首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Cyclic AMP (cAMP) regulates many important physiological processes. Barbiturates influence cAMP regulation, possibly through effects on G proteins. This study used intact S49 mouse lymphoma cells to characterize the role of G proteins in the effect of barbiturates on cAMP regulation. cAMP accumulation was determined in intact S49 WT (wild-type) and S49 cyc? cells (the G-deficient mutant) by measuring the conversion of [3H]-ATP to [3H]cAMP in cells preloaded with [3H]adenine. Pentobarbital enhanced cAMP accumulation in WT cells in the absence (basal) or presence of isoproterenol but had no effect on the EC50 for isoproterenol. This effect was dose dependent with a 50–60% enhancement at 2 mM pentobarbital. Pentobarbital did not affect forskolin-stimulated cAMP accumulation in WT cells. In cyc? cells, basal and forskolin-stimulated cAMP accumulation were stimulated only at the highest concentration of pentobarbital used (2 mM). Pentobarbital did not affect the inhibition of cAMP accumulation by somatostatin in WT cells, and pertussis toxin treatment of WT cells did not affect the action of pentobarbital on cAMP accumulation. Pentobarbital did not affect isoproterenol-stimulated adenylyl cyclase activity in whole-cell homogenates or membranes prepared from WT cells. The S-(?)-isomer of pentobarbital enhanced isoproterenol-stimulated cAMP accumulation more than the R-(+)-isomer. Phenobarbital and barbituric acid did not enhance isoproterenol-stimulated cAMP accumulation, whereas the anesthetic barbiturates hexobarbital, pentobarbital, and thiopental all enhanced activity. These results suggest that pentobarbital enhances cAMP accumulation in intact WT cells by a mechanism that is dependent on G but independent of Gi. The properties of barbiturates that are responsible for the enhancement of cAMP accumulation may be related to the properties that are responsible for producing sedation and anesthesia.  相似文献   

2.
Regulated protein destruction involving SCF (Skp1/Cullin/F-box, E3 ubiquitin ligase) complexes is required for multicellular development of Dictyostelium discoideum. Dynamic modification of cullin by nedd8 is required for the proper action of SCF. The COP9 signalosome (CSN), first identified in a signaling pathway for light response in plants, functions as a large multi-protein complex that regulates cullin neddylation in eukaryotes. Still, there is extreme sequence divergence of CSN subunits of the yeasts in comparison to the multicellular plants and animals. Using the yeast two-hybrid system, we have identified the CSN5 subunit as a potential interacting partner of a cell surface receptor of Dictyostelium. We further identified and characterized all 8 CSN subunits in Dictyostelium discoideum. Remarkably, despite the ancient origin of Dictyostelium, its CSN proteins cluster very closely with their plant and animal counterparts. We additionally show that the Dictyostelium subunits, like those of other systems are capable of multi-protein interactions within the CSN complex. Our data also indicate that CSN5 (and CSN2) are essential for cell proliferation in Dictyostelium, a phenotype similar to that of multicellular organisms, but distinct from that of the yeasts. Finally, we speculate on a potential role of CSN in cullin function and regulated protein destruction during multicellular development of Dictyostelium.  相似文献   

3.
Activation of cAMP-dependent protein kinase (PKA) triggers terminal differentiation in Dictyostelium, without an obvious requirement for the G-protein-coupled adenylyl cyclase, ACA, or the osmosensory adenylyl cyclase, ACG. A third adenylyl cyclase, ACB, was recently detected in rapidly developing mutants. The specific characteristics of ACA, ACG, and ACB were used to determine their respective activities during development of wild-type cells. ACA was highly active during aggregation, with negligible activity in the slug stage. ACG activity was not present at significant levels until mature spores had formed. ACB activity increased strongly after slugs had formed with optimal activity at early fruiting body formation. The same high activity was observed in slugs of ACG null mutants and ACA null mutants that overexpress PKA (acaA/PKA), indicating that it was not due to either ACA or ACG. The detection of high adenylyl cyclase activity in acaA/PKA null mutants contradicts earlier conclusions (B. Wang and A. Kuspa, Science 277, 251-254, 1997) that these mutants can develop into fruiting bodies in the complete absence of cAMP. In contrast to slugs of null mutants for the intracellular cAMP-phosphodiesterase REGA, where both intact cells and lysates show ACB activity, wild-type slugs only show activity in lysates. This indicates that cAMP accumulation by ACB in living cells is controlled by REGA. Both REGA inhibition and PKA overexpression cause precocious terminal differentiation. The developmental regulation of ACB and its relationship to REGA suggest that ACB activates PKA and induces terminal differentiation.  相似文献   

