首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial and peroxisomal fatty acid oxidation were compared in whole liver homogenates. Oxidation of 0.2 mM palmitoyl-CoA or oleate by mitochondria increased rapidly with increasing molar substrate:albumin ratios and became saturated at ratios below 3, while peroxisomal oxidation increased more slowly and continued to rise to reach maximal activity in the absence of albumin. Under the latter condition mitochondrial oxidation was severely depressed. In homogenates from normal liver peroxisomal oxidation was lower than mitochondrial oxidation at all ratios tested except when albumin was absent. In contrast with mitochondrial oxidation, peroxisomal oxidation did not produce ketones, was cyanide-insensitive, was not dependent on carnitine, and was not inhibited by (+)-octanoylcarnitine, malonyl-CoA and 4-pentenoate. Mitochondrial oxidation was inhibited by CoASH concentrations that were optimal for peroxisomal oxidation. In the presence of albumin, peroxisomal oxidation was stimulated by Triton X-100 but unaffected by freeze-thawing; both treatments suppressed mitochondrial oxidation. Clofibrate treatment increased mitochondrial and peroxisomal oxidation 2- and 6- to 8-fold, respectively. Peroxisomal oxidation remained unchanged in starvation and diabetes. Fatty acid oxidation was severely depressed by cyanide and (+)-octanoylcarnitine in hepatocytes from normal rats. Hepatocytes from clofibrate-treated rats, which displayed a 3- to 4-fold increase in fatty acid oxidation, were less inhibited by (+)-octanoylcarnitine. Hydrogen peroxide production was severalfold higher in hepatocytes from treated animals oxidizing fatty acids than in control hepatocytes. Assuming that all H2O2 produced during fatty acid oxidation was due to peroxisomal oxidation, it was calculated that the contribution of the peroxisomes to fatty acid oxidation was less than 10% both in cells from control and clofibrate-treated animals.  相似文献   

2.
In isolated rat hepatocytes, fatty acids inhibited the side chain oxidation, but not the uptake, of exogenously added 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid (THCA). THCA did not inhibit fatty acid oxidation. In liver homogenates, fatty acids inhibited THCA activation to its CoA ester (THC-CoA) and THCA oxidation. THCA did not influence fatty acid activation or oxidation. Comparison of the THC-CoA concentrations present in the incubation mixtures during THCA oxidation, with substrate concentration curves determined for THC-CoA oxidation, indicated that the inhibition of THCA oxidation by fatty acids was at least partly exerted at the activation step. The inhibition of THCA activation by fatty acids was noncompetitive. Palmitoyl-CoA at concentrations found in the incubation mixtures during THCA oxidation in the presence of palmitate inhibited THC-CoA oxidation, but not sufficiently to fully explain the fatty acid-induced inhibition of THCA oxidation. The inhibition of THC-CoA oxidation by palmitoyl-CoA did not seem to be competitive. Acyl-CoA oxidase, the first enzyme of peroxisomal beta-oxidation (which catalyzes the side chain oxidation of THCA), was enhanced 15-fold in liver homogenates from clofibrate-treated rats when palmitoyl-CoA was the substrate, but the oxidase activity remained unaltered when THC-CoA was the substrate. In the perfused liver, oleate, infused after a wash-out period of 60 min, markedly inhibited bile acid secretion. The results 1) suggest that fatty acids inhibit THCA metabolism both at the activation step and at the peroxisomal beta-oxidation sequence and that separate enzymes may be involved in both the activation and peroxisomal beta-oxidation of fatty acids and THCA and 2) raise the question whether fatty acids might (indirectly?) affect overall bile acid synthesis via their inhibitory effect on THCA metabolism.  相似文献   

