首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We previously reported the set up of an automated test for screening the refolding of recombinant proteins expressed as inclusion bodies in Escherichia coli[1]. The screen used 96 refolding buffers and was validated with 24 proteins, 70% of which remained soluble in at least one buffer. In the present paper, we have analyzed in more detail these experimental data to see if the refolding process can be driven by general rules. Notably, we found that proteins with an acidic isoelectric point (pI) refolded in buffers the average pH of which was alkaline and conversely. In addition, the number of refolding buffers wherein a protein remained soluble increased with the difference between its pI and the average pH of the buffers in which it refolded. A trend analysis of the other variables (ionic strength, detergents, etc.) was also performed. On the basis of this analysis, we devised and validated a new refolding screen made of a single buffer for acidic proteins and a single buffer for alkaline proteins.  相似文献   

2.
Two different approaches are here reported for obtaining ultra-narrow pI cuts from 2-pH unit wide carrier ampholyte ranges, as commercially available, for use as quasi-isoelectric buffers in capillary electrophoresis separations of proteins. One of them uses multicompartment electrolyzers endowed with isoelectric membranes (Immobiline technology); the other employs the Rotofor equipment. Although the first approach results in more precise pI cuts, the latter technique is much faster, easier to handle and permits the immediate collection of 20 fractions in a single run. This results in ultra-narrow, ca. 0.1-pH unit intervals, uniformly spaced apart along the original wider gradient utilized for the fractionation. It is here shown that such quasi-isoelectric buffers, especially those in the pH 8-9 interval, have the unique property of coating the silica wall, thus preventing interaction of the proteins with the silica surface, that would otherwise totally disrupt the separation. On the contrary, such a shielding is not obtained in control, non isoelectric buffers (such as phosphate), that give very poor separations in uncoated capillaries. It is hypothesized that such a unique shielding effect is due to the oligo-amino backbone of the carrier ampholytes, typically composed (in the Vesterberg's synthetic approach) of 4-6 nitrogens spaced apart by ethylene moieties. Although such oligoprotic buffers should bear, in the isoelectric state, just one positive and one negative charge, they might be transiently ionized upon contact with the silanols, thus inducing a cooperative binding to the silica wall.  相似文献   

3.
The evolution of isoelectric focusing is traced back over the years, from a somewhat shaky origin to present-day immobilized pH gradients. Four generations of methodology are classified and discussed: (A) Kolin's approach, consisting of a two-step technique, generation of a pH gradient by diffusion followed by a rapid electrokinetic protein separation; (B) Svensson-Rilbe's approach, consisting of creating a pH gradient in an electric field by utilizing as buffers a multitude of carrier ampholytes, i.e. of amphoteric species possessing good buffering capacity and conductivity at their pI; (C) immobilized pH gradients, by which non-amphoteric buffers and titrants (acrylamido weak acids and bases), titrated around their pK values, are grafted (insolubilized) onto a polyacrylamide gel matrix and (D) mixed-bed carrier ampholyte-Immobiline gel, by which a soluble, carrier ampholyte generated pH gradient coexists in the same matrix with an insoluble, Immobiline generated, pH gradient.  相似文献   

4.
A new acrylamido buffer has been synthesized, for use in isoelectric focusing in immobilized pH gradients. This compound (2-acrylamido glycolic acid) has a pK = 3.1 (at 25 degrees C, 20 mM concentration during titration) and is used, by titration with the pK 9.3 Immobiline, to produce a linear pH gradient in the pH 2.5-3.5 interval. Pepsin (from pig stomach) focused in this acidic pH gradient is resolved into four components, two major (with pI values 2.76 and 2.78) and two minor (having pI values 2.89 and 2.90). This is the first time that such strongly acidic proteins could be focused in an immobilized pH gradient. Even in conventional isoelectric focusing in amphoteric buffers it has been impossible to focus reproducibly very-low-pI macromolecules.  相似文献   

5.
With the synthesis of a new, strongly basic Immobiline (pK 10.3 at 10 degrees C) it has been possible to formulate a new pH 10-11 recipe for focusing very alkaline proteins, not amenable to fractionation with conventional isoelectric focusing in carrier ampholyte buffers. In this formulation, water is added as an acidic Immobiline having pK = 14 and a unit molar concentration (or with a pK = 15.74 and standard 55.56 molarity) since around pH 11 its buffering power becomes significant. The gel contains a 'conductivity quencher', i.e. a density gradient incorporated in the matrix, with the dense region located on the cathodic side (pH 11) for (a) smoothing the voltage gradient on the separation cell and (b) reducing the anodic electrosmotic flow due to the net positive charge acquired by the matrix at pH 11 (1 mM excess protonated amino groups to act as counterions to the 1 mm OH- groups in the bulk water solution generated by the local value of pH 11). Excellent focusing is obtained for such alkaline proteins as lysozyme (pI 10.55), So-6 (a leaf protein, pI 10.49), cytochrome c (pI 10.45) and ribonuclease (pI 10.12).  相似文献   

