首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms of nisin resistance in Gram-positive bacteria   总被引:1,自引:0,他引:1  
Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain Gram-positive bacteria. However, the effectiveness of nisin is often affected by environmental factors such as pH, temperature, food composition, structure, as well as food microbiota. The development of nisin resistance has been seen among various Gram-positive bacteria. The mechanisms under the acquisition of nisin resistance are complicated and may differ among strains. This paper presents a brief review of possible mechanisms of the development of resistance to nisin among Gram-positive bacteria.  相似文献   

2.
New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria.  相似文献   

3.
Efflux-mediated heavy metal resistance in prokaryotes   总被引:35,自引:0,他引:35  
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.  相似文献   

4.
In Gram-positive bacteria proteins are displayed on the cell surface using sortase enzymes. These cysteine transpeptidases join proteins bearing an appropriate sorting signal to strategically positioned amino groups on the cell surface. Working alone, or in concert with other enzymes, sortases either attach proteins to the cross-bridge peptide of the cell wall or they link proteins together to form pili. Because surface proteins play a fundamental role in microbial physiology and are frequently virulence factors, sortase enzymes have been intensely studied since their discovery a little more than a decade ago. Based on their primary sequences and functions sortases can be partitioned into distinct families called class A to F enzymes. Most bacteria elaborate their surfaces using more than one type of sortase that function non-redundantly by recognizing unique sorting signals within their protein substrates. Here we review what is known about the functions of these enzymes and the molecular basis of catalysis. Particular emphasis is placed on 'pilin' specific class C sortases that construct structurally complex pili. Exciting new data have revealed that these enzymes are amazingly promiscuous in the substrates that they can employ and that there is a startling degree of diversity in their mechanism of action. We also review recent data that suggest that sortases are targeted to specific sites on the cell surface where they work with other sortases and accessory factors to properly function.  相似文献   

5.
Membrane transitions in Gram-positive bacteria   总被引:5,自引:0,他引:5  
  相似文献   

6.
Hyaluronidases of Gram-positive bacteria   总被引:5,自引:0,他引:5  
Bacterial hyaluronidases, enzymes capable of breaking down hyaluronate, are produced by a number of pathogenic Gram-positive bacteria that initiate infections at the skin or mucosal surfaces. Since reports of the hyaluronidases first appeared, there have been numerous suggestions as to the role of the enzyme in the disease process. Unlike some of the other more well studied virulence factors, much of the information on the role of hyaluronidase is speculative, with little or no data to substantiate proposed roles. Over the last 5 years, a number of these enzymes from Gram-positive organisms have been cloned, and the nucleotide sequence determined. Phylogenetic analysis, using the deduced amino acid sequences of the Gram-positive hyaluronidases, suggests a relatedness among some of the enzymes. Molecular advances may lead to a more thorough understanding of the role of hyaluronidases in bacterial physiology and pathogenesis.  相似文献   

7.
8.
9.
This is a highlight on the article ‘Extracellular vesicle formation in Lactococcus lactis is stimulated by prophage-encoded holin-lysin system’ by Yue Liu, Eddy Smid and Tjakko Abee.  相似文献   

10.
Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.  相似文献   

11.
12.
Infections caused by multiple-resistant Gram-positive organisms continue to occur at an alarming rate worldwide. Two new and unique antimicrobial agents targeted specifically against such organisms, quinupristin/dalfopristin and linezolid, have been approved for use in the USA in the past year and will play an important role in the treatment of life-threatening infections. In addition, several new fluoroquinolones have been approved recently or will be available in the near future to aid in the treatment of infections caused by resistant strains of Streptococcus pneumoniae.  相似文献   

13.
Efflux pumps and drug resistance in Gram-negative bacteria   总被引:33,自引:0,他引:33  
The outer membrane of Gram-negative bacteria can only slow down the influx of lipophilic inhibitors, and so these bacteria need active efflux pumps of broad specificity to survive. Pumps such as the Escherichia coli Acr system and its homologs make Gram-negative bacteria resistant to dyes, detergents and antibiotics.  相似文献   

14.
Biofilm formation and dispersal in Gram-positive bacteria   总被引:1,自引:0,他引:1  
Biofilms are structured communities of bacteria, which are adhered to a surface and embedded in a self-produced matrix of extracellular polymeric substances. Since biofilms are very resistant to antimicrobial agents, they are at the basis of a range of problems, including quality and safety issues in food industry. Recently, major advances have been made in elucidating the different structural components of the biofilm matrix, the regulatory pathways involved in biofilm formation, and signaling molecules involved in biofilm formation and dispersal, which provide opportunities for prevention and control of these biofilms in the food industry.  相似文献   