3.
The activities of peroxisomal and mitochondrial beta-oxidation and carnitine acyltransferases changed during the process of development from embryo to adult chicken, and the highest activities of peroxisomal beta-oxidation, palmitoyl-CoA oxidase, and carnitine acetyltransferase were found at the hatching stage of the embryo. The profiles of these alterations were in agreement with those of the contents of triglycerides and free fatty acids in the liver. The highest activities of mitochondrial beta-oxidation and palmitoyl-CoA dehydrogenase were observed at the earlier stages of the embryo; then the activities decreased gradually from embryo to adult chicken. The ratio of activities of carnitine acetyltransferase in peroxisomes and mitochondria (peroxisomes/mitochondria) increased from 0.54 to 0.82 during the development from embryo to adult chicken. The ratio of activities of carnitine palmitoyltransferase decreased from 0.82 to 0.25 during the development. The affinity of fatty acyl-CoA dehydrogenase toward the medium-chain acyl-CoAs (C6 and C8) was high in the embryo and decreased with development, whereas the substrate specificity of fatty acyl-CoA oxidase did not change. The substrate specificity of mitochondrial carnitine acyltransferases did not change with development. The affinity of peroxisomal carnitine acyltransferases toward the long-chain acyl-CoAs (C10 to C16) was high in the embryo, but low in adult chicken.  相似文献   

4.
The purpose of this study was to investigate early biochemical changes and possible mechanisms via which alkyl(C12)thioacetic acid (CMTTD, blocked for beta-oxidation), alkyl(C12)thiopropionic acid (CETTD, undergo one cycle of beta-oxidation) and a 3-thiadicarboxylic acid (BCMTD, blocked for both omega- (and beta-oxidation) influence the peroxisomal beta-oxidation in liver of rats. Treatment of rats with CMTTD caused a stimulation of the palmitoyl-CoA synthetase activity accompanied with increased concentration of hepatic acid-insoluble CoA. This effect was already established during 12-24 h of feeding. From 2 days of feeding, the cellular level of acid-insoluble CoA began to decrease, whereas free CoASH content increased. Stimulation of [1-14C]palmitoyl-CoA oxidation in the presence of KCN, palmitoyl-CoA-dependent dehydrogenase (termed peroxisomal beta-oxidation) and palmitoyl-CoA hydrolase activities were revealed after 36-48 h of CMTTD-feeding. Administration of BCMTD affected the enzymatic activities and altered the distribution of CoA between acid-insoluble and free forms comparable to what was observed in CMTTD-treated rats. It is evident that treatment of peroxisome proliferators (BCMTD and CMTTD), the level of acyl-CoA esters and the enzyme activity involved in their formation precede the increase in peroxisomal and palmitoyl-CoA hydrolase activities. In CMTTD-fed animals the activity of cyanide-insensitive fatty acid oxidation remained unchanged when the mitochondrial beta-oxidation and carnitine palmitoyltransferase operated at maximum rates. The sequence and redistribution of CoA and enzyme changes were interpreted as support for the hypothesis that substrate supply is an important factor in the regulation of peroxisomal fatty acid metabolism, i.e., the fatty acyl-CoA species appear to be catabolized by peroxisomes at high rates only when uptake into mitochondria is saturated. Administration of CETTD led to an inhibition of mitochondrial fatty acid oxidation accompanied with a rise in the concentration of acyl-CoA esters in the liver. Consequently, fatty liver developed. The peroxisomal beta-oxidation was marginally affected. Whether inhibition of mitochondrial beta-oxidation may be involved in regulation of peroxisomal fatty acid metabolism and in development of fatty liver should be considered.  相似文献   

5.
In the present study we investigated peroxisomal functions in cultured human muscle cells from control subjects and from a patient with the Zellweger syndrome, a genetic disease characterized by the absence of morphologically distinguishable peroxisomes in liver and kidney. In homogenates of cultured muscle cells from control subjects, catalase is contained within subcellular particles, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity is present and palmitoyl-CoA can be oxidized by a peroxisomal beta-oxidative pathway; these findings are indicative of the presence of peroxisomes in the cells. In homogenates of cultured muscle cells from the patient with the Zellweger syndrome, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity was deficient, peroxisomal beta-oxidation of palmitoyl-CoA was impaired and catalase was not particle-bound. These findings indicate that functional peroxisomes are absent in muscle from patients with the Zellweger syndrome. We conclude that cultured human muscle cells can be used as a model system to study peroxisomal functions in muscle and the consequences for this tissue of a generalized dysfunction of peroxisomes.  相似文献   

