首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 1,4-diazepines with two annelated heterocycles [brotizolam (WE 941), ciclotizolam (WE 973) and WE 1008] on gamma-aminobutyric acid (GABA)-stimulated chloride influx into rat brain membrane vesicles were examined. Brotizolam enhanced GABA (30 microM)-stimulated 36Cl- influx (146.1% of control), while ciclotizolam and WE 1008 showed only a small enhancement (119.3% and 119.1%, respectively) of GABA-stimulated 36Cl- uptake. Brotizolam resulted in a left shift of the GABA dose response curve at lower concentrations of GABA (10 microM), while at higher concentrations of GABA (1 mM), brotizolam caused a reduction of the maximal response. The enhancement of GABA-stimulated 36Cl- uptake by brotizolam (0.1 microM) was antagonized by Ro 15-1788. At higher concentration of GABA (300 microM), brotizolam inhibited GABA-stimulated 36Cl- uptake in a dose dependent manner and Ro15-1788 failed to antagonize this effect. These results suggest that 1) brotizolam produces an enhancement of GABA (30 microM)-stimulated chloride influx through the benzodiazepine receptor. 2) brotizolam inhibition of GABA (300 microM)-stimulated chloride influx involves an additional mechanism, and 3) the sedative-hypnotic action of brotizolam may be related to its high efficacy at the benzodiazepine/GABA-gated chloride channel.  相似文献   

2.
3.
Ethanol and GABA (gamma-aminobutyric acid) and their interaction on 36Cl-influx were analyzed in cultured embryonic palate and limb mesenchymal cells in order to determine whether ethanol exerts its teratogenic action through a GABA receptor involved in embryogenesis. Cl- transport in secondary cultures of C57BL/6 palate mesenchymal cells was shown to consist of three systems including the electroneutral Cl-/HCO3- exchange (50%) and Na+/K+/Cl- cotransport (30%) pathways and the voltage-dependent Cl- channel (20%). Treatment with DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid) or SITS (4-acetamido-4'-isocyano-stilbene-2,2' disulfonic acid) in SWV palate cells inhibited the Cl-/HCO3- exchange pathway, while treatment with DIDS and bumetanide inhibited both the exchange and cation cotransport pathways, the residual Cl- influx inferred to be the electrogenic pathway. Inhibition of Cl- transport by anthracene-9-carboxylic acid confirmed the presence of the electrogenic Cl- pathway. It was observed that the rate of Cl- transport was significantly greater in palate cells of C57BL/6 mice than those of SWV mice. Also the rate of Cl- transport was significantly greater in secondary cultures of palate cells from C57BL/6 mice than from primary cultures of limb cells from the same strain. No evidence could be obtained that ethanol (10 to 100 mM) or GABA (3 X 10(-5) M) or their combination stimulated total Cl- influx in either C57BL/6 or SWV palate mesenchymal cells, putative voltage-dependent Cl- influx in C57BL/6 palate cells, or total Cl- influx in primary cultures of C57BL/6 limb mesenchymal cells.  相似文献   

4.
GABA(A) receptor function was studied in cerebral cortical vesicles prepared from rats after intracerebroventricular microinjections of antisense oligodeoxynucleotides (aODNs) for alpha1, gamma2, beta1, beta2 subunits. GABA(A) receptor alpha1 subunit aODNs decreased alpha1 subunit mRNA by 59+/-10%. Specific [3H]GABA binding was decreased by alpha1 or beta2 subunit aODNs (to 63+/-3% and 64+/-9%, respectively) but not changed by gamma2 subunit aODNs (94+/-5%). Specific [3H]flunitrazepam binding was increased by alpha1 or beta2 subunit aODNs (122+/-8% and 126+/-11%, respectively) and decreased by gamma2 subunit aODNs (50+/-13%). The "knockdown" of specific subunits of the GABA(A )receptor significantly influenced GABA-stimulated 36Cl- influx. Injection of alpha1 subunit aODNs decreased basal 36Cl- influx and the GABA Emax; enhanced GABA modulation by diazepam; and decreased antagonism of GABA activity by bicuculline. Injection of gamma2 subunit aODNs increased the GABA Emax; reversed the modulatory efficacy of diazepam from enhancement to inhibition of GABA-stimulation; and reduced the antagonist effect of bicuculline. Injection of beta2 subunit aODNs reduced the effect of diazepam whereas treatment with beta1 subunit aODNs had no effect on the drugs studied. Conclusions from our studies are: (1) alpha1 subunits promote, beta2 subunits maintain, and gamma2 subunits suppress GABA stimulation of 36Cl- influx; (2) alpha1 subunits suppress, whereas beta2, and gamma2 subunits promote allosteric modulation by benzodiazepines; (3) diazepam can act as an agonist or inverse agonist depending on the relative composition of the receptor subunits: and (4) the mixed competitive/non-competitive effects of bicuculline result from activity at alpha1 and gamma2 subunits and the lack of activity at beta1 and beta2 subunits.  相似文献   

