共查询到20条相似文献,搜索用时 0 毫秒
1.
The cell biology of receptor-mediated virus entry 总被引:1,自引:0,他引:1
The cell imposes multiple barriers to virus entry. However, viruses exploit fundamental cellular processes to gain entry to cells and deliver their genetic cargo. Virus entry pathways are largely defined by the interactions between virus particles and their receptors at the cell surface. These interactions determine the mechanisms of virus attachment, uptake, intracellular trafficking, and, ultimately, penetration to the cytosol. Elucidating the complex interplay between viruses and their receptors is necessary for a full understanding of how these remarkable agents invade their cellular hosts. 相似文献
2.
3.
While protein tyrosine (Tyr) kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. The inner-membrane Wzc/Etk protein belongs to the bacterial PTK family, which has an important function in regulating the polymerization and transport of virulence-determining capsular polysaccharide (CPS). The kinase uses a unique two-step activation process involving intra-phosphorylation of a Tyr residue, although the molecular mechanism remains unknown. Herein, we report the first crystal structure of a bacterial PTK, the C-terminal kinase domain of Escherichia coli Tyr kinase (Etk) at 2.5-A resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting mass spectrometric evidence of Etk, a unique activation mechanism is proposed that involves the phosphorylated Tyr residue, Y574, at the active site and its specific interaction with a previously unidentified key Arg residue, R614, to unblock the active site. Both in vitro kinase activity and in vivo antibiotics resistance studies using structure-guided mutants further support the novel activation mechanism. 相似文献
4.
Protein kinase A (PKA) holoenzyme is one of the major receptors for cyclic adenosine monophosphate (cAMP), where an extracellular stimulus is translated into a signaling response. We report here the structure of a complex between the PKA catalytic subunit and a mutant RI regulatory subunit, RIalpha(91-379:R333K), containing both cAMP-binding domains. Upon binding to the catalytic subunit, RI undergoes a dramatic conformational change in which the two cAMP-binding domains uncouple and wrap around the large lobe of the catalytic subunit. This large conformational reorganization reveals the concerted mechanism required to bind and inhibit the catalytic subunit. The structure also reveals a holoenzyme-specific salt bridge between two conserved residues, Glu261 and Arg366, that tethers the two adenine capping residues far from their cAMP-binding sites. Mutagenesis of these residues demonstrates their importance for PKA activation. Our structural insights, combined with the mutagenesis results, provide a molecular mechanism for the ordered and cooperative activation of PKA by cAMP. 相似文献
5.
6.
Wu Z Yan N Feng L Oberstein A Yan H Baker RP Gu L Jeffrey PD Urban S Shi Y 《Nature structural & molecular biology》2006,13(12):1084-1091
Intramembrane proteolysis regulates diverse biological processes. Cleavage of substrate peptide bonds within the membrane bilayer is catalyzed by integral membrane proteases. Here we report the crystal structure of the transmembrane core domain of GlpG, a rhomboid-family intramembrane serine protease from Escherichia coli. The protein contains six transmembrane helices, with the catalytic Ser201 located at the N terminus of helix alpha4 approximately 10 A below the membrane surface. Access to water molecules is provided by a central cavity that opens to the extracellular region and converges on Ser201. One of the two GlpG molecules in the asymmetric unit has an open conformation at the active site, with the transmembrane helix alpha5 bent away from the rest of the molecule. Structural analysis suggests that substrate entry to the active site is probably gated by the movement of helix alpha5. 相似文献
7.
8.
Opioid receptor random mutagenesis reveals a mechanism for G protein-coupled receptor activation 总被引:3,自引:0,他引:3
Décaillot FM Befort K Filliol D Yue S Walker P Kieffer BL 《Nature structural biology》2003,10(8):629-636
The high resolution structure of rhodopsin has greatly enhanced current understanding of G protein-coupled receptor (GPCR) structure in the off-state, but the activation process remains to be clarified. We investigated molecular mechanisms of delta-opioid receptor activation without a preconceived structural hypothesis. Using random mutagenesis of the entire receptor, we identified 30 activating point mutations. Three-dimensional modeling revealed an activation path originating from the third extracellular loop and propagating through tightly packed helices III, VI and VII down to a VI-VII cytoplasmic switch. N- and C-terminal determinants also influence receptor activity. Findings for this therapeutically important receptor may apply to other GPCRs that respond to diffusible ligands. 相似文献
9.
Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry 总被引:8,自引:0,他引:8
下载免费PDF全文

Tscherne DM Jones CT Evans MJ Lindenbach BD McKeating JA Rice CM 《Journal of virology》2006,80(4):1734-1741
Hepatitis C virus (HCV) is an important human pathogen associated with chronic liver disease. Recently, based on a genotype 2a isolate, tissue culture systems supporting complete replication and infectious virus production have been developed. In this study, we used cell culture-produced infectious HCV to analyze the viral entry pathway into Huh-7.5 cells. Bafilomycin A1 and concanamycin A, inhibitors of vacuolar ATPases, prevented HCV entry when they were present prior to infection and had minimal effect on downstream replication events. HCV entry therefore appears to be pH dependent, requiring an acidified intracellular compartment. For many other enveloped viruses, acidic pH triggers an irreversible conformational change, which promotes virion-endosomal membrane fusion. Such viruses are often inactivated by low pH. In the case of HCV, exposure of virions to acidic pH followed by return to neutral pH did not affect their infectivity. This parallels the observation made for the related pestivirus bovine viral diarrhea virus. Low pH could activate the entry of cell surface-bound HCV but only after prolonged incubation at 37 degrees C. This suggests that there are rate-limiting, postbinding events that are needed to render HCV competent for low-pH-triggered entry. Such events may involve interaction with a cellular coreceptor or other factors but do not require cathepsins B and L, late endosomal proteases that activate Ebola virus and reovirus for entry. 相似文献
10.
11.
E ter Haar J T Coll D A Austen H M Hsiao L Swenson J Jain 《Nature structural biology》2001,8(7):593-596
GSK3beta was identified as the kinase that phosphorylates glycogen synthase but is now known to be involved in multiple signaling pathways. GSK3beta prefers prior phosphorylation of its substrates. We present the structure of unphosphorylated GSK3beta at 2.7 A. The orientation of the two domains and positioning of the activation loop of GSK3beta are similar to those observed in activated kinases. A phosphate ion held by Arg 96, Arg 180 and Lys 205 occupies the same position as the phosphate group of the phosphothreonine in activated p38gamma, CDK2 or ERK2. A loop from a neighboring molecule in the crystal occupies a portion of the substrate binding groove. The structure explains the unique primed phosphorylation mechanism of GSK3beta and how GSK3beta relies on a phosphoserine in the substrate for the alignment of the beta- and alpha-helical domains. 相似文献
12.
Amide H/2H exchange reveals a mechanism of thrombin activation 总被引:1,自引:0,他引:1
Thrombin is a dual action serine protease in the blood clotting cascade. Similar to other clotting factors, thrombin is mainly present in the blood in a zymogen form, prothrombin. Although the two cleavage events required to activate thrombin are well-known, little is known about why the thrombin precursors are inactive proteases. Although prothrombin is much larger than thrombin, prethrombin-2, which contains all of the same amino acids as thrombin, but has not yet been cleaved between Arg320 and Ile321, remains inactive. Crystal structures of both prethrombin-2 and thrombin are available and show almost no differences in the active site conformations. Slight differences were, however, seen in the loops surrounding the active site, which are larger in thrombin than in most other trypsin-like proteases, and have been shown to be important for substrate specificity. To explore whether the dynamics of the active site loops were different in the various zymogen forms of thrombin, we employed amide H/(2)H exchange experiments to compare the exchange rates of regions of thrombin with the same regions of prothrombin, prethrombin-2, and meizothrombin. Many of the surface loops showed less exchange in the zymogen forms, including the large loop corresponding to anion binding exosite 1. Conversely, the autolysis loop and sodium-binding site exchanged more readily in the zymogen forms. Prothrombin and prethrombin-2 gave nearly identical results while meizothrombin in some regions more closely resembled active thrombin. Thus, cleavage of the Arg320-Ile321 peptide bond is the key to formation of the active enzyme, which involves increased dynamics of the substrate-binding loops and decreased dynamics of the catalytic site. 相似文献
13.
The ectodomain of the gD protein of herpes simplex viruses (HSVs) plays an important role in viral entry by binding to specific cellular coreceptors and mediating viral entry to the host cells. In the present study, we isolated RNA aptamers (aptamer-1 and aptamer-5) that specifically bind to the gD protein of HSV-1 with high affinity and are able to discriminate the gD protein of a different virus, HSV-2. Aptamer-1 efficiently interfered with the interaction between the gD protein and the HSV-1 target cell receptor (HVEM) in a dose-dependent manner. The 50% effective concentration (EC(50)) of aptamer-1 was estimated to be in the nanomolar range (60 nM). Furthermore, aptamer-1 was analyzed for anti-HSV-1 activity by using plaque assays, and it efficiently inhibited viral entry with an estimated K(i) of 0.8 μM. To expand the future applications of aptamer-1, a shorter variant was designed by using both mapping and boundary analyses, resulting in the mini-1 aptamer (44-mer). Compared to the full-length aptamer, mini-1 had at least as high an affinity, specificity, and ability to interfere with gD-HVEM interactions. These studies suggest that the mini-1 aptamer could be explored further as an anti-HSV-1 topical therapy designed to prevent the risk of acquiring HSV-1 infection through physical contact. 相似文献
14.