6.
Cleland RE 《Plant physiology》1992,99(4):1556-1561
Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.  相似文献   

7.
The pH-dependence of acid-induced growth in excised segments of Avena sativa coleoptiles has been reinvestigated in the pH range 3 to 7. In contrast to previous reports (e.g. DL Rayle [1973] Planta 114: 63-73), only acidic buffers with a pH below 5.0 induce an extension response. A pH of 3.5 to 4.0 is required to mimic auxin-mediated growth. Very similar pH-response curves are obtained with both intact (abraded) and peeled coleoptiles. These results agree with the recent finding of a similarly low sensitivity to protons in maize coleoptiles. It is shown that the apparently much higher sensitivity to protons previously reported for peeled Avena coleoptiles is due to incubating the tissue in buffer of pH 6.8 between peeling and measuring the effect of acidic buffers. Neutral pH reversibly inhibits the spontaneous extension burst originating on release from tissue tension after removing the epidermis. Reversal of this inhibition can be achieved by buffers of pH 5.0 to 6.0 (or distilled water), thereby simulating an acid-induced growth response in this pH range. It is concluded that true acid-induced wall-loosening generally does not take place above pH 5.0 and that a pH considerably below 4.0 is required in order to stimulate growth to an extent comparable to that obtained in response to auxin. The “acid-growth theory,” which requires an acid-mediated loosening of the cell wall in the pH range 5 to 6, this pH being established by auxin-induced proton excretion, can therefore also not be substantiated in Avena.  相似文献   

8.
Changes in apparent pH occurring during fast freezing of aqueous buffer solutions and cooling to -196 degrees C were studied by various semiquantitative methods, including simple visual measurements of colour changes with pH indicators, as well as measurements of pH-dependent changes in the e.p.r. (electron paramagnetic resonance) spectra of solutions of three different metalloenzymes. It is concluded that apparent pH changes of up to about 3pH units may occur under particular conditions. Such changes were independent of the time taken to freeze the samples, when this was varied from about 3ms t0 20s, but were affected by the presence of some proteins in solution. Recommendations on the buffers that should be used to avoid such apparent pH changes in e.p.r. spectroscopy and other low-temperature biochemical work are made. Phosphate and pyrophosphate buffers, which gave large decreases (2-3 pH units), and Tris, which under some conditions gave increases of about the same magnitude, are to be avoided. Certain zwitterionic buffers such as Bicine [NN-bis-(2-hydroxyethyl)glycine] are satisfactory. Apparent pH effects were found to depend on buffer and protein concentration. It is therefore recommended that as a prelude to future detailed low-temperature biochemical work, appropriate tests with an indicator system should be performed.  相似文献   

9.
Human-human hybridoma cells secreting a human monoclonal antibody were cultured in a serum-free medium containing various organic pH buffers in order to clarify their effects on cell growth and antibody production. Organic pH buffers having either one sulfonic acid and several acyclic amine moieties, or several cyclic amine moieties containing two amino nitrogen did not inhibit cell growth; while other organic buffers sulfonic acid moiety plus several cyclic amine moieties containing one amino nitrogen slightly decreased cell growth, but enhanced antibody production. Using Fujita's organic conceptual diagram, a relationship between the organicity and inorganicity of a pH buffer to cell growth and antibody production was found. pH buffers with large inorganicity and small organicity values were favorable for cell growth, and buffers with small inorganicity and large organicity values were preferred to enhance antibody production. Although the pH buffering range affects cell growth, its effect on antibody production is not clear. In conclusion, 2-morpholinoethanesulfonic acid (MES), 3-morpholino-propanesulfonic acid (MOPS) and 1, 2-N, N-bis[N, N-di(2-sulfonoethyl)piperazinyl]ethane (Bis-PIPES) are shown to be the most optimal of the buffers tested, because they enhanced antibody production without decreasing the cell growth among the pH buffers tested here.  相似文献   