15.
Cell envelope stress response in Gram-positive bacteria   总被引:1,自引:0,他引:1  
The bacterial cell envelope is the first and major line of defence against threats from the environment. It is an essential and yet vulnerable structure that gives the cell its shape and counteracts the high internal osmotic pressure. It also provides an important sensory interface and molecular sieve, mediating both information flow and the controlled transport of solutes. The cell envelope is also the target for numerous antibiotics. Therefore, the monitoring and maintenance of cell envelope integrity in the presence of envelope perturbating agents and conditions is crucial for survival. The underlying signal transduction is mediated by two regulatory principles, two-component systems and extracytoplasmic function sigma factors, in both the Firmicutes (low-GC) and Actinobacteria (high-GC) branches of Gram-positive bacteria. This study presents a comprehensive overview of cell envelope stress-sensing regulatory systems. This knowledge will then be applied for in-depth comparative genomics analyses to emphasize the distribution and conservation of cell envelope stress-sensing systems. Finally, the cell envelope stress response will be placed in the context of the overall cellular physiology, demonstrating that its regulatory systems are linked not only to other stress responses but also to the overall homeostasis and lifestyle of Gram-positive bacteria.  相似文献   

16.
Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.  相似文献   

17.
18.
目的了解重庆地区儿童感染的分离至临床标本的首位革兰阴性细菌和阳性细菌对常用抗生素的耐药趋势,指导临床合理使用抗生素。方法常规方法分离、培养细菌,应用美国德灵公司WalkAway-40细菌鉴定仪对2000年至2004年我院细菌室分离至临床标本的首位革兰阴性细菌和阳性细菌共2854株进行细菌鉴定及药敏试验。结果2000年至2004年检出的首位革兰阴性细菌和阳性细菌分别为大肠埃希菌和金黄色葡萄球菌。2000年至2004年前5位革兰阴性菌5777株,革兰阳性菌1565株,其中大肠埃希菌2090株,金黄色葡萄球菌764株,分别占36.2%和48.8%;5年间大肠埃希菌对氨苄西林、头孢吡肟、头孢西丁、庆大霉素、亚胺培南、环丙沙星、头孢噻肟、头孢他啶的总耐药率分别为80.9%、37.5%、15.4%、54.0%、0.8%、34.0%、46.6%、46.2%;金黄色葡萄球菌对青霉素、红霉素、复方新诺明、万古霉素、阿莫西林/克拉维酸的总耐药率分别为95.6%、63.4%、5.8%、0%、11.0%。结论通过细菌耐药监测发现:大肠埃希菌对常用抗生素的总耐药率变化不大,金黄色葡萄球菌对常用抗生素的总耐药率有下降趋势,应引起临床医生重视。  相似文献   

19.
The twin-arginine protein translocation (Tat) system has a unique ability to translocate folded and co-factor-containing proteins across lipid bilayers. The Tat pathway is present in bacteria, archaea and in the thylakoid membranes of chloroplasts and, depending on the organism and environmental conditions, it can be deemed important for cell survival, virulence or bioproduction. This review provides an overview of the current understanding of the Tat system with specific focus on Gram-positive bacteria. The ‘universal minimal Tat system’ is composed of a TatA and a TatC protein. However, this pathway is more commonly composed of two TatA-like proteins and one TatC protein. Often the TatA-like proteins have diverged to have two different functions and, in this case, the second TatA-like protein is usually referred to as TatB. The correct folding and/or incorporation of co-factors are requirements for translocation, and the known quality control mechanisms are examined in this review. A number of examples of crosstalk between the Tat system and other protein transport systems, such as the Sec–YidC translocon and signal peptidases or sheddases are also discussed. Further, an overview of specific Gram-positive bacterial Tat systems found in monoderm and diderm species is detailed. Altogether, this review highlights the unique features of Gram-positive bacterial Tat systems and pinpoints key questions that remain to be addressed in future research. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

20.
Denitrifying organisms are essential in removing fixed nitrogen pollutants from ecosystems (e.g. sewage sludge). They can be detrimental (e.g. for agricultural soil) and can also produce the greenhouse gas N2O (nitrous oxide). Therefore a more comprehensive understanding of this process has become increasingly important regarding its global environmental impact. Even though bacterial genome sequencing projects may reveal new data, to date the denitrification abilities and features in Gram-positive bacteria are still poorly studied and understood. The present review evaluates current knowledge on the denitrification trait in Gram-positive bacteria and addresses the likely existence of unknown denitrification genes. In addition, current molecular tools to study denitrification gene diversity in pure cultures and environmental samples seem to be highly biased, and additional novel approaches for the detection of denitrifying (Gram-positive) bacteria appear to be crucial in re-assessing the real diversity of denitrifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号