5.
Hippocampal noradrenergic and cerebellar glutamatergic granule cell axon terminals possess GABA(A) receptors mediating enhancement of noradrenaline and glutamate release, respectively. The hippocampal receptor is benzodiazepine-sensitive, whereas the cerebellar one is not affected by benzodiazepine agonists, indicating the presence of an alpha6 subunit. We tested here the effects of Zn2+ on these two native GABA(A) receptor subtypes using superfused rat hippocampal and cerebellar synaptosomes. In the cerebellum, zinc ions strongly inhibited (IC50 approximately 1 microM) the potentiation of the K(+)-evoked [3H]D-aspartate release induced by GABA. In contrast, the GABA-evoked release of [3H]noradrenaline from hippocampal synaptosomes was much less sensitive to Zn2+ (IC50 > 30 microM). The effects of Zn2+ were then studied in two rat lines selected for high (ANT) and low (AT) alcohol sensitivity because granule cell GABA(A) receptors in ANT, but not AT, rats respond to benzodiazepine agonists due to a critical mutation in the alpha6 subunit. GABA increased the K(+)-evoked release of [3H]DCNS REGIONS-aspartate from cerebellar synaptosomes of AT and ANT rats, an effect prevented by the GABAA selective antagonist bicuculline. In AT rat cerebellum, the effect of GABA was strongly inhibited by Zn2+ (IC50 < or = 1 microM), whereas in ANT rats, the divalent cation was about 100-fold less potent. Thus, native benzodiazepine-sensitive GABAA receptors appear largely insensitive to functional inhibition by Zn2+ and vice versa. Changes in sensitivity to Zn2+ inhibition consequent to mutations in cerebellar granule cell GABA(A) receptor subunits may lead to changes in glutamate release from parallel fibers onto Purkinje cells and may play important roles in cerebellar dysfunctions.  相似文献   

6.
The influx of 36Cl- into cerebral cortical and cerebellar microsacs from ICR mice and Sprague-Dawley rats was studied in incubations lasting 3 s, 500 ms, or 21 ms. In the 3-s assay, 10-40 mM ethanol did not affect either basal or gamma-aminobutyric acid (GABA)-mediated Cl- flux, at any GABA concentration tested. Only at a concentration of 600 mM did ethanol potentiate Cl- flux in both mouse and rat preparations. Ethanol (20 mM) also did not affect the significant potentiation of GABA-mediated flux produced by 50 microM pentobarbital or 2 microM diazepam in ICR mouse microsacs. In 21- and 500-ms incubations (quench-flow method), 50 microM pentobarbital significantly potentiated GABA-mediated Cl- flux in rat cortical microsacs, but 10-50 mM ethanol did not. These studies suggest that some as yet unrecognized factor is essential for ethanol enhancement of GABA-mediated Cl- flux, as reported by others in brain homogenates and in tissue culture.  相似文献   