6.
Dicarboxylic acids are excreted in urine when fatty acid oxidation is increased (ketosis) or inhibited (defects in beta-oxidation) and in Reye's syndrome. omega-Hydroxylation and omega-oxidation of C6-C12 fatty acids were measured by mass spectrometry in rat liver microsomes and homogenates, and beta-oxidation of the dicarboxylic acids in liver homogenates and isolated mitochondria and peroxisomes. Medium-chain fatty acids formed large amounts of medium-chain dicarboxylic acids, which were easily beta-oxidized both in vitro and in vivo, in contrast to the long-chain C16-dicarboxylic acid, which was toxic to starved rats. Increment of fatty acid oxidation in rats by starvation or diabetes increased C6:C10 dicarboxylic acid ratio in rats fed medium-chain triacylglycerols, and increased short-chain dicarboxylic acid excretion in urine in rats fed medium-chain dicarboxylic acids. Valproate, which inhibits fatty acid oxidation and may induce Reye like syndromes, caused the pattern of C6-C10-dicarboxylic aciduria seen in beta-oxidation defects, but only in starved rats. It is suggested, that the origin of urinary short-chain dicarboxylic acids is omega-oxidized medium-chain fatty acids, which after peroxisomal beta-oxidation accumulate as C6-C8-dicarboxylic acids. C10-C12-dicarboxylic acids were also metabolized in the mitochondria, but did not accumulate as C6-C8-dicarboxylic acids, indicating that beta-oxidation was completed beyond the level of adipyl CoA.  相似文献   

7.
In a study of the endocrine control of peroxisomes, the effects of acute glucagon treatment and fasting on hepatic peroxisomal beta-oxidation in rats have been investigated. The activity of the rate-limiting peroxisomal beta-oxidation enzyme, fatty acyl-CoA oxidase, was measured to determine whether activation of peroxisomal beta-oxidation could account for the increase in total hepatic fatty acid oxidation following acute glucagon exposure. Catalase, a peroxisomal enzyme not directly involved in beta-oxidation, was also measured as a control for total peroxisomal activity. No changes with acute glucagon treatment of intact animals were observed with either activity as measured in liver homogenates or partially purified peroxisomal fractions. These observations indicate the lack of acute control by glucagon of peroxisomal function at the level of total enzyme activity. Previous work on the effects of fasting on hepatic fatty acid beta-oxidation [H. Ishii, S. Horie, and T. Suga (1980) J. Biochem. 87, 1855-1858] suggested an enhanced role for the peroxisomal beta-oxidation pathway during starvation. It was found that the peroxisomal beta-oxidation system, as measured by fatty acyl-CoA oxidase activity, does increase with duration of fast when expressed on a per gram wet weight liver basis. However, when this activity is expressed as total liver capacity, a decline in activity with increasing duration of fast is observed. Furthermore, this decline in peroxisomal capacity parallels the decline in total liver capacity for citrate synthase, a mitochondrial matrix enzyme, and total liver protein. These data indicate that peroxisomal beta-oxidation activity is neither stimulated nor even preferentially spared from proteolysis during fasting.  相似文献   

8.
Very long chain fatty acids (lignoceric acid) are oxidized in peroxisomes and pathognomonic amounts of these fatty acids accumulate in X-adrenoleukodystrophy (X-ALD) due to a defect in their oxidation. However, in cellular homogenates from X-ALD cells, lignoceric acid is oxidized at a rate of 38% of control cells. Therefore, to identify the source of this residual activity we raised antibody to palmitoyl-CoA ligase and examined its effect on the activation and oxidation of palmitic and lignoceric acids in isolated peroxisomes from control and X-ALD fibroblasts. The normalization of peroxisomal lignoceric acid oxidation in the presence of exogenously added acyl-CoA ligases and along with the complete inhibition of activation and oxidation of palmitic and lignoceric acids in peroxisomes from X-ALD by antibody to palmitoyl-CoA ligase provides direct evidence that lignoceroyl-CoA ligase is deficient in X-ALD and demonstrates that the residual activity for the oxidation of lignoceric acid was derived from the activation of lignoceric acid by peroxisomal palmitoyl-CoA ligase. This antibody inhibited the activation and oxidation of palmitic acid but had little effect on these activities for lignoceric acid in peroxisomes from control cells. Furthermore, these data provide evidence that peroxisomal palmitoyl-CoA and lignoceroyl-CoA ligases are two different enzymes.  相似文献   

