首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pentylenetetrazol on the metacerebral neuron of Helix pomatia   总被引:1,自引:0,他引:1  
The effects of Pentylenetetrazol (PTZ) on the metacerebral giant cell (MCC) of the snail, Helix pomatia were studied. Actions on membrane resistance, time constant, resting and action potentials, outward and inward ionic currents were examined. Superfusion with PTZ in concentrations of 25 to 50 mmol/l, induced a gradually evolving convulsive state, which could be studied by intracellular recording from the MCCs. In the pre-convulsive state an acceleration of the spontaneous activity developed and was followed by paroxysmal depolarization shifts (PDSs), in the convulsive phase. PTZ prolonged the membrane time constant by about 10 percent, but this could not be traced back to alterations in membrane resistance or capacity. The resting membrane potential was not significantly altered; the action potentials were prolonged by slowing down of both the rising and decaying phases. The outward potassium currents were repressed by PTZ in a voltage dependent manner. The decrease of the IA current became more pronounced at increasingly positive command pulses, while IK was relieved from depression especially at longer pulse durations. Inward currents were isolated with the aid of suppression of outward currents by 50 mmol/l TEA. Under these conditions sodium currents, measured in calcium deficient Ringer solution were moderately depressed, while the calcium currents, examined during sodium-free superfusion, were mildly enhanced by PTZ. It is concluded that PTZ effects on ionic conductances, on membrane parameters, on the resting potential and ionic currents explain only modifications of spike potentials occurring in the convulsive state and do not account for the PDS, the central phenomenon of the convulsive electrographic activity, at least in this thoroughly examined type of neuron.  相似文献   

2.
The membrane properties of isolated neurons from Helix aspersa were examined by using a new suction pipette method. The method combines internal perfusion with voltage clamp of nerve cell bodies separated from their axons. Pretreatment with enzymes such as trypsin that alter membrane function is not required. A platinized platinum wire which ruptures the soma membrane allows low resistance access directly to the cell's interior improving the time resolution under voltage clamp by two orders of magnitude. The shunt resistance of the suction pipette was 10-50 times the neuronal membrane resistance, and the series resistance of the system, which was largely due to the tip diameter, was about 10(5) omega. However, the peak clamp currents were only about 20 nA for a 60-mV voltage step so that measurements of membrane voltage were accurate to within at least 3%. Spatial control of voltage was achieved only after somal separation, and nerve cell bodies isolated in this way do not generate all-or-none action potentials. Measurements of membrane potential, membrane resistance, and membrane time constant are equivalent to those obtained using intracellular micropipettes, the customary method. With the axon attached, comparable all-or-none action potentials were also measured by either method. Complete exchange of Cs+ for K+ was accomplished by internal perfusion and allowed K+ currents to be blocked. Na+ currents could then be blocked by TTX or suppressed by Tris-substituted snail Ringer solution. Ca2+ currents could be blocked using Ni2+ and other divalent cations as well as organic Ca2+ blockers. The most favorable intracellular anion was aspartate-, and the sequence of favorability was inverted from that found in squid axon.  相似文献   

3.
Summary Potassium currents of various durations were obtained from squid giant axons voltage-clamped in artificial seawater solutions containing sufficient tetrodotoxin to block the sodium conductance completely. From instantaneous potassium current-voltage relations, the reversal potentials immediately at the end of these currents were determined. On the basis of these reversal potential measurements, the potassium ion concentration gradient across the membrane was shown to decrease as the potassium current duration increased. The kinetics of this change was shown to vary monotonically with the potassium ion efflux across the membrane estimated from the integral over time of the potassium current divided by the Faraday, and to be independent of both the external sodium ion concentration and the presence or absence of membrane series resistance compensation. It was assumed that during outward potassium current flow, potassium ions accumulated in a periaxonal space bounded by the membrane and an external diffusion barrier. A model system was used to describe this accumulation as a continuous function of the membrane currents. On this basis, the mean periaxonal space thickness and the permeability of the external barrier to K+ were found to be 357 Å and 3.21×10–4 cm/sec, respectively. In hyperosmotic seawater, the value of the space thickness increased significantly even though the potassium currents were not changed significantly. Values of the resistance in series with the membrane were calculated from the values of the permeability of the external barrier and these values were shown to be roughly equivalent to series resistance values determined by current clamp measurements. Membrane potassium ion conductances were determined as a function of time and voltage. When these were determined from data corrected for the potassium current reversal potential changes, larger maximal potassium conductances were obtained than were obtained using a constant reversal potential. In addition, the potassium conductance turn-on with time at a variety of membrane potentials was shown to be slower when potassium conductance values were obtained using a variable reversal potential than when using a constant reversal potential.  相似文献   