Fan YX Wong L Ding J Spiridonov NA Johnson RC Johnson GR 《The Journal of biological chemistry》2008,283(3):1588-1596
Autoinhibition plays a key role in the control of protein kinase activity. ErbB2 is a unique receptor-tyrosine kinase that does not bind ligand but possesses an extracellular domain poised to engage other ErbBs. Little is known about the molecular mechanism for ErbB2 catalytic regulation. Here we show that ErbB2 kinase is strongly autoinhibited, and a loop connecting the alphaC helix and beta4 sheet within the kinase domain plays a major role in the control of kinase activity. Mutations of two Gly residues at positions 776 and 778 in this loop dramatically increase ErbB2 catalytic activity. Kinetic analysis demonstrates that mutational activation is due to approximately 10- and approximately 7-fold increases in ATP binding affinity and turnover number, respectively. Expression of the activated ErbB2 mutants in cells resulted in elevated ligand-independent ErbB2 autophosphorylation, ErbB3 phosphorylation, and stimulation of mitogen-activated protein kinase. Molecular modeling suggests that the ErbB2 kinase domain is stabilized in an inactive state via a hydrophobic interaction between the alphaC-beta4 and activation loops. Importantly, many ErbB2 human cancer mutations have been identified in the alphaC-beta4 loop, including the activating G776S mutation studied here. Our findings reveal a new kinase regulatory mechanism in which the alphaC-beta4 loop functions as an intramolecular switch that controls ErbB2 activity and suggests that loss of alphaC-beta4 loop-mediated autoinhibition is involved in oncogenic activation of ErbB2. 相似文献
15.
Maia LF Soares MR Valente AP Almeida FC Oliveira AC Gomes AM Freitas MS Schneemann A Johnson JE Silva JL 《The Journal of biological chemistry》2006,281(39):29278-29286
The gamma(1)-peptide is a 21-residue lipid-binding domain from the non-enveloped Flock House virus (FHV). Unlike enveloped viruses, the entry of non-enveloped viruses into cells is believed to occur without membrane fusion. In this study, we performed NMR experiments to establish the solution structure of a membrane-binding peptide from a small non-enveloped icosahedral virus. The three-dimensional structure of the FHV gamma(1)-domain was determined at pH 6.5 and 4.0 in a hydrophobic environment. The secondary and tertiary structures were evaluated in the context of the capacity of the peptide for permeabilizing membrane vesicles of different lipid composition, as measured by fluorescence assays. At both pH values, the peptide has a kinked structure, similar to the fusion domain from the enveloped viruses. The secondary structure was similar in three different hydrophobic environments as follows: water/trifluoroethanol, SDS, and membrane vesicles of different compositions. The ability of the peptide to induce vesicle leakage was highly dependent on the membrane composition. Although the gamma-peptide shares some structural properties to fusion domains of enveloped viruses, it did not induce membrane fusion. Our results suggest that small protein components such as the gamma-peptide in nodaviruses (such as FHV) and VP4 in picornaviruses have a crucial role in conducting nucleic acids through cellular membranes and that their structures resemble the fusion domains of membrane proteins from enveloped viruses. 相似文献
16.
Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation
Sultana A Kallio P Jansson A Wang JS Niemi J Mäntsälä P Schneider G 《The EMBO journal》2004,23(9):1911-1921
SnoaL belongs to a family of small polyketide cyclases, which catalyse ring closure steps in the biosynthesis of polyketide antibiotics produced in Streptomyces. Several of these antibiotics are among the most used anti-cancer drugs currently in use. The crystal structure of SnoaL, involved in nogalamycin biosynthesis, with a bound product, has been determined to 1.35 A resolution. The fold of the subunit can be described as a distorted alpha+beta barrel, and the ligand is bound in the hydrophobic interior of the barrel. The 3D structure and site-directed mutagenesis experiments reveal that the mechanism of the intramolecular aldol condensation catalysed by SnoaL is different from that of the classical aldolases, which employ covalent Schiff base formation or a metal ion cofactor. The invariant residue Asp121 acts as an acid/base catalyst during the reaction. Stabilisation of the enol(ate) intermediate is mainly achieved by the delocalisation of the electron pair over the extended pi system of the substrate. These polyketide cyclases thus form of family of enzymes with a unique catalytic strategy for aldol condensation. 相似文献
17.