9.
The activities of fatty acyl-CoA oxidase (FAO) and carnitine palmitoyl transferase (CPT), indices of the capacities of peroxisomal beta-oxidation and mitochondrial beta-oxidation, respectively, were determined in livers of several vertebrate species notable for differences in dietary fatty acid composition. In suckling rats FAO activities were half that in adult rats and CPT/FAO ratios twice that of adult rats. As their milk diet is dominated by medium chain fatty acids, this observation is consistent with current ideas about the role of peroxisomal beta-oxidation in rat liver in oxidation of long chain unsaturated fatty acids. In nectar-feeding hummingbirds (fatty acids synthesized de novo) FAO activities were 50% greater than adult rats and CPT/FAO ratios one-third less than adult rats, suggesting that peroxisomal beta-oxidation is relatively more important in this species, despite a fatty-acid-poor diet. In marine fish (herring, dogfish shark, hagfish) FAO activities were all less than 15% that of rats and undetectable in hagfish. CPT/FAO ratios were greater in herring (8.1) and hagfish (greater than 30) than adult rats (3.1), suggesting that peroxisomal beta-oxidation is relatively less important in these species despite a natural diet containing high levels of long chain polyunsaturated fatty acids. These data are discussed in relation to current ideas about the role of peroxisomes in beta-oxidation of fatty acids.  相似文献   

10.
A number of isoprenoids (e.g. pristanic acid and the side chains of fat soluble-vitamins) is degraded or shortened via beta oxidation. We synthesized 2-methyl-palmitate and 2-methyl[1-14C] palmitate as a model substrate for the study of the beta oxidation of branched (isoprenoid) fatty acids in rat liver. 2-Methylpalmitate was well oxidized by isolated hepatocytes and its oxidation was stimulated after treatment of the animals with a peroxisome proliferator. Subcellular fractionation of rat liver demonstrated that 2-methylpalmitate is activated to its CoA ester in endoplasmic reticulum, mitochondria, and peroxisomes and that mitochondria and peroxisomes are capable of beta-oxidizing 2-methylpalmitate. At low unbound 2-methylpalmitate concentrations and in the presence of competing straight chain fatty acids, a condition encountered in vivo, peroxisomal 2-methyl-palmitate oxidation was 2- to 4-fold more active than mitochondrial oxidation. Treatment of rats with a peroxisome proliferator markedly stimulated mitochondrial but only slightly peroxisomal 2-methylpalmitate oxidation. The same treatment dramatically induced palmitoyl-CoA oxidase but did not change 2-methyl-palmitoyl-CoA oxidase activity. Our results indicate 1) that in untreated rats peroxisomes contribute for an important part to the oxidation of 2-methylpalmitate; 2) that treatment with a peroxisome proliferator stimulates mainly the mitochondrial component of 2-methylpalmitate oxidation; and 3) that palmitoyl-CoA and 2-methylpalmitoyl-CoA are oxidized by different peroxisomal oxidases.  相似文献   

11.
Crude mitochondrial fractions were isolated by differential centrifugation of rat liver homogenates. Subfractionation of these fractions on self-generating continuous Percoll gradients resulted in clearcut separation of peroxisomes from mitochondria. Hexacosanoic acid beta-oxidation was present mainly in peroxisomal fractions whereas hexacosanoyl CoA oxidation was present in the mitochondrial as well as in the peroxisomal fractions. The presence of much greater hexacosanoyl CoA synthetase activity in the purified preparations of microsomes and peroxisomes compared to mitochondria, suggests that the synthesis of coenzyme A derivatives of very long chain fatty acids (VLCFA) is limited in mitochondria. We postulate that a specific VLCFA CoA synthetase may be required to effectively convert VLCFA to VLCFA CoA in the cell. This specific synthetase activity is absent from the mitochondrial membrane, but present in the peroxisomal and the microsomal membranes. We postulate that substrate specificity and the subcellular localization of the specific VLCFA CoA synthetase directs and regulates VLCFA oxidation in the cell.  相似文献   