4.
h (or transglutaminase-2 (TG2)) is an atypical guanine nucleotide binding-protein that associates with G protein-coupled receptors. TG2 also exerts transglutaminase activity that catalyzes posttranslational protein cross-linking with the formation of ε-(γ-glutamyl) lysine or (γ-glutamyl) polyamine bonds. Here, the role of Gαh/TG2 in signal transduction in glial cells was examined in detail. In 1321N1 human astrocytoma cells that lack Gαh/TG2, overexpression of Gαh/TG2 caused an enhancement of cAMP accumulation stimulated with the β-adrenergic receptor agonist, isoproterenol, or the adenylylcyclase activator, forskolin. This cAMP-enhancement was reversed by the TG2 inhibitor, ERW1069. In rat C6 glioma cells that express endogenous Gαh/TG2, cAMP accumulation induced by isoproterenol or forskolin was significantly inhibited by overexpression of Gαh/TG2-C277V, a dominant-negative mutant that lacks transglutaminase activity, but was not inhibited by the Gαh/TG2-S171E mutant that cannot bind GTP/GDP. These results suggest Gαh/TG2 potentiates adenylylcyclase activity by its transglutaminase activity and not by its G-protein activity. Gαh/TG2 also increased the activities of the cAMP response element and interleukin-6 promoter, accompanied by an of cAMP in both glioma cells. Since adenylylcyclase 8 plays a major role in cAMP production, we focused on post-translational modification of adenylylcyclase 8 by Gαh/TG2. Adenylylcyclase 8 is expressed in both 1321N1 and C6 cells; however, Gαh/TG2 affected neither adenylylcyclase 8 expression levels, glycosylation, nor dimerization status. In contrast, pentylamine, a substrate of Gαh/TG2, was incorporated into adenylylcyclase 8 in a transglutaminase activity-dependent manner. Taking these results together, Gαh/TG2 promotes cAMP production accompanied by a modification of adenylylcyclase 8 in glioma cells.  相似文献   

5.

Background  

During early differentiation of Dictyostelium the attractant cAMP is released periodically to induce aggregation of the cells. Here we pursue the question whether pulsatile cAMP signaling is coupled to a basic Ca2+-oscillation.  相似文献   

6.
In some unicellular eukaryotes, cAMP performs functions not only of the secondary messenger, but also of hormone, the primary messenger. We have found that cAMP is bound to surface receptors of the free-living infusorian Dileptus anser and stimulates activity of the adenylyl cyclase signaling system (AC-system) including heterotrimeric G-proteins and the enzyme, adenylyl cyclase (AC). The binding of cAMP to receptor is performed with a high affinity (K D = 27 nM) and is highly specific, as cGMP and adenosine do not produce a marked effect on it. The infusorian cAMP-receptors have been shown to be coupled to G-proteins, which is indicated by a decrease of their affinity to the ligand in the presence of GTP, stimulation of the GTP-binding of G-proteins with the cyclic nucleotide, and block of the cAMP regulatory effects with suramin, an inhibitor of heterotrimeric G-proteins. cAMP stimulates dose-dependently the AC activity, its effect remaining virtually unchanged in the presence of cGMP, AMP, GMP, and adenosine. N6,O2′-dibutyryl-cAMP, a non-hydrolyzed cAMP analogue, only at comparatively high concentrations competes with cAMP for binding sites and decreases the cAMP stimulating effects on the AC activity and GTP binding. Thus, we have shown for the first time that the AC system of the infusorians D. anser is stimulated by the extracellular cAMP that in this case functions as the external signal regulates activity of extracellular cAMP-dependent effector systems.  相似文献   