10.
J C Hansen  J Gorski 《Biochemistry》1985,24(22):6078-6085
The technique of aqueous two-phase partitioning (ATPP) has been used to characterize conformational and electrostatic properties of unoccupied and liganded rat uterine estrogen receptors. The adaptation of the hydroxylapatite receptor assay with ATPP systems has permitted estrogen receptor (ER) partition coefficients to be accurately determined, even when the partitioning process results in significant loss of ER binding capacity. The pH and salt dependences of estrogen receptor partition coefficients indicate that the theory governing partitioning behavior can be accurately applied to partitioning data obtained with crude cytosols. This technique has revealed a ligand-induced change in the properties of the unoccupied receptor that precedes the process of heat-induced transformation in vitro. The difference in partitioning behavior between unoccupied and nontransformed estrogen receptor is observed in all combinations of buffers and salts tested and is of equal magnitude as the difference between partition coefficients of nontransformed and transformed ER. The partition coefficients of both unoccupied and nontransformed ER are constant over the ER concentration range in which binding cooperativity has been previously demonstrated. The combined effects of salt and pH on ER partition coefficients indicate a pI of approximately 5.5 for both unoccupied and nontransformed estrogen receptors. However, the partition coefficients at the pI differ. It is concluded that estradiol binding to its unoccupied receptor results in a change in surface properties of the ER monomer that is independent of receptor transformation and makes the receptor less hydrophobic.  相似文献   

11.
The cofactor activation of the apoenzyme of pig heart cytosolic aspartate aminotransferase was studied in various buffers. Cationic buffers are shown to allow maximal reconstitution in the pH range of 5.0 to 9.0. Anionic buffers made up of mono- and dicarboxylates are found to affect reconstitution in a pH-dependent manner. At low pH, the carboxylates strongly inhibit reconstitution, but at high pH, they show less effect. In contrast, the more potent inhibitor Pi shows the opposite pH profile. Dicarboxylates are considerably more inhibitory than monocarboxylates. Substantial protection against inhibition by a number of carboxylates may be achieved by the addition of sodium chloride.  相似文献   

12.
Two-dimensional gel electrophoresis (2-DE) is used to compare the protein profiles of different crude biological samples. Narrow pH range Immobilized pH Gradient (IPG) strips were designed to increase the resolution of these separations. To take full advantage of IPG strips, the ideal sample should be composed primarily of proteins that have isoelectric point (pI) values within the pH range of the IPG strip. Prefractionation of cell lysates from a human prostate cancer cell line cultured in the presence or absence of epigallocatechin-3-gallate was achieved in fewer than 30 min using an anion-exchange resin and two expressly designed buffers. The procedure was carried out in a centrifuge tube and standard instrumentation was used. The cell lysates were prefractionated into two fractions: proteins with pI values above 7 and between 4 and 7, respectively. The fractions were then analyzed by 2-DE, selecting appropriate pH ranges for the IPG strips, and the gels were compared with those of unprefractionated cell lysates. Protein loading capacity was optimized and resolution and visualization of the less abundant and differentially expressed proteins were greatly improved.  相似文献   

13.
Two samples of a standard gelatin were studied, both prepared according to published specifications and washed free from diffusible electrolytes. The isoelectric point of this material was determined in four ways. 1. The pH values of solutions of gelatin in water approached the limit 4.86 ± 0.01 as the concentration of gelatin was increased. 2. The pH values of acetate buffers were unchanged by the addition of gelatin only at pH 4.85 ± 0.01. This gives the isoionic point of Sørensen, which is the isoelectric point with respect only to hydrogen and hydroxyl ions. 3. Gels of this gelatin made up in dilute HCl or NaOH, or in dilute acetate buffers, exhibited maximum turbidity at pH 4.85 ± 0.03. 4. Very dilute suspensions of collodion particles in 0.1 per cent gelatin solutions made up in acetate buffers showed zero velocity in cataphoresis experiments only at pH 4.80 ± 0.01. No evidence was found for the assumption that gelatin has two isoelectric points at widely separated pH values. It is concluded that the isoelectric point of this standard gelatin is not far from pH 4.85.  相似文献   

