nutrition of rice plants under salinity   总被引:1,自引:0,他引:1  
Two rice (Oryza sativa L.) cultivars, Koshihikari and Pokkali, were grown in solution culture at three concentrations of NaCl or Na2SO4 [0 (S0), 50 (S1), and 100 (S2) mmol dm–3] and three N contents [0.7 (N1), 7 (N2) and 14 (N3) mmol dm–3]. Salinity significantly decreased dry matter of both cultivars. Pokkali had better growth than Koshihikari under both saline and non-saline conditions. Applications of N enhanced development of shoot dry mass under S0 and S1 treatments up to N2. Under S2, N application had no effect on shoot dry mass of both cultivars. Root dry mass of both cultivars decreased with increasing N application at S1 and S2. Shoot and root NO3-N content in both rice cultivars increased with increasing N concentration in the nutrient solutions. The absorption of NO3-N was less in Koshihikari than Pokkali plants, and also was much less in Cl than SO4 2– salinity suggesting the antagonism between Cl and NO3 . In addition a significant negative correlation between concentrations of NO3-N and Cl in the shoots or roots was observed in both cultivars  相似文献   

17.
Wild brown mustard (Brassica juncea) was shown in greenhouse water cultures to determine the effects of selenium (Se), salinity (salt), and boron (B) in the root media on total Se concentrations in plant tissues. The experimental design was a three-way incomplete factorial with treatments consisting of four Se concentrations (0, 2, 6, and 15 mg Se L–1 as Na2SeO4), four B concentrations (0.1, 2, 6, and 15 mg B L–1 as boric acid) and four salt treatments (0.5, 3, 10, and 15 dS m–1 as NaCl and CaCl in approximately 5:1 ratio by weight). After 40 d of growing in the respective water culture treatment, plants were harvested, separated into shoots and roots and analyzed for total tissue Se and B, and shoot sulfate (SO4) concentrations.The treatments significantly influenced yield and uptake of Se, B, and SO4 by wild mustard. Shoot and root dry weight yields were reduced by 30% and 21%, respectively. Selenium and SO4 tissue concentrations were positively related to solution Se, while the Se model was independent of solution B and salinity. Similarly, B concentrations were positively related to solution B, while the B model was independent of solution Se and salinity. Therefore mustard is reasonably salt tolerant and accumulates Se and B when grown in waters laden with Se and B.  相似文献   

18.
Growth and biochemical alterations in coffee due to selenite toxicity   总被引:1,自引:0,他引:1  
Mazzafera  Paulo 《Plant and Soil》1998,201(2):189-196
Two experiments were conducted to investigate selenite toxicity in coffee (Coffea arabica cv. Catuaí). In the first aqueous selenite solution (10 µM Na2SeO3) was used to infiltrate leaves of an adult coffee plant. The infiltrated leaves and fruits adjacent to them showed enhanced contents of caffeine and soluble sugars. Amino acid contents were not affected, whereas pigments (chlorophylls, carotenoids and xanthophylls) exhibited a significant decrease. In the second experiment, coffee seedlings were irrigated with aqueous selenite solutions (10,100 and 1000 µM Na2SeO3) and the first and third pairs of leaves were analyzed. Control plants did not receive selenium. The plants were not different in height, but at the highest selenium concentration showed lower dry matter accumulation in roots and leaves, lower leaf area and thicker leaves. Increases in caffeine and soluble sugars were observed in the first pair of leaves at the highest selenium concentration, although selenium content itself increased steadily with increasing solution concentration. Phenols increased in both leaf pairs and pigments decreased in the third pair. Nitrate reductase activity, measured in the second leaf pair, was much lower at all selenium levels. The profile of free amino acid was altered in leaves of plants treated with selenium.  相似文献   

19.
Despite the well-established toxicity of cadmium (Cd) to animals and the ameliorative effects of selenium (Se), some specific mechanisms in the chicken ovary are not yet clarified. To explore the mechanism by which the toxicity effect of Cd is induced and explore the effect of supranutritional Se on Cd toxicity in female bird reproduction, forty-eight 50-day-old Isa Brown female chickens were divided randomly into four groups. Group I (control group) was fed the basic diet containing 0.2 mg/kg Se. Group II (Se-treated group) was fed the basic diet supplemented with sodium selenite (Na2SeO3), and the total Se content was 2 mg/kg. Group III (Se + Cd-treated group) was fed the basic diet supplemented with Na2SeO3; the total Se content was 2 mg/kg, and it was supplemented with 150 mg/kg cadmium chloride (CdCl2). Group IV (Cd-treated group) was with the basic diet supplemented with 150 mg/kg CdCl2. The Cd, estradiol (E2), and progestogen (P4) contents changed after subchronic Cd exposure in chicken ovarian tissue; subsequently, oxidative stress occurred and activated the endoplasmic reticulum (ER) pathway to induce apoptosis. Further, Se decreased the accumulation of Cd in ovarian tissue, increased the E2 and P4 contents, alleviated oxidative stress, and reduced apoptosis via the ER stress pathway. The present results demonstrated that Cd could induce apoptosis via the ER stress pathway in chicken ovarian tissue and that Se had a significant antagonistic effect. These results are potentially valuable for finding a strategy to prevent Cd poisoning.  相似文献   

20.
硒(Se)是生物体必不可少的微量元素,硒缺乏会导致人产生克山病、大骨节病等疾病,缺硒也会给畜牧业带来巨大损失。目前的补硒产品存在硒含量和生物利用度低、安全性差等问题,而通过小球藻培养可获得生物利用度高、安全性好的有机硒,因此是非常有应用前景的补硒产品。首先,为了获得对硒的耐受性和富集能力更强的藻种,研究通过定向驯化的方式逐步提高培养基中Na2SeO3浓度来驯化蛋白核小球藻,并对驯化时间和驯化过程中Na2SeO3的浓度梯度进行了优化。结果表明,驯化后的藻种对硒的耐受性和富集能力明显提高。在5L发酵罐中,驯化后的藻株可以耐受40mg/L的Na2SeO3,胞内有机硒合成速率提高了175.6%。之后,在5L发酵罐中进一步优化了硒的补加方式,在异养培养过程中分批补料添加40mg/LNa2SeO3时,最终获得的蛋白核小球藻细胞干重达106.4g/L,有机硒含量为1227mg/kg,有机硒合成速率为1.36mg/(L·h)。研究结果与已有蛋白核小球藻异养富硒文献报道的最高细胞密度75g/L和最高有机硒含量560mg/kg相比分别提高了41.9%和119.1%。上述结果表明,通过定向驯化的方法,可大大提高蛋白核小球藻对硒的耐受性和富集能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号