7.
A chimeric gene composed of the coding sequence of theble gene fromStreptoalloteichus hindustanus fused to the 5 and 3 untranslated regions of theChlamydomonas reinhardtii nuclear geneRBCS2 has been constructed. Introduction of this chimeric gene into the nuclear genome ofC. reinhardtii by co-transformation with theARG7 marker yields Arg+ transformants of which approximately 80% possess theble gene. Of these co-transformants, approximately 3% display a phleomycin-resistant (PmR) phenotype. Western blot analysis using antibodies against theble gene product confirms the presence of the protein in the PmR transformants and genetic analysis demonstrates the co-segregation of theble gene with the phenotype in progeny arising from the mating of a PmR transformant to wild-type strains. Direct selection of PmR transformants was achieved by allowing an 18-h period for recovery and growth of transformed cells prior to selection. This work represents the first demonstration of stable expression and inheritance of a foreign gene in the nuclear genome ofC. reinhardtii and provides a useful dominant marker for nuclear transformation.  相似文献   

8.
9.

Cyclic AMP (cAMP) acts as a second messenger and is involved in the regulation of various physiological responses. Recently, we identified the cAMP-synthesis/hydrolysis enzyme CAPE, which contains the two catalytic domains adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) from the liverwort Marchantia polymorpha. Here we characterize the PDE domain of M. polymorpha CAPE (MpCAPE-PDE) using the purified protein expressed in E. coli. The Km and Vmax of MpCAPE-PDE were 30 µM and 5.8 nmol min?1 mg?1, respectively. Further, we investigated the effect of divalent cations on PDE activity and found that Ca2+ enhanced PDE activity, suggesting that Ca2+ may be involved in cAMP signaling through the regulation of PDE activity of CAPE. Among the PDE inhibitors tested, only dipyridamole moderately inhibited PDE activity by approximately 40% at high concentrations. Conversely, 3-isobutyl-1-methylxanthine (IBMX) did not inhibit PDE activity.

  相似文献   

10.
Two adenylyl cyclase genes (cyaA and cyaB) from the myxobacterium Stigmatella aurantiaca were cloned by complementation of Escherichia coli mutants defective in the cya gene. cyaA codes for a protein of 424 amino acid residues (AC1), while cyaB encodes a protein of 352 residues (AC2). Both cyclases are sensitive to adenosine: cAMP production was strongly inhibited in E coli cells and cell extracts expressing these genes. AC1 comprises a hydrophobic domain of six transmembrane helices coupled to a cytoplasmic catalytic domain endowed with adenylyl cyclase activity. A 17 amino acid residue sequence, which is a signature of G-protein coupled receptors, as well as of slime mold Dictyostelium discoideum cyclic AMP receptors, was found in the membrane domain. AC2 displays features also indicating that it is a bifunctional enzyme. The domain located upstream from the catalytic adenylyl cyclase domain shows strong similarity to receiver modules of response regulators of two-component bacterial signaling systems. In vitro mutagenesis of conserved aspartate residues in this domain was shown to interfere with cAMP synthesis.  相似文献   

11.
The amoebae Dictyostelium discoideum aggregate after starvation in a wavelike manner in response to periodic pulses of cyclic AMP (cAMP) secreted by cells which behave as aggregation centers. In addition to autonomous oscillations, the cAMP signaling system that controls aggregation is also capable of excitable behavior, which consists in the transient amplification of suprathreshold pulses of extracellular cAMP. Since the first theoretical model for slime mold aggregation proposed by Keller and Segel in 1970, many theoretical studies have addressed various aspects of the mechanism and function of cAMP signaling in Dictyostelium. This paper presents a brief overview of these developments as well as some reminiscences of the author's collaboration with Lee Segel in modeling the dynamics of cAMP relay and oscillations. Considered in turn are models for cAMP signaling in Dictyostelium, the developmental path followed by the cAMP signaling system after starvation, the frequency encoding of cAMP signals, and the origin of concentric or spiral waves of cAMP.  相似文献   