7.
The effect of depolarizing concentrations of potassium (56 mM) on the release of [3H]taurine was examined in two types of cultured neurons from mouse brain: cerebral cortex neurons, which are largely GABAergic, and cerebellar neurons, which after treatment with kainate consist almost entirely of glutamatergic granule cells. The release of [3H]taurine was compared to that of gamma-[3H]aminobutyric acid [( 3H]GABA) in cortical neurons and to that of D-[3H]aspartate in granule cells. Cortical neurons responded to potassium stimulation (1 min or continuously) by an immediate increase in [3H]GABA efflux of more than six times over the basal efflux, followed by a sharp decline despite the persistence of the stimulatory agent. The potassium-induced release of [3H]GABA was largely calcium-dependent. The release of [3H]taurine was considerably less in magnitude, only doubling after the stimulus, with a time course delayed in both onset and decline. The release of [3H]taurine was partially calcium-dependent and was also decreased in low-chloride solutions. In cerebellar granule cells, exposure to potassium resulted in a large (sixfold) and prompt release of D-[3H]aspartate, largely calcium-dependent. A totally different pattern was observed for the release of [3H]taurine. A stimulatory effect occurred only when cells were exposed continuously to potassium. Taurine efflux was very delayed, with a broad stimulus plateau reached after 15-20 min of stimulation. Taurine release was unaffected by omission of calcium, but it was abolished in a low-chloride medium. These results suggest that taurine is released from cells handling other neuroactive amino acids as neurotransmitters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effects of the fungal neurotoxin penitrem A on the GABAergic and glutamatergic systems in rat brain were evaluated. Penitrem A inhibited binding of the GABAA-receptor ligand [3H]TBOB to rat forebrain and cerebellar membrane preparations with IC50 (half maximal inhibitory concentration) values of 11 and 9 μM, respectively. Furthermore, penitrem A caused a concentration-dependent increase of [3H]flunitrazepam and [3H]muscimol binding in rat forebrain, but not in cerebellar preparations. The stimulation of [3H]flunitrazepam binding by penitrem A was abolished by the addition of GABA. In cerebellar preparations, a different pharmacological profile was found, with penitrem A allosterically inhibiting [3H]TBOB binding by interacting with a bicuculline-sensitive site. Moreover, penitrem A inhibited the high affinity uptake of GABA and glutamate into cerebellar synaptosomes with IC50 values of 20 and 47 μM, respectively. The toxin showed no effect on NMDA or AMPA glutamate receptor binding. In conclusion, our results suggest that penitrem A exerts region-specific effects in the brain, leading to positive modulation of GABAA-receptor function in forebrain. Conversely, penitrem A may act as a bicuculline-like convulsant in cerebellum.  相似文献   

9.
Micromolar concentrations of piracetam, aniracetam, and oxiracetam enhanced alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated 45Ca2+ influx in primary cultures of cerebellar granule cells. Nootropic drugs increased the efficacy but not the potency of AMPA and their action persisted in the presence of the voltage-sensitive calcium channel blocker nifedipine. Potentiation by oxiracetam was specific for AMPA receptor-mediated signal transduction, as the drug changed neither the stimulation of 45Ca2+ influx by kainate or N-methyl-D-aspartate nor the activation of inositol phospholipid hydrolysis elicited by quisqualate or (+-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid. Piracetam, aniracetam, and oxiracetam increased the maximal density of the specific binding sites for [3H]AMPA in synaptic membranes from rat cerebral cortex. Taken collectively, these results support the view that nootropic drugs act as positive modulators of AMPA-sensitive glutamate receptors in neurons.  相似文献   

10.
A M Allan  R A Harris 《Life sciences》1986,39(21):2005-2015
Effects of ethanol and pentobarbital on the GABA receptorchloride channel complex were evaluated in mice selected for differential sensitivity to the hypnotic effects of ethanol (long sleep and short sleep lines). 36Cl- influx, [35S]tbutylbicyclophosphorothionate (TBPS) and [3H]muscimol binding were measured in a membrane vesicle suspension (microsacs) from cerebellum or forebrain. Muscimol was found to be a more potent stimulator of 36Cl- flux in the LS cerebellum, as compared to the SS cerebellum, but a similar maximal level of uptake was achieved in the two lines. Muscimol displaced [35S]TBPS (a ligand for the convulsant site) from cerebellar microsacs, and LS mice were also more sensitive than SS mice to this action of muscimol. However, the number or affinity of high affinity [3H]muscimol binding sites did not differ between the lines. Physiologically relevant concentrations of ethanol (15-50 mM) potentiated muscimol stimulation of 36Cl- uptake in LS cerebellum but had no effect in SS cerebellum. Ethanol failed to alter stimulated chloride flux hippocampal microsacs from either line. Both the LS and SS lines responded similarly to pentobarbital potentiation of muscimol stimulated chloride uptake regardless of brain region. The demonstrated difference between the LS and SS mice in muscimol stimulated chloride uptake as well as in muscimol displacement of [35S]TBPS binding offers a biochemical explanation for the line differences in behavioral responses to GABAergic agents. Moreover, the findings suggest that genetic differences in ethanol hypnosis are related to differences in the sensitivity of GABA-operated chloride channels to ethanol.  相似文献   