4.
Whole-cell and single-channel calcium currents were studied using single smooth muscle cells enzymatically-isolated from stomach of Amphiuma tridactylum and from guinea-pig aorta. These cells have a high specific resistance and can sustain calcium action potentials after suppression of potassium currents. Dialyzed Amphiuma smooth muscle cells had calcium currents which were stable for several hours whereas the calcium currents of aortic cells ran down quickly. Single channel calcium currents in cell-attached patches behaved similarly for the two cell types. Calcium channel conductance in 110 mM barium was 12 pS and the mean open time was 1.4 ms at a nominal membrane potential of +10 mV. Exposure of both cell types to BAY K8644 resulted in a dramatic prolongation of the calcium channel open times and a shift in the probability of opening to more negative potentials. Low-threshold calcium channels were not identified in the extensively studied amphibian cells. High-threshold calcium channels therefore appear to be the primary pathway for the calcium influx that produces contraction in these smooth muscle cells.  相似文献   

5.
Experiments on sodium channel inactivation kinetics were performed on voltage-clamped crayfish giant axons. The primary goal was to investigate whether channels must open before inactivating. Voltage-clamp artifacts were minimized by the use of low-sodium solutions and full series resistance compensation, and the spatial uniformity of the currents was checked with a closely spaced pair of electrodes used to measure local current densities. For membrane potentials between -40 and +40 mV, sodium currents decay to zero with a single exponential time-course. The time constant for decay is a steep function of membrane potential. The time-course of inactivation measured with the double-pulse method is very similar to the decay of current at the same potential. Steady-state inactivation curves measured with different test pulses are identical. The time-course of double pulse inactivation shows a lag that roughly correlates with the opening of sodium channels, but detailed comparisons with the time course of the prepulse current suggest that it is not strictly necessary for channels to open before inactivating. Measurements of the potential dependence of the integral of sodium conductance area also inconsistent with the simplest cases of models in which channels must open before inactivating.  相似文献   

6.
Sodium currents after repolarization to more negative potentials after initial activation were digitally recorded in voltage-clamped Myxicola axons compensated for series resistance. The results are inconsistent with a Hodgkin-Huxley-type kinetic scheme. At potentials more negative than -50 mV, the Na+ tails show two distinct time constants, while at more positive potentials only a single exponential process can be resolved. The time-course of the tail currents was totally unaffected when tetrodotoxin (TTX) was added to reduce gNa to low values, demonstrating the absence of any artifact dependent on membrane current. Tail currents were altered by [Ca++] in a manner consistent with a simple alteration in surface potential. Asymmetry current "off" responses are well described by a single exponential. The time constant for this response averaged 2.3 times larger than that for the rapid component of the Na+ repolarization current and was not sensitive to pulse amplitude or duration, although it did vary with holding potential. Other asymmetry current observations confirm previous reports on Myxicola.  相似文献   