12.
Metabolic aspects of peroxisomal beta-oxidation   总被引:5,自引:0,他引:5  
In the course of the last decade peroxisomal beta-oxidation has emerged as a metabolic process indispensable to normal physiology. Peroxisomes beta-oxidize fatty acids, dicarboxylic acids, prostaglandins and various fatty acid analogues. Other compounds possessing an alkyl-group of six to eight carbon atoms (many substituted fatty acids) are initially omega-oxidized in endoplasmic reticulum. The resulting carboxyalkyl-groups are subsequently chain-shortened by beta-oxidation in peroxisomes. Peroxisomal beta-oxidation is therefore, in contrast to mitochondrial beta-oxidation, characterized by a very broad substrate-specificity. Acyl-CoA oxidases initiate the cycle of beta-oxidation of acyl-CoA esters. The next steps involve the bi(tri)functional enzyme, which possesses active sites for enoyl-CoA hydratase-, beta-hydroxyacyl-CoA dehydrogenase- and for delta 2, delta 5 enoyl-CoA isomerase activity. The beta-oxidation sequence is completed by a beta-ketoacyl-CoA thiolase. The peroxisomes also contain a 2,4-dienoyl-CoA reductase, which is required for beta-oxidation of unsaturated fatty acids. The peroxisomal beta-hydroxyacyl-CoA epimerase activity is due to the combined action of two enoyl-CoA hydratases. (For a recent review of the enzymology of beta-oxidation enzymes see Ref. 225.) The broad specificity of peroxisomal beta-oxidation is in part due to the presence of at least two acyl-CoA oxidases, one of which, the trihydroxy-5 beta-cholestanoyl-CoA (THCA-CoA) oxidase, is responsible for the initial dehydrogenation of the omega-oxidized cholesterol side-chain, initially hydroxylated in mitochondria. Shortening of this side-chain results in formation of bile acids and of propionyl-CoA. In relation to its mitochondrial counterpart, peroxisomal beta-oxidation in rat liver is characterized by a high extent of induction following exposure of rats to a variety of amphipathic compounds possessing a carboxylic-, or sulphonic acid group. In rats some high fat diets cause induction of peroxisomal fatty acid beta-oxidation and of trihydroxy-5 beta-cholestanoyl-CoA oxidase. Induction involves increased rates of synthesis of the appropriate mRNA molecules. Increased half-lives of mRNA- and enzyme molecules may also be involved. Recent findings of the involvement of a member of the steroid hormone receptor superfamily during induction, suggest that induction of peroxisomal beta-oxidation represents another regulatory phenomenon controlled by nuclear receptor proteins. This will likely be an area of intense future research. Chain-shortening of fatty acids, rather than their complete beta-oxidation, is the prominent feature of peroxisomal beta-oxidation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Data obtained in earlier studies with rats fed diets containing high doses of peroxisome proliferators (niadenate, tiadenol, clofibrate, or nitotinic acid) are used to look for a quantitative relationship between peroxisomal beta-oxidation, palmitoyl-CoA hydrolase, palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities, and the cellular concentration of their substrate and reaction products. The order of the hyperlipidemic drugs with regard to their effect on CoA derivatives and enzyme activities was niadenate greater than tiadenol greater than clofibrate greater than nicotinic acid. Linear regression analysis of long-chain acyl-CoA content versus palmitoyl-CoA hydrolase and peroxisomal beta-oxidation activity showed highly significant linear correlations both in the total liver homogenate and in the peroxisome-enriched fractions. A dose-response curve of tiadenol showed that carnitine palmitoyltransferase and palmitoyl-CoA synthetase activities and the ratio of long-chain acyl-CoA to free CoASH in total homogenate rose at low doses before detectable changes occurred in the peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. A plot of this ratio parallelled the palmitoyl-CoA synthetase activity. The specific activity of microsomally localized carnitine palmitoyl-transferase was low and unchanged up to a dose where no enhanced peroxisomal beta-oxidation was observed, but over this dose the activity increased considerably so that the specific of the enzyme in the mitochondrial and microsomal fractions became comparable. The mitochondrial palmitoyl-CoA synthetase activity decreased gradually. The correlations may be interpreted as reflecting a common regulation mechanism for palmitoyl-CoA hydrolase and peroxisomal beta-oxidation enzymes, i.e., the cellular level of long-chain acyl-CoA acting as the metabolic message for peroxisomal proliferation resulting in induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. The findings are discussed with regard to their possible consequences for mitochondrial fatty acid oxidation and the conversion of long-chain acyl-L-carnitine to acyl-CoA derivatives.  相似文献   