11.
In this study, GABA efflux transport from brain to blood was estimated by using the brain efflux index (BEI) method. [3H]GABA microinjected into parietal cortex area 2 (Par2) of the rat brain was eliminated from the brain with an apparent elimination half-life of 16.9 min. The blood-brain barrier (BBB) efflux clearance of [3H]GABA was at least 0.153 mL/min/g brain, which was calculated from the elimination rate constant (7.14 x 10(-2) x min(-1)) and the distribution volume in the brain (2.14 mL/g brain). Direct comparison of the apparent BBB influx clearance [3H]GABA (9.29 microL/min/g brain) and the apparent efflux clearance (153 microL/min/g brain) indicated that the efflux clearance was at least 16-fold greater than the influx clearance. In order to reduce the effect of metabolism in the neuronal cells following intracerebral microinjection, we determined the apparent efflux of [3H]GABA in the presence of nipecotic acid, a GABA transport inhibitor in parenchymal cells, using the BEI method. Under such conditions, the elimination of [3H]GABA across the BBB showed saturation and inhibition by probenecid in the presence of nipecotic acid. Furthermore, the uptake of [3H]GABA by MBEC4 cells was inhibited by GABA, taurine, beta-alanine and nipecotic acid in a concentration-dependent manner. It is likely that GABA inhibits the first step in the abluminal membrane uptake by brain endothelial cells, and that probenecid selectively inhibits the luminal membrane efflux transport process from the brain capillary endothelial cells based on the in vivo and in vitro evidence. The BBB acts as the efflux pump for GABA to reduce the brain interstitial fluid concentration.  相似文献   

12.
A study was made of the time course and kinetics of [3H]GABA uptake by dispersed cell cultures of postnatal rat cerebellum with and without neuronal cells. The properties of GABA neurons were calculated from the biochemical difference between the two types of cultures. It was found that for any given concentration of [3H]GABA, or any time up to 20 min, GABA neurons in cultures 21 days in vitro had an average velocity of uptake several orders of magnitude greater than that of nonneuronal cells. In addition, the apparent Kmvalues for GABA neurons for high and low affinity uptake were 0.33 X 10(-6) M and 41.8 X 10(-4) M, respectively. For nonneuronal cells, the apparent Km for high affinity uptake was 0.29 X 10(-6) M. The apparent Vmax values for GABA neurons for high and low affinity uptake were 28.7 X 10(-6) mol/g DNA/min and 151.5 mmol/g DNA/min, respectively. For nonneuronal cells, the apparent Vmax for high affinity uptake was 0.06 X 10(-6) mol/g DNA/min. No low affinity uptake system for nonneuronal cells could be detected after correcting the data for binding and diffusion. By substituting the apparent kinetic constants in the Michaelis-Menten equation, it was determined that for GABA concentrations of 5 X 10(-9) M to 1 mM or higher over 99% of the GABA should be accumulated by GABA neurons, given equal access of all cells to the label. In addition, high affinity uptake of [3H]GABA by GABA neurons was completely blocked by treatment with 0.2 mM ouabain, whereas that by noneuronal cells was only slightly decreased. Most (75-85%) of the [3H]GABA (4.4 X 10(-6) M) uptake by both GABA neurons and nonneuronal cells was sodium and temperature dependent.  相似文献   

13.
Slices of rat cerebral cortex, preloaded with [14C]gamma-aminobutyric acid (GABA) and either [3H]5-hydroxytryptamine (5-HT) or [3H]noradrenaline, were superfused with media in which varying concentrations of Cl- had been replaced with other monovalent anions. Rapid reduction of [Cl-], by superfusion with media containing instead the impermeant anions propionate, isethionate, gluconate, or methyl sulphate, caused increases in the efflux of tritiated biogenic amines, but the increase in that of [14C]-GABA was not significant. The increased efflux of [3H]5-HT evoked by superfusion with low Cl- levels when propionate was the replacement anion, was transient and was linearly related to the log[Cl-]-1. It was not affected by removal of Ca2+ or by addition of 10 mM Mg2+ and was delayed but not abolished by tetrodotoxin. The low Cl(-)-evoked efflux of [3H]5-HT was not affected by pretreatment with neuronal reuptake blockers but was inhibited by picrotoxin, strychnine, and 4-acetamido-4-isothiocyanostilbene-2,2-disulphonic acid and was enhanced by glycine. Muscimol and GABA were without effect. These observations are taken to indicate that the efflux of biogenic amines is brought about by terminal depolarisation due to outward movement of Cl- in low chloride-containing media. They are of relevance to other physiological and pharmacological studies in which anion concentrations are manipulated and suggest that the anion-evoked release phenomenon may provide a model for the analysis of Cl(-)-dependent mechanisms in nerve terminals.  相似文献   