7.
The purpose of this study was to investigate the actions of estradiol on spontaneous and evoked action potentials in the isolated longitudinal smooth muscle cells of the pregnant rat. Single cells were obtained by enzymatic digestion from pregnant rat longitudinal myometrium. Action potentials and currents were recorded by whole-cell current-clamp and voltage-clamp methods, respectively. The acute effects of 17beta-estradiol on action potentials and inward and outward currents were investigated. The following results were obtained. The average resting membrane potential of single myometrial cells was -54 mV (n = 40). In many cells, an electrical stimulation evoked a membrane depolarization, and action potentials were superimposed on the depolarization. In some cells, spontaneous action potentials were observed. Estradiol (30 microM) slightly depolarized the membrane (ca. 5 mV) and attenuated the generation of action potentials by reducing the frequency and amplitude of the spikes. Afterhyperpolarization was also attenuated by estradiol (30 microM). On the other hand, in 5 of 35 cells, estradiol increased the first spike amplitude and action potential duration, while frequency of the spike generation and afterhyperpolarization were inhibited. In voltage-clamped muscle cells, estradiol inhibited both inward and outward currents. Acute inhibition or augmentation of spike generation by estradiol is due to the balance of inhibition of inward and outward currents. Inhibition of both currents also prevented afterhyperpolarization, causing potential-dependent block of Ca spikes.  相似文献   

8.
Gap junctional coupling between progenitor cells of regenerating retina in the adult newt was examined by a slice-patch technique. Retinal slices at the early regeneration stage comprised one to two layers of cells with mitotic activity, progenitor cells. These cells were initially voltage-clamped at a holding potential of -80 mV, near their resting potentials, and stepped to either hyperpolarizing or depolarizing test potentials under suppression of voltage-gated membrane currents. About half the cells showed passively flowing currents that reversed polarity around their resting potentials. The currents often exhibited a voltage- and time-dependent decline. As the difference between the test potential and resting potential increased, the time until the current decreased to the steady-state level became shorter and the amount of steady-state current decreased. Thus, the overall current profile was almost symmetrical about the current at the resting potential. Input resistance estimated from the initial peak of the currents was significantly smaller than that expected in isolated progenitor cells. In a high-K(+) solution, which decreased the resting potential to around 0 mV, the symmetrical current profile was also obtained, but only when the membrane potential was held at 0 mV before the voltage steps. These observations suggest that the current was driven and modulated by the junctional potential difference between the clamping cell and its neighbors. In addition, we examined effects of uncoupling agents on the currents. A gap junction channel blocker, halothane, suppressed the currents almost completely, indicating that the currents are predominantly gap junctional currents. Furthermore, injection of biocytin into the current-recorded cells revealed tracer coupling. These results demonstrate that progenitor cells of regenerating retina couple with each other via gap junctions, and suggest the presence of their cytoplasmic communication during early retinal regeneration.  相似文献   

9.
Voltage-activated Ca2+ currents in insulin-secreting cells   总被引:6,自引:0,他引:6  
I Findlay  M J Dunne 《FEBS letters》1985,189(2):281-285
Membrane voltage and voltage-clamped membrane currents have been investigated with the whole-cell patch clamp method in the insulin-secreting cell line RINm5F. The mean resting membrane potential of RINm5F cells was found to be -52 mV. Overshooting spike potentials could be evoked by depolarising voltage steps in the absence of a secretagogue. Inward membrane currents evoked by depolarising voltage steps were dependent upon extracellular Ca2+ and blocked by Co2+, nifedipine and verapamil. Outward membrane currents which were evoked by depolarising voltage steps to positive membrane potentials were reduced when Ca2+ entry was prevented. It is concluded that the voltage-activated Ca2+ currents underlie the voltage-activated spike potentials recorded from insulin-secreting cells.  相似文献   

10.
Undifferentiated rat pheochromocytoma PC12 cells were current clamped using the whole cell technique. Measurements of cell membrane resting potentials (RMP) gave values in the -30 and -50 mV range. Cell input resistance was between 200 and 400 Mohm. After blockade of K+ currents with intracellular Cs+, cell membrane depolarization showed that PC12 cells are able to generate active responses (i.e., calcium action potentials followed by after-hyperpolarizations partially blocked by tetraethylammonium). Taken together, our results indicate that PC12 cells do not require exposure to nerve growth factor to become electrically excitable.  相似文献   