14.
The peroxisomal beta-oxidation of omega-phenyl fatty acids (PFAs) as model compounds for xenobiotic acyl compounds was investigated. In isolated hepatocytes, omega-phenyllauric acid (PFA12) was chain-shortened to PFAs having an even number of carbon atoms in the acyl side chain. Associated with this reaction, H2O2 generation was observed, the rate of which was markedly enhanced by clofibrate treatment of rats. Also when using isolated peroxisomes, such a chain-shortening of PFA12 occurred, associated with stoichiometrical production of NADH and acetyl-CoA. The CoA-ester form of PFA12 as a substrate and NAD as a cofactor were required in this reaction, indicating the participation of peroxisomal beta-oxidation in the chain-shortening of PFA12. When using PFAs with various chain lengths, the rates of H2O2 generation measured as the peroxisomal beta-oxidation in isolated hepatocytes were similar to those with the corresponding fatty acids, whereas the rates of ketone body production measured as the mitochondrial beta-oxidation were much lower than that with any fatty acid examined. From the study with isolated mitochondria and purified enzymes, it was found that the mitochondrial beta-oxidation of PFAs was carnitine-dependent, and that the activities of carnitine palmitoyltransferase for PFA-CoAs are low. Moreover, the activities of acyl-CoA dehydrogenase for PFA-CoAs were lower than those for fatty acyl-CoAs, while the activities of acyl-CoA oxidase for PFA-CoAs were comparable to those for fatty acyl-CoAs. As a result, relatively long chain PFAs were hardly subjected to mitochondrial beta-oxidation. Based on the maximum enzyme activities of the beta-oxidation, which were measured by following acyl-CoA-dependent NAD reduction in isolated peroxisomes and O2 consumption in isolated mitochondria, about 60% of the beta-oxidation of PFA12 in the rat liver was peroxisomal. In clofibrate-treated rats, the value reached about 85%. From these results it is concluded that the peroxisome is one of the important sites of degradation of xenobiotic acyl compounds.  相似文献   

15.
The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate.  相似文献   

16.
beta-Oxidation of unsaturated fatty acids was studied with isolated solubilized or nonsolubilized peroxisomes or with perfused liver isolated from rats treated with clofibrate. gamma-Linolenic acid gave the higher rate of beta-oxidation, while arachidonic acid gave the slower rate of beta-oxidation. Other polyunsaturated fatty acids (including docosahexaenoic acid) were oxidized at rates which were similar to, or higher than, that observed with oleic acid. Experiments with 1-14C-labeled polyunsaturated fatty acids demonstrated that these are chain-shortened when incubated with nonsolubilized peroxisomes. Spectrophotometric investigation of solubilized peroxisomal incubations showed that 2,4-dienoyl-CoA esters accumulated during peroxisomal beta-oxidation of fatty acids possessing double bond(s) at even-numbered carbon atoms. beta-Oxidation of [1-14C]docosahexaenoic acid by isolated peroxisomes was markedly stimulated by added NADPH or isocitrate. This fatty acid also failed to cause acyl-CoA-dependent NADH generation with conditions of assay which facilitate this using other acyl-CoA esters. These findings suggest that 2,4-dienoyl-CoA reductase participation is essential during peroxisomal beta-oxidation if chain shortening is to proceed beyond a delta 4 double bond. Evidence obtained using arachidionoyl-CoA, [1-14C]arachidonic acid, and [5,6,8,9,11,12,14,15-3H]arachidonic acid suggests that peroxisomal beta-oxidation also can proceed beyond a double bond positioned at an odd-numbered carbon atom. Experiments with isolated perfused livers showed that polyunsaturated fatty acids also in the intact liver are substrates for peroxisomal beta-oxidation, as judged by increased levels of the catalase-H2O2 complex on infusion of polyunsaturated fatty acids.  相似文献   