12.
Prostaglandins exert their effects on target cells by coupling to specific G protein-coupled receptors (GPCRs) that are often co-expressed in the same cells and use alternate and in some cases opposing intracellular signaling pathways. This study investigated the cross-talk that influences intracellular signaling and gene expression profiling in response to co-activation of the EP2 and FP prostanoid receptors in Ishikawa cells stably expressing both receptors (FPEP2 cells). In this study we show that in FPEP2 cells, PGF alone does not alter adenosine 3′,5′-cyclic monophosphate (cAMP) production, but in combination with Butaprost enhances EP2 receptor mediated cAMP release compared to treatment with Butaprost alone. PGF-mediated potentiation of cAMP release was abolished by antagonism of the FP receptor, inhibition of phospholipase C (PLC) and inositol phosphate receptor (IP3R) whereas inhibition of protein kinase C (PKC) had no effect. Moreover, inhibition of calcium effectors using calmodulin antagonist (W7) or Ca2+/calmodulin-dependent kinase II (CaMK-II) inhibitor (KN-93) abolished PGF potentiation of Butaprost-mediated cAMP release. Using siRNA molecules targeted against the adenylyl cyclase 3 (AC3) isoform, we show that AC3 is responsible for the cross-talk between the FP and EP2 receptors. Using gene array studies we have identified a candidate gene, Spermidine/N1-acetyltransferase (SAT1), which is regulated by this cAMP mediated cross-talk. In conclusion, this study demonstrates that co-activation of the FP and EP2 receptors results in enhanced release of cAMP via FP receptor-Gαq-Ca2+-calmodulin pathway by activating calcium sensitive AC3 isoform.  相似文献   

13.
J. Zhang  J. Li  C. Wu  Z. Hu  L. An  Y. Wan  C. Fang  X. Zhang  J. Li  Y. Wang 《Animal genetics》2020,51(5):694-706
In humans and mice, melanocortin receptor 4 (MC4R) and melanocortin receptor accessory protein 2 (MRAP2) can form a complex and control energy balance, thus regulating body weight and obesity. In pigs, a missense variant (p.Asp298Asn) of MC4R has been suggested to be associated with growth and fatness; however, the effect of Asp298Asn substitution on MC4R function is controversial, limiting its application in animal breeding. Here we examined the effect of this polymorphism on MC4R constitutive activity, cell surface expression and signaling, and its interaction with MRAP2 in pigs. We found that: (i) both pig MC4RAsp and MC4RAsn can be activated by its ligands (α-MSH and ACTH) and stimulate cAMP/PKA signaling pathway, as detected by pGL3–CRE–luciferase reporter assay, indicating that, like pMC4RAsp, pMC4RAsn is coupled to the cAMP/PKA signaling pathway; (ii) compared with pMC4RAsp, pMC4RAsn loses the basal constitutive activity and shows a decreased surface expression, as detected by dual-luciferase reporter assay and Nano-HiBiT system; (iii) as in other vertebrates, both pMC4RAsp and pMC4RAsn can interact with pMRAP2, thus decreasing receptor surface expression and enhancing ligand sensitivity, although, in contrast to pMC4RAsp, the basal constitutive activity of pMC4RAsn cannot be affected by pMRAP2; and (iv) RNA-seq data analysis revealed a co-expression of MC4R and MRAP2 in pig hypothalamus. Taken together, our data provide convincing evidence that Asp298Asn substitution decreases the constitutive activity and cell surface expression of MC4R or MC4R–MRAP2 complex, which may affect energy balance and be a valuable selection marker for breeding programs in pigs.  相似文献   

14.
Interactions between cyclic adenosine monophosphate (cAMP) and Ca2+ are widespread, and for both intracellular messengers, their spatial organization is important. Parathyroid hormone (PTH) stimulates formation of cAMP and sensitizes inositol 1,4,5-trisphosphate receptors (IP3R) to IP3. We show that PTH communicates with IP3R via “cAMP junctions” that allow local delivery of a supramaximal concentration of cAMP to IP3R, directly increasing their sensitivity to IP3. These junctions are robust binary switches that are digitally recruited by increasing concentrations of PTH. Human embryonic kidney cells express several isoforms of adenylyl cyclase (AC) and IP3R, but IP3R2 and AC6 are specifically associated, and inhibition of AC6 or IP3R2 expression by small interfering RNA selectively attenuates potentiation of Ca2+ signals by PTH. We define two modes of cAMP signaling: binary, where cAMP passes directly from AC6 to IP3R2; and analogue, where local gradients of cAMP concentration regulate cAMP effectors more remote from AC. Binary signaling requires localized delivery of cAMP, whereas analogue signaling is more dependent on localized cAMP degradation.  相似文献   