14.
Chloride homeostasis in Saccharomyces cerevisiae has been characterized with the goal of identifying new Cl- transport and regulatory pathways. Steady-state cellular Cl- contents ( approximately 0.2 mEq/liter cell water) differ by less than threefold in yeast grown in media containing 0.003-5 mM Cl-. Therefore, yeast have a potent mechanism for maintaining constant cellular Cl- over a wide range of extracellular Cl-. The cell water:medium [Cl-] ratio is >20 in media containing 0.01 mM Cl- and results in part from sequestration of Cl- in organelles, as shown by the effect of deleting genes involved in vacuolar acidification. Organellar sequestration cannot account entirely for the Cl- accumulation, however, because the cell water:medium [Cl-] ratio in low Cl- medium is approximately 10 at extracellular pH 4.0 even in vma1 yeast, which lack the vacuolar H(+)-ATPase. Cellular Cl- accumulation is ATP dependent in both wild type and vma1 strains. The initial (36)Cl- influx is a saturable function of extracellular [(36)Cl-] with K(1/2) of 0.02 mM at pH 4.0 and >0.2 mM at pH 7, indicating the presence of a high affinity Cl- transporter in the plasma membrane. The transporter can exchange (36)Cl- for either Cl- or Br- far more rapidly than SO4=, phosphate, formate, HCO3-, or NO3-. High affinity Cl- influx is not affected by deletion of any of several genes for possible Cl- transporters. The high affinity Cl- transporter is activated over a period of approximately 45 min after shifting cells from high-Cl- to low-Cl- media. Deletion of ORF YHL008c (formate-nitrite transporter family) strongly reduces the rate of activation of the flux. Therefore, Yhl008cp may be part of a Cl(-)-sensing mechanism that activates the high affinity transporter in a low Cl- medium. This is the first example of a biological system that can regulate cellular Cl- at concentrations far below 1 mM.  相似文献   

15.
In the present study, we characterized the distribution and the pharmacological properties of the different components of the GABAA receptor complex in the brain of the eel (Anguilla anguilla). Benzodiazepine recognition sites labeled "in vitro" with [3H]flunitrazepam ([3H]FNT) were present in highest concentration in the optic lobe and in lowest concentration in the medulla oblongata and spinal cord. A similar distribution was observed in the density of gamma-[3H]aminobutyric acid ([3H]GABA) binding sites. GABA increased the binding of [3H]FNT in a concentration-dependent manner, with a maximal enhancement of 45% above the control value, and, vice versa, diazepam stimulated the binding of [3H]GABA to eel brain membrane preparations. The density of benzodiazepine and GABA recognition sites and their reciprocal regulation were similar to those observed in the rat brain. In contrast, the binding of the specific ligand for the Cl- ionophore, t-[35S]butylbicyclophosphorothionate ([35S]TBPS), to eel brain membranes was lower than that found in the rat brain. In addition, [35S]TBPS binding in eel brain was less sensitive to the inhibitory effects of GABA and muscimol and much more sensitive to the stimulatory effect of bicuculline, when compared with [35S]TBPS binding in the rat brain. Moreover, the uptake of 36Cl- into eel brain membrane vesicles was only marginally stimulated by concentrations of GABA or muscimol that significantly enhanced the 36Cl- uptake into rat brain membrane vesicles. Finally, intravenous administration of the beta-carboline inverse agonist 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methyl ester (20 mg/kg) and of the chloride channel blocker pentylenetetrazole (80 mg/kg) produced convulsions in eels that were antagonized by diazepam at doses five to 20 times higher than those required to produce similar effects in rats. The results may indicate a different functional activity of the GABA-coupled chloride ionophore in the fish brain as compared with the mammalian brain.  相似文献   