11.
The effects of serotonin (5-HT) on membrane potential, membrane resistance, and select ionic currents were examined in large pedal neurons (LP1, LP3) of the mollusk Hermissenda. Calcium (Ca) action potentials were evoked in sodium-free artificial seawater containing tetramethylammonium, tetraethylammonium, and 4-aminopyridine (0-Na, 4-AP, TEA ASW). They failed at stimulation rates greater than 0.5/sec and were blocked by cadmium (Cd). Under voltage clamp the calcium current (ICa) responsible for them also failed with repeated stimulation. Thus, ICa inactivation accounts for refractoriness of the Ca action potential. The addition of 10 microM 5-HT to 0-Na, 4-AP, TEA ASW produced a slight depolarization and increased excitability and input resistance. Under voltage clamp the background current decreased. The voltage-dependent inward, late outward, and outward tail currents, sensitive to Cd, increased. ICa inactivation persisted. Under voltage clamp with Ca influx blocked by Cd, the addition of 10 microM 5-HT decreased the remaining current uniformly over membrane potentials of -10 to -100 mV. Thus, 5-HT reduces a background current that is active within the physiological range of the membrane potential, voltage insensitive, independent of Ca influx, noninactivating, and not blocked by 4-AP or TEA.  相似文献   

12.
We report that both Na+ and Ca2+ currents are involved in the action potentials and in the hormone release from rat somatotrophs in primary culture. Single somatotrophs were identified by reverse hemolytic plaque assay (RHPA) and transmembrane voltage and currents were recorded using the whole-cell mode of the patch-clamp technique. Somatotrophs displayed a mean resting potential of -80mV and an average input resistance of 5.7G omega. Most of the cells showed spontaneous or evoked action potentials. Single action potentials or the initial spike in a burst were characterized by their high amplitude and short duration. Tetrodotoxin (TTX, 1 microM) blocked single action potentials and the initial spikes in a burst, whereas action potentials of long duration and low amplitude persisted. Cobalt (2 mM) plus TTX (1 microM) blocked all the action potentials. Voltage-clamp experiments confirmed the presence of both a TTX-sensitive Na+ current and Co2(+)-sensitive Ca2+ currents. TTX or Na(+)-free medium slightly decreased the basal release of GH but did not markedly modify hGRF-stimulated GH release. However, Co2+ (2 mM), which partially decreased the basal release, totally blocked hGRF-stimulated release. We conclude that (1) Na+ currents which initiate rapid action potentials may participate in spontaneous GH release; (2) Ca2+ currents, which give rise to long duration action potentials and membrane voltage fluctuation, are probably involved in both basal and hGRF-stimulated GH releases.  相似文献   

13.
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).  相似文献   

14.
Summary Exposure of the mucosal side of toad(Bufo bufo) urinary bladder and frog(Rana ridibunda) skin to the polyene ionophore nystatin, resulted in stable preparations in which the apical resistance was negligible compared to the basolateral resistance. The preparations support passive K currents in both directions and an amiloride-insensitive Na current in the apicalserosal direction which is blocked by ouabain. The nystatintreated toad bladder was used to study the electrical properties of the basolateral membrane by means of current-voltage curves recorded transepithelially. The K current showed strong rectification at cellular potentials negative with respect to the interstitial space. The ouabain-sensitive current increased with membrane voltage at negative voltages but saturated above+20 mV.  相似文献   

15.
The effect of ether and halothane on the kinetics of sodium and potassium currents were investigated in the crayfish giant axon. Both general anesthetics produced a reversible, dose-dependent speeding up of sodium current inactivation at all membrane potentials, with no change in the phase of the currents. Double-pulse inactivation experiments with ether also showed faster inactivation, but the rate of recovery from inactivation at negative potentials was not affected. Ether shifted the midpoint of the steady-state fast inactivation curve in the hyperpolarizing direction and made the curve steeper. The activation of potassium currents was faster with ether present, with no change in the voltage dependence of steady-state potassium currents. Ether and halothane are known to perturb the structure of lipid bilayer membranes; the alterations in sodium and potassium channel gating kinetics are consistent with the hypothesis that the rates of the gating processes of the channels can be affected by the state of the lipids surrounding the channels, but a direct effect of ether and halothane on the protein part of the channels cannot be ruled out. Ether did not affect the capacitance of the axon membrane.  相似文献   