15.
Light and dopamine regulate many physiological functions in the vertebrate retina. Light exposure decreases cyclic AMP formation in photoreceptor cells. Dopamine D4 receptor (D4R) activation promotes light adaptation and suppresses the light‐sensitive pool of cyclic AMP in photoreceptor cells. The key signaling pathways involved in regulating cyclic AMP in photoreceptor cells have not been identified. In the present study, we show that the light‐ and D4R‐signaling pathways converge on the type 1 Ca2+/calmodulin‐stimulated adenylyl cyclase (AC1) to regulate cyclic AMP synthesis in photoreceptor cells. In addition, we present evidence that D4R activation tonically regulates the expression of AC1 in photoreceptors. In retinas of mice with targeted deletion of the gene (Adcy1) encoding AC1, cyclic AMP levels and Ca2+/calmodulin‐stimulated adenylyl cyclase activity are markedly reduced, and cyclic AMP accumulation is unaffected by either light or D4R activation. Similarly, in mice with disruption of the gene (Drd4) encoding D4R, cyclic AMP levels in the dark‐adapted retina are significantly lower compared to wild‐type retina and are unresponsive to light. These changes in Drd4?/? mice were accompanied by significantly lower Adcy1 mRNA levels in photoreceptor cells and lower Ca2+/calmodulin‐stimulated adenylyl cyclase activity in retinal membranes compared with wild‐type controls. Reduced levels of Adcy1 mRNA were also observed in retinas of wild‐type mice treated chronically with a D4R antagonist, L‐745870. Thus, activation of D4R is required for normal expression of AC1 and for the regulation of its catalytic activity by light. These observations illustrate a novel mechanism for cross‐talk between dopamine and photic signaling pathways regulating cyclic AMP in photoreceptor cells.  相似文献   

16.
Protein kinase A anchoring proteins (AKAPs) provide the backbone for targeted multimolecular signaling complexes that serve to localize the activities of cAMP. Evidence is accumulating of direct associations between AKAPs and specific adenylyl cyclase (AC) isoforms to facilitate the actions of protein kinase A on cAMP production. It happens that some of the AC isoforms (AC1 and AC5/6) that bind specific AKAPs are regulated by submicromolar shifts in intracellular Ca2+. However, whether AKAPs play a role in the control of AC activity by Ca2+ is unknown. Using a combination of co-immunoprecipitation and high resolution live cell imaging techniques, we reveal an association of the Ca2+-stimulable AC8 with AKAP79/150 that limits the sensitivity of AC8 to intracellular Ca2+ events. This functional interaction between AKAP79/150 and AC8 was observed in HEK293 cells overexpressing the two signaling molecules. Similar findings were made in pancreatic insulin-secreting cells and cultured hippocampal neurons that endogenously express AKAP79/150 and AC8, which suggests important physiological implications for this protein-protein interaction with respect to Ca2+-stimulated cAMP production.  相似文献   

17.
Intracellular and secreted cAMPs play crucial roles in controlling cell movement and gene regulation throughout development of the social amoeba Dictyostelium discoideum. cAMP is produced by three structurally distinct ACs (adenylate cyclases), ACA, ACG and ACB, which have distinctive but overlapping patterns of expression and, as concluded from gene disruption studies, seemingly overlapping functions. In addition to gene disruption, acute pharmacological abrogation of protein activity can be a powerful tool to identify the protein's role in the biology of the organism. We analysed the effects of a range of compounds on the activity of ACA, ACB and ACG to identify enzyme-specific modulators. Caffeine, which was previously used to specifically block ACA function, also inhibited cAMP accumulation by ACB and ACG. IPA (2',3'-O-isopropylidene adenosine) specifically inhibits ACA when measured in intact cells, without affecting ACB or ACG. All three enzymes are inhibited by the P-site inhibitor DDA (2',5'-dideoxyadenosine) when assayed in cell lysates, but not in intact cells. Tyrphostin A25 [alpha-cyano-(3,4,5-trihydroxy)cinnamonitrile] and SQ22536 [9-(tetrahydro-2'-furyl)adenine] proved to be effective and specific inhibitors for ACG and ACA respectively. Both compounds acted directly on enzyme activity assayed in cell lysates, but only SQ22536 was also a specific inhibitor when added to intact cells.  相似文献   