16.
The interaction of avermectin B1a (AVM) with the gamma-aminobutyric acid (GABA) receptor of rat brain was studied using radioactive ligand binding and tracer ion flux assays. Avermectin potentiated the binding of [3H]flunitrazepam and inhibited the binding of both [3H]muscimol and [35S]t-butylbicyclophosphorothionate to the GABAA receptor. Inhibition of muscimol binding by AVM suggested competitive displacement. Two kinds of 36chloride (Cl) flux were studied. The 36Cl efflux from preloaded microsacs was potentiated by AVM and was highly inhibited by the Cl-channel blocker 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). However, it was not potentiated by GABA nor was it sensitive to the convulsants picrotoxin or bicuculline. On the other hand, 36Cl-influx measurement in a different microsac preparation of rat brain was very sensitive to GABA and other GABA-ergic drugs. Avermectin induced 36Cl influx into these microsacs in a dose-dependent manner, but to only 35% of the maximal influx induced by GABA. The AVM-induced 36Cl influx was totally blocked by bicuculline. It is suggested that AVM opens the GABAA-receptor Cl channel by binding to the GABA recognition site and acting as a partial receptor agonist, and also opens a voltage-dependent Cl channel which is totally insensitive to GABA but is very sensitive to DIDS.  相似文献   

17.
The binding characteristics of [3H] alpha-dihydropicrotoxinin to the picrotoxinin binding site were investigated in membrane preparations of adult rat forebrain and living cultures of rat cerebral cortex. The binding of [3H]alpha-dihydropicrotoxinin to rat forebrain was decreased by lysing, treating with Triton X-100, and heating. Coincubation with gamma-aminobutyric acid (GABA), benzodiazepines, or alterations in the Na+ or Cl- composition of the media had no effect on the binding to the rat brain preparation. However, in the living neurons in tissue culture both GABA and diazepam significantly decreased the binding of [3H]alpha-dihydropicrotoxinin. The dose-response relationships for GABA antagonism of [3H]alpha-dihydropicrotoxinin binding and for picrotoxinin antagonism of the GABA enhancement of [3H]flunitrazepam binding in cultured cortical neurons were also investigated. The Hill coefficients for these actions were reciprocal, suggesting that they result from complementary interactions between the binding sites for GABA and picrotoxinin. These data support the association of the picrotoxinin binding site with the postsynaptic GABA receptor complex.  相似文献   

18.
Equilibrium binding interactions at the gamma-aminobutyric acid (GABA) and benzodiazepine recognition sites on the GABAA receptor-Cl- ionophore complex were studied using a vesicular synaptoneurosome (microsacs) preparation of rat brain in a physiological HEPES buffer similar to that applied successfully in recent GABAergic 36Cl- flux measurements. NO 328, a GABA reuptake inhibitor, was included in the binding assays to prevent the uptake of [3H]muscimol. Under these conditions, the equilibrium dissociation constant (KD) values for [3H]muscimol and [3H]diazepam bindings are 1.9 microM and 40 nM, respectively. Binding affinities for these and other GABA and benzodiazepine agonists and antagonists correlate well with the known physiological doses required to elicit functional activity. This new in vitro binding protocol coupled with 36Cl- flux studies should prove to be of value in reassessing the pharmacology of the GABAA receptor complex in a more physiological environment.  相似文献   

19.
20.
Xiao GN  Guan YY  He H 《Life sciences》2002,70(19):2233-2241
The effects of Cl- channel blockers on endothelin-1 (ET-1)-induced proliferation of rat aortic vascular smooth muscle cells (VSMC) were examined. We found ET-1 concentration-dependently increased cell count and [3H]-thymidine incorporation into VSMC, with EC50 values of 24.8 and 11.4 nM, respectively. Both nifedipine and SK&F96365 inhibited 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC with the maximal inhibitory concentrations of 1 and 10 microM, respectively. DIDS inhibited 10 nM ET-1-induced increase in cell count and [3H]-thymidine incorporation into VSMC in a concentration-dependent manner, whereas other Cl- channel blockers including IAA-94, NPPB, DPC, SITS and furosemide did not produce these effects. 3 microM DIDS reduced 10 nM ET-1-induced sustained increase in cytoplasmic Ca2+ concentration ([Ca2+]) by 52%. Pretreatment of VSMC with 1 microM nifedipine completely inhibited the DIDS effect on 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC and sustained increase in [Ca2+]i, whereas pretreatment with 10 microM SK&F96365 did not completely block these effects of DIDS. DIDS did not affect ET-1-induced Ca2+ release and 30 mM KCl-induced increase in [Ca2+]i. Our data suggest that DIDS-sensitive Cl- channels mediate VSMC proliferation induced by ET-1 by mechanisms related to membrane depolarization and Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号