The structure of human prokallikrein 6 reveals a novel activation mechanism for the kallikrein family 总被引:3,自引:0,他引:3
Gomis-Rüth FX Bayés A Sotiropoulou G Pampalakis G Tsetsenis T Villegas V Avilés FX Coll M 《The Journal of biological chemistry》2002,277(30):27273-27281
Zyme/protease M/neurosin/human kallikrein 6 (hK6) is a member of the human kallikrein family of trypsin-like serine proteinases and was originally identified as being down-regulated in metastatic breast and ovarian tumors when compared with corresponding primary tumors. Recent evidence suggests that hK6 may serve as a circulating tumor marker in ovarian cancers. In addition, it was described in the brain of Parkinson's disease and Alzheimer's disease patients, where it is implicated in amyloid precursor protein processing. It is thus a biomarker for these diseases. To examine the mechanism of activation of hK6, we have solved the structure of its proform, the first of a human kallikrein family member. The proenzyme displays a fold that exhibits chimeric features between those of trypsinogen and other family members. It lacks the characteristic "kallikrein loop" and forms the six disulfide bridges of trypsin. Pro-hK6 displays a completely closed specificity pocket and a unique conformation of the regions involved in structural rearrangements upon proteolytic cleavage activation. This points to a novel activation mechanism, which could be extrapolated to other human kallikreins. 相似文献
18.
Herpes simplex virus entry mediator associates in infected cells in a complex with viral proteins gD and at least gH 总被引:2,自引:0,他引:2
下载免费PDF全文

We examined herpes simplex virus (HSV)-infected human HEp-2 cells or porcine cells that express herpes virus entry mediator (HVEM) for virus and receptor protein interactions. Antibody to HVEM, or its viral ligand gD, coimmunoprecipitated several similar proteins. A prominent 110-kDa protein that coprecipitated was identified as gH. The HVEM/gD/gH complex was detected with mild or stringent cell lysis conditions. It did not form in cells infected with HSV-1(KOS)Rid1 virus or with null virus lacking gD, gH, or gL. Thus, in cells a complex forms through physical associations of HVEM, gD, and at least gH. 相似文献
19.
Herpes simplex virus type 1 entry through a cascade of virus-cell interactions requires different roles of gD and gH in penetration. 总被引:3,自引:24,他引:3
下载免费PDF全文

We examined the entry process of herpes simplex virus type 1 (HSV-1) by using infectious virus and previously characterized noninfectious viruses that can bind to cells but cannot penetrate as a result of inactivation of essential viral glycoprotein D (gD) or H (gH). After contact of infectious virus with the cell plasma membrane, discernible changes of the envelope and tegument could be seen by electron microscopy. Noninfectious virions were arrested at distinct steps in interactions with cells. Viruses inactivated by anti-gD neutralizing antibodies attached to cells but were arrested prior to initiation of a visible fusion bridge between the virus and cell. As judged from its increased sensitivity to elution, virus lacking gD was less stably bound to cells than was virus containing gD. Moreover, soluble gD could substantially reduce virus attachment when added to cells prior to or with the addition of virus. Virus inactivated by anti-gH neutralizing antibodies attached and could form a fusion bridge but did not show expansion of the fusion bridge or extensive rearrangement of the envelope and tegument. We propose a model for infectious entry of HSV-1 by a series of interactions between the virion envelope and the cell plasma membrane that trigger virion disassembly, membrane fusion, and capsid penetration. In this entry process, gD mediates a stable attachment that is likely required for penetration, and gH seems to participate in fusion initiation or expansion. 相似文献
20.
Crystal structure of unliganded influenza B virus hemagglutinin 总被引:2,自引:0,他引:2
Here we report the crystal structure of hemagglutinin (HA) from influenza B/Hong Kong/8/73 (B/HK) virus determined to 2.8 Å. At a sequence identity of ~25% to influenza A virus HAs, B/HK HA shares a similar overall structure and domain organization. More than two dozen amino acid substitutions on influenza B virus HAs have been identified to cause antigenicity alteration in site-specific mutants, monoclonal antibody escape mutants, or field isolates. Mapping these substitutions on the structure of B/HK HA reveals four major epitopes, the 120 loop, the 150 loop, the 160 loop, and the 190 helix, that are located close in space to form a large, continuous antigenic site. Moreover, a systematic comparison of known HA structures across the entire influenza virus family reveals evolutionarily conserved ionizable residues at all regions along the chain and subunit interfaces. These ionizable residues are likely the structural basis for the pH dependence and sensitivity to ionic strength of influenza HA and hemagglutinin-esterase fusion proteins. 相似文献