18.
The gene responsible for the optochin-sensitive (OptS) phenotype of Streptococcus pneumoniae has been characterized. Sequence comparisons indicated that the genes involved encoded the subunits of the F0 complex of an H+-ATPase. Sequence analysis and transformation experiments showed that the atpC gene is responsible for the optochin-sensitive resistant (OptS/OptR) phenotype. Our results also show that natural as well as laboratory OptR isolates have arisen by point mutations that produce different amino acid changes at positions 48, 49 or 50 of the ATPase c subunit. The nucleotide sequence of the F F0 complex of the Streptococcus oralis ATPase has also been determined. In addition, comparison of the sequence of the atpCAB genes of S. pneumoniae R6 (OptS) and M222 (an OptR strain produced by inter-species recombination between pneumococcus and S. oralis), and S. oralis revealed that, in M222, an interchange of atpC and atpA had occurred. We also demonstrate that optochin specifically inhibited the membrane-bound ATPase activity of the S. pneumoniae wild-type (OptS) strains, and found a 100-fold difference between OptS and OptR strains, both in growth inhibition and in membrane ATPase resistance.  相似文献   

19.
β-adrenergic neurotransmission is an important factor regulating brain activity such as neuronal and glial survival, plasticity, membrane transport or cellular metabolism. Intracellular β-adrenergic signaling, via a stimulatory G protein (Gs), activates two major down-stream effectors, i.e., adenylyl cyclase (AC) and cAMP-dependent protein kinase A (PKA). The aim of this work was to study the ability of endogenous (adrenaline and noradrenaline) and exogenous (isoprenaline) β-adrenergic receptor agonists to increase cAMP in different types of nerve cells. Moreover, we wanted to precisely identify the receptor isoform involved in the observed phenomenon using selective β1-, β2- β3-adrenoceptor blockers. In an additional study, the negative influence of hypoxia on the AC/cAMP intracellular signaling system was tested. The study was conducted in parallel on rat primary glial (astrocytes) cultures, primary neuronal cultures, C6 glioma cells and human T98G glioma cells. The formation of [3H] cAMP by agonists and antagonists was measured in [3H] adenine prelabeled cells under normoxic and hypoxic conditions. The obtained results revealed that adrenaline, noradrenaline and isoprenaline strongly stimulated cAMP production in all tested cell types (with highest potency in C6 glioma cells). In glial and neuronal cells the adrenaline-evoked cAMP effect was mediated mainly by the β1-adrenoceptor, whereas in tumor cells the effect was probably mediated by all three β-subtype specific drugs. The AC/cAMP intracellular signaling system is affected by hypoxic conditions. Considering both physiological and therapeutic importance of β-family receptors the present work characterized the β-adrenoceptor-mediated cAMP signal transduction pathway in different nerve cells in normoxic and hypoxic conditions. The proposed in vitro model of hypoxic conditions may serve as a good model system to study the biological effects of endogenous catecholamines as well as potential therapeutics targeting adrenergic receptors, which are impaired during ischemia in vivo.  相似文献   

20.
Bombesin is a potent mitogen for Swiss 3T3 cells and can stimulate DNA synthesis in the absence of any other growth factor. This effect is mediated by multiple synergistic signaling pathways, including an accumulation of intracellular cyclic AMP (cAMP) and an increase in c-fos mRNA expression. The cyclooxygenase inhibitor indomethacin abolished prostaglandin E2 release and substantially depressed cAMP levels induced by bombesin (EC50 - 10 nM). In contrast, indomethacin at 1 μM did not affect 80K phosphorylation or Ca2+ mobilization by bombesin, indicating that cAMP synthesis can occur through a phospholipase C-independent pathway. Indomethacin caused a 30 to 35% decrease in c-fos induction and DNA synthesis in cells treated with bombesin (EC50 - 40 nM). Significantly, the inhibitory effect of indomethacin was reversed in the presence of forskolin, a direct activator of adenylate cyclase. We conclude that cAMP plays a regulatory role in c-fos induction and mitogenesis in Swiss 3T3 cells treated with bombesin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号