17.
Very long chain fatty acid (VLCFA) beta-oxidation was compared in homogenates and subcellular fractions of cultured skin fibroblasts from normal individuals and from Zellweger patients who show greatly reduced numbers of peroxisomes in their tissues. beta-Oxidation of lignoceric (C24:0) acid was greatly reduced compared to controls in the homogenates and the subcellular fractions of Zellweger fibroblasts. The specific activity of C24:0 acid beta-oxidation was highest in the crude peroxisomal pellets of control fibroblasts. Fractionation of the crude mitochondrial and the crude peroxisomal pellets on Percoll density gradients revealed that the C24:0 acid oxidation was carried out entirely by peroxisomes, and the peroxisomal beta-oxidation activity was missing in Zellweger fibroblasts. In contrast to the beta-oxidation of C24:0 acid, the beta-oxidation of C24:0 CoA was observed in both mitochondria and peroxisomes. We postulate that a very long chain fatty acyl CoA (VLCFA CoA) synthetase, which is different from long chain fatty acyl CoA synthetase, is required for the effective conversion of C24:0 acid to C24:0 CoA. The VLCFA CoA synthetase appears to be absent from the mitochondrial membrane but present in the peroxisomal membrane.  相似文献   

18.
O Lazo  M Contreras  I Singh 《Biochemistry》1990,29(16):3981-3986
We found that peroxisomal lignoceroyl-CoA ligase, like palmitoyl-CoA ligase, is present in the peroxisomal membrane whereas the peroxisomal beta-oxidation enzyme system is localized in the matrix. To further define the role of peroxisomal acyl-CoA ligases (membrane component) in providing acyl-CoA for peroxisomal beta-oxidation, we examined the transverse topographical localization of enzymatic sites of palmitoyl-CoA and lignoceroyl-CoA ligases in the peroxisomal membranes. The disruption of peroxisomes by various techniques resulted in the release of a "latent" pool of lignoceroyl-CoA ligase activity while palmitoyl-CoA ligase activity remained the same. Proteolytic enzyme treatment inhibited palmitoyl-CoA ligase activity in intact peroxisomes but had no effect on lignoceroyl-CoA ligase activity. Lignoceroyl-CoA ligase activity was inhibited only if peroxisomes were disrupted with detergent before trypsin treatment. Antibodies to palmitoyl-CoA ligase and to peroxisomal membrane proteins (PMP) inhibited palmitoyl-CoA ligase in intact peroxisomes, and no pool of "latent" activity appeared when antibody-treated peroxisomes were disrupted with detergent. On the other hand, disruption of PMP antibody-treated peroxisomes with detergent resulted in the appearance of a "latent" pool of lignoceroyl-CoA ligase activity. These results demonstrate that the enzymatic site of palmitoyl-CoA ligase is on the cytoplasmic surface whereas that for lignoceroyl-CoA ligase is on the luminal surface of peroxisomal membranes. This implies that palmitoyl-CoA is synthesized on the cytoplasmic surface and is then transferred to the matrix through the peroxisomal membrane for beta-oxidation in the matrix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Fatty acyl-CoAs as well as the CoA esters of the bile acid intermediates di- and trihydroxycoprostanic acids are beta-oxidized in peroxisomes. The first reaction of peroxisomal beta-oxidation is catalyzed by acyl-CoA oxidase. We recently described the presence of two fatty acyl-CoA oxidases plus a trihydroxycoprostanoyl-CoA oxidase in rat liver peroxisomes (Schepers, L., P. P. Van Veldhoven, M. Casteels, H. J. Eyssen, and G. P. Mannaerts. 1990. J. Biol. Chem. 265: 5242-5246). We have now developed methods for the measurement of palmitoyl-CoA oxidase and trihydroxycoprostanoyl-CoA oxidase in human liver. The activities were measured in livers from controls and from three patients with peroxisomopathies. In addition, the oxidase activities were partially purified from control livers by ammonium sulfate fractionation and heat treatment, and the partially purified enzyme preparation was subjected to chromatofocusing, hydroxylapatite chromatography, and gel filtration. In earlier experiments this allowed for the separation of the three rat liver oxidases. The results show that human liver, as rat liver, contains a separate trihydroxycoprostanoyl-CoA oxidase. In contrast to the situation in rat liver, no conclusive evidence was obtained for the presence of two fatty acyl-CoA oxidases in human liver. Our results explain why bile acid metabolism is normal in acyl-CoA oxidase deficiency, despite a severely disturbed peroxisomal fatty acid oxidation and perhaps also why, in a number of other cases of peroxisomopathy, di- and trihydroxycoprostanic acids are excreted despite a normal peroxisomal fatty acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号