14.
A major protein in detergent extracts of skeletal muscle appears at 38,000 daltons in electrophoretic separations. Previous investigations have provided indirect evidence that a 38-kD skeletal muscle protein is membrane associated, and this inference has served as the basis for speculations on 38-kD protein function. In the present study, affinity purified, polyclonal antisera against 38-kD protein from skeletal muscle are produced for immunolocalization and biochemical assays. Immunoblots of two-dimensional electrophoretic separations show that this protein is heterogenously charged at pI approximately 6.4. This 38-kD protein is not extracted from muscle in low ionic strength or high ionic strength buffers, in isotonic buffers from pH 4 to pH 8 or in buffers containing 5 mM EGTA. The 38-kD protein is extracted, however, by isotonic, pH 7.0 buffer containing 1.0% Triton-X. Light microscope observations using indirect immunofluorescence of anti-38-kD labeled tissue show the protein distributed in a reticular pattern within cross-sectional muscle but not at the cell surface. Longitudinal sections show the protein concentrated in periodic, transverse bands. Purified fractions of muscle plasma membrane analyzed by immunoblotting contain 38-kD protein. Immunoblots using anti-38 kD show that this protein is present in all vertebrate skeletal muscle examined, however, the protein is present only in cardiac muscle that contains transverse tubules. The antibody does not recognize aldolase, another 38-kD striated muscle protein.  相似文献   

15.
Cytoplasmic expression is commonly used for production of recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) which most often comes with inclusion body formation. We expressed rhGM-CSF in periplasmic space of Escherichia coli and optimized its extraction by osmotic shock and purification by anion exchange chromatography. Our works show that MgCl2 at 2 mM in osmotic shock buffer improves extraction of the protein and reduces contamination with other proteins. To achieve a simplified purification procedure for rhGM-CSF, efforts were focused on the adjustment of pH of the buffers and application of proper concentration of salt. Following to measurement of the pI of 5.4 for rhGM-CSF by isoelectric focusing, the pH of dialysis buffer and buffers used in anion exchange chromatography were adjusted to 6.5 for optimal binding of the protein to the column and removal of proteins with higher pIs during washing of the column. In addition, it was found that appliance of NaCl at a concentration of 20 mM in dialysis and column washing buffers prior to elution with elution buffer containing 120 mM NaCl significantly improves purification of the protein. Starting with specific amount of total proteins obtained by osmotic shock, it was possible to recover 95% of which following to purification with a purification yield of 72% for rhGM-CSF along with appropriate biological activity.  相似文献   

16.
We report here the properties of a new family of resins possessing an amphoteric character and able to strongly buffer at their pI values. They have been adopted as carriers for growth of cells in tissue culture and for hydroponics (Righetti et al. 1991; J. Biotechnol. 17, 169-176) but it is to be expected that such resins could have interesting chromatographic applications. It has been found that such beads [made by incorporating a pK 6.2 weak acrylamido base and a pK 4.6 weak acrylamido acid in a 2:1 ratio (thus with a pI of 6.2) into a neutral polyacrylamide backbone], independently from their initial conditioning (acid- or base-washed), spontaneously seek their equilibrium position (pI value) upon washing off excess titrant. Thus, upon potentiometric titration, they are seen to buffer in both directions of the pH scale (contrary to the behaviour of a pure carboxyl or a pure amino surface, which will exhibit only unidirectional buffering power). From the behaviour of these amphoteric beads when polymerized in the absence or in the presence of salts (0.2 M NaCl), it is hypothesized that, for exerting buffering power, both the buffering ion and its counterion must be incorporated non-randomly in the chain, but as a couple or in close proximity. Upon random incorporation of the two ions, buffering power is lost.  相似文献   

17.
The possibility is reported here of fractionating proteins on amphoteric, buffering resins via ion-exchange chromatography. A given protein's adsorption to a particular amphoteric buffering resin is characterized by a bell-shaped curve in which the maximum protein binding capacity is observed at an optimum pH value lying approximately midway between the isoelectric point values (pI) of the resin and the protein. On either side of this maximum the protein binding capacity declines steadily, reaching zero at the pI of either the protein or exchanger. For instance, on beads of pI equal to 8, four proteins, two acidic (bovine albumin and ovalbumin) and two basic (cytochrome c and lysozyme), exhibit binding curves reaching zero values for the whole set when the exchanger is conditioned at pH 8.0. Away from the pI, and on both sides of the pH scale, the bell-shaped adsorption curves reach a maximum, for each protein, at a pH located at the midpoint between the pI values of each protein and that of the exchanger, and decline steadily to reach zero at the pI value of each protein species. Separation of model proteins using different amphoteric buffering resins of various pI was possible at different pH values according to both the pI of the proteins and of the exchangers. It was also demonstrated, using surface enhanced laser desorption/ionization mass spectrometry and two dimensional electrophoretic mapping, that separation of an Escherichia coli cell lysate on columns packed with amphoteric buffering resins of different pI and titrated to a particular pH value, delivered two distinctly different fractions, i.e. characteristically composed of, on the one hand, proteins having a pI below the buffer pH (the 'adsorbed' fraction), and on the other, of alkaline proteins possessing a pI above the pH of the buffer (the 'unadsorbed' fraction). This approach represents an attractive addition and/or alternative to the armory of protein pre-fractionation techniques currently employed in proteomics.  相似文献   