16.
Ionic current through batrachotoxin (BTX)-modified sodium channels within a wide range of membrane potentials were measured by the voltage clamp method on the membrane of a myelinated frog nerve fiber. At high positive voltages (above +80 mV) the current decreased with time; with an increase in voltage the steady-state level of the currents fell. The results of measurement of "instant" currents showed that this phenomenon is connected with a decrease in overall conductivity of the modified channels. Scorpion toxin had no significant effect on the kinetics of decline of the currents. This indicates that they are due to processes which differ from ordinary inactivation. In the presence of procaine, at high positive voltages slow (tens of milliseconds) potential-dependent blocking of BTX-modified channels was observed. An increase in negative potentials above ?100 mV caused a decrease in "instant" currents, connected with rapid potential-dependent blocking of BTX-modified sodium channels by calcium ions.  相似文献   

17.
Summary We have measured transmembrane currents in intact single cilia from frog olfactory receptor neurons. A single cilium on a neuron was sucked into a patch pipette, and a high-resistance seal was formed near the base of the cilium. Action potentials could be induced by applying suction or a voltage ramp to the ciliary membrane. A transient current was seen in some cells on stimulation with odorants. After excision from the cell, most of the cilia showed increased conductance in a bath containing cAMP, indicating that the cytoplasmic face of the ciliary membrane was accessible to the bath. The estimated resistance of a single cilium was surprisingly low.  相似文献   

18.
For many years, membrane potential (Vm) and input resistance have been used to characterize the electrophysiological nature of a seal (barrier) that forms at the cut end of a transected axon or other extended cytoplasmic structure. Data from a mathematical and an analog model of a transected axon and other theoretical considerations show that steady-state values of Vm and input resistance measured from any cable-like structure provide a very equivocal assessment of the electrical barrier (seal) at the cut end. Extracellular assessments of injury currents almost certainly provide a better electrophysiological measure of the status of plasma membrane sealing because measurements of these currents do not depend on the cable properties of extended cytoplasmic processes after transection.  相似文献   

19.
Currents through delayed rectifier-type K+ channels in Schwann cells cultured from rabbit sciatic nerve were studied with patch-clamp techniques. When the internal and external solutions contained physiological concentrations of sodium, the amplitude of these outward currents declined as the cell was depolarized to potentials above about +40 mV, despite the increased driving force. This reduction in the amplitude of outward K+ currents was observed in many cells before the subtraction of leakage currents; it was also observed for ensemble currents recorded in outside-out patches. It was therefore not the result of a leak-subtraction artefact nor of inadequate voltage-clamp control. Several lines of evidence also suggested that it was not the result of the extracellular accumulation of K+. By contrast, when the Na+ ion concentration of the internal solution was nominally zero, the reduction in the amplitude of outward K+ currents at positive membrane potentials was not observed. The apparent amplitude of single-channel currents through two types of K+ channel was reduced by 30 mM internal Na+, apparently as the result of a rapid 'flickery' block. The results suggest that channel block by internal Na+ is largely responsible for the negative slope conductance seen in current-voltage plots of whole-cell K+ currents at positive membrane potentials. In addition, our analysis of single-channel currents suggests that the current-voltage curve for a delayed rectifier channel in rabbit Schwann cells (in the absence of internal Na+) is roughly linear with internal and external K+ concentrations of 140 mM and 5.6 mM, respectively.  相似文献   

20.
Pantoja O  Gelli A  Blumwald E 《Plant physiology》1992,100(3):1137-1141
Patch-clamp techniques were employed to study the electrical properties of vacuoles from sugar beet (Beta vulgaris) cell suspensions at physiological concentrations of cytoplasmic Ca2+. Vacuoles exposed to K+ malate revealed the activation of instantaneous and time-dependent outward currents by positive membrane potentials. Negative potentials induced only instantaneous inward currents. The time-dependent outward currents were 10 times more selective for malate than for K+ and were completely blocked by zinc. Vacuoles exposed to KCl developed instantaneous currents when polarized to positive or negative membrane potentials. The time-dependent outward channels could serve as the route for the movement of malate into the vacuole, whereas K+ could move through the time-independent inward and outward channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号