18.
A Tris-citrate pH 9.5 gel/borate pH 8.2 electrode discontinuous buffer system for starch gel electrophoresis of proteins was developed to resolve iso- and allozymes of aspartate aminotransferase in frogs (Hyla crucifer). This buffer system also enhanced resolution of NADP-dependent malate dehydrogenase and the L-lactate dehydrogenase-A locus in this species. It provided good resolution of NAD-dependent malate dehydrogenase in esocid fishes, and esterases, glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, alcohol dehydrogenase, and S-aconitate hydratase in ambystomatid salamanders. Variation suppressed by other buffers was revealed by this buffer for some enzyme encoding loci, while at other loci, this buffer suppressed electromorph variability. The concentration of tris(hydroxymethyl)aminomethane in gels made with this buffer was much higher than in pH 8.7 "Poulik" gels, but running characteristics of the two gel types were similar. Gels made with this new buffer were less prone to splitting and "warping" than Poulik gels, and were easier to handle. When screening a given taxon for enzyme variability, tests using multiple buffers are essential to maximize the amount of electrophoretically detectable variation.  相似文献   

19.
Nitrogen removal from wastewater by algae provides the potential benefit of producing lipids for biodiesel and biomass for anaerobic digestion. Further, ammonium is the renewable form of nitrogen produced during anaerobic digestion and one of the main nitrogen sources associated with wastewater. The wastewater isolates Scenedesmus sp. 131 and Monoraphidium sp. 92 were grown with ammonium, nitrate, or urea in the presence of 5 % CO2, and ammonium and nitrate in the presence of air to optimize the growth and biofuel production of these chlorophytes. Results showed that growth on ammonium, in both 5 % CO2 and air, caused a significant decrease in pH during the exponential phase causing growth inhibition due to the low buffering capacity of the medium. Therefore, biological buffers and pH controllers were utilized to prevent a decrease in pH. Growth on ammonium with pH control (synthetic buffers or KOH dosing) demonstrated that growth (rate and yield), biodiesel production, and ammonium utilization, similar to nitrate- and urea-amended treatments, can be achieved if sufficient CO2 is available. Since the use of buffers is economically limited to laboratory-scale experiments, chemical pH control could bridge the gap encountered in the scale-up to industrial processes.  相似文献   

20.
Cationized ferritin (CF) of narrow pI range (7.3-7.5) and the basic dye ruthenium red (RR) have been used as cationic probes to partially characterize anionic sites previously demonstrated in the glomerular basement membrane (GBM). When CF was given i.v. to normal rats and the left kidney was fixed by perfusion 15 min thereafter, clusters of CF molecules were found throughout the lamina rara interna (LRI), lamina rara externa (LRE), and mesangial matrix distributed at regular (approximately 60 nm) intervals. When kidneys were perfused with aldehyde fixative containing RR, small (20 nm) RR-stained particles were seen in the same locations distributed with the same 60 nm repeating pattern, forming a quasiregular, lattice-like arrangement. Fine (approximately 3 nm) filaments connected the sites and extended between them and the membranes of adjoining endothelial and epithelial cells. When CF was given i.v. followed by perfusion with RR in situ, both probes localized to the same sites. CF remained firmly bound after prolonged perfusion with 0.1-0.2 M KCl or NaCl. It was displaced by perfusion with buffers of high ionic strength (0.4-0.5 M KCl) or pH (less than 3.0 or greater than 10.0). CF also bound (clustered at approximately 60 nm intervals) to isolated GBM's, and binding was lost when such isolated GBM's were treated with buffers of high ionic strength or pH. These experiments demonstrate the existence of a quasi-regular, lattice-like network of anionic sites in the LRI and LRE and the mesangial matrix. The sites are demonstrable in vivo (by CF binding), in fixed kidneys (by RR staining), and in isolated GBM's (by CF binding). The results obtained with CF show that the binding of CF (and probably also RR) to the laminae rarae is electrostatic in nature since it is displaced by treatment with buffers of high ionic strength or pH. With RR the sites resemble in morphology and staining properties the proteoglycan particles found in connective tissue matrices and in association with basement membranes in several other locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号