首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of glucose transport in Candida utilis   总被引:2,自引:0,他引:2  
The transport systems for glucose present in Candida utilis cells, growing in batch and continuous cultures on several carbon sources, have been studied. Two different systems were found: a proton symport and a facilitated diffusion system. The high-affinity symport (Km for glucose about 15 microM) transported one proton per mole of glucose and was partially constitutive, appearing in cells grown on gluconeogenic substrates such as lactate, ethanol and glycerol. It was also induced by glucose concentrations up to 0.7 mM and repressed by higher ones. The level of repression depended on the external glucose concentration at which cells had grown in a way similar to that shown by the maltose-uptake system, so both systems seem to be under a common glucose control. Initial uptake by facilitated diffusion, the only transport system present in cells growing at glucose concentrations higher than 10 mM, showed a complex kinetic dependence on the extracellular glucose concentration. This could be explained either by the presence of at least two different systems simultaneously active, one with a Km around 2 mM and the other with a Km of about 1 M, or by the allosteric or hysteretic behaviour of a single carrier whose apparent Km would oscillate between 2 and 70 mM.  相似文献   

2.
Summary Fructose utilization in laboratory-scale sucrose adjunct brewers wort fermentations, using the brewing strainS. cerevisiae IGC 4261, is predicted by a mathematical model based on the kinetic parameters of the membrane transport proteins which affect fructose uptake into the cell. These include biphasic fructose transport via a proton symport and the constitutive hexose facilitated diffusion system, plus the competitive inhibitory effect that glucose has on this latter component. Also the non-competitive inhibitory effects of a) maltose on fructose uptake via its proton symport and b) ethanol on biphasic fructose transport are incorporated within the model, as well as the inoculum size.  相似文献   

3.
Glucose-repressed cells of the yeast Pichia ohmeri IGC 2879 transported glucose by facilitated diffusion. Derepression led to the formation of a glucose/proton symport and the simultaneous reduction of the facilitated diffusion capacity by about 70%. Cycloheximide prevented this interconversion indicating its dependence on de novo protein synthesis (proteosynthetic interconversion). In buffer with 2% glucose the glucose/proton symport suffered irreversible inactivation while the facilitated diffusion system was simultaneously restored. This reverse interconversion process did not require de novo protein synthesis as indicated by its lack of sensitivity to cycloheximide (degradative interconversion). Thus the glucose/proton symport system appeared to consist of about 70% of the facilitated diffusion proteins turned silent through association with additional protein(s) the latter being sensitive to glucose-induced repression and glucose-induced inactivation.  相似文献   

4.
Candida wickerhamii IGC 3244 growing in glucose medium transported glucose by facilitated diffusion (at 25°C and pH 5, the Ks value was 1.7 mM and the Vmax value was 1.6 mmol/h per g dry wt.), while cells grown under derepressed conditions produced a glucose proton symport (at 25°C and pH 5, the Ks value was 0.18 mM and the Vmax value was 1.8–1.9 mmol/h per g dry wt.). In each case, the Lineweaver-Burk plot of initial uptake rates was linear, indicating the presence of a single system. In buffer with 2% glucose, the symport suffered catabolite inactivation while the facilitated diffusion system emerged concomitantly in such a way that the combined Vmax remained nearly constant. During the conversion process, the Linewaver-Burk plots were biphasic, indicating the transitory co-existence of the two systems. A model is proposed that envisions the proton symport as composed of the facilitated diffusion system in association with (an)other transport protein(s), the latter being sensitive to carbon catabolite repression and inactivation.  相似文献   

5.
Calcitonin receptor-stimulating peptide-1 (CRSP-1) is a peptide recently identified from porcine brain by monitoring the cAMP production through an endogenous calcitonin (CT) receptor in the renal epithelial cell line LLC-PK(1). Here we investigated the effects of CRSP-1 on the ion transport and growth of LLC-PK(1) cells. CRSP-1 inhibited the growth of LLC-PK(1) cells with a higher potency than porcine CT. CRSP-1 enhanced the uptake of (22)Na(+) into LLC-PK(1) cells more strongly than did CT and slightly reduced the (45)Ca(2+) uptake. The enhancement of the (22)Na(+) uptake was abolished by 5-(N-ethyl-N-isopropyl) amiloride, a strong Na(+)/H(+) exchanger (NHE) inhibitor for NHE1, even at a concentration of 1x10(-8)M, although other ion transporter inhibitors did not affect the (22)Na(+) uptake. These results indicate that CRSP-1 enhances the (22)Na(+) uptake by the specific activation of NHE1. Taken together, CRSP-1 is considered to be a new regulator for the urinary ion excretion and renal epithelial cell growth.  相似文献   

6.
In a simple salts medium, monolayers of IEC-6 intestinal cells achieved concentrations of unmetabolized formycin B (an analog of inosine) about 6-fold higher than in the medium. Rates of formycin B influx were a saturable function of Na+ concentrations in the medium. Although IEC-6 cells possess sites with high affinity for nitrobenzylthioinosine, a potent inhibitor of equilibrative (facilitated diffusion) nucleoside transport systems in certain cell types, the inhibitor had only minor effects on formycin B uptake in IEC-6 cells, but reduced efflux of the analog from these cells. These findings indicate the joint presence in IEC-6 cells of nucleoside transporters of two types, one that is concentrative and Na+-dependent, and another that is sensitive to nitrobenzylthioinosine and apparently equilibrative.  相似文献   

7.
The white rot fungus, Phanerochaete chrysosporium, is one of the few organisms with documented ability to degrade lignin. Protoplasts from P. chrysosporium were disrupted by osmotic shock and membrane vesicles were isolated from the cell debris. The vesicles exhibit active glucose transport that is consistent with a glucose/H+ symport mechanism. An artificial gradient of H+ (outside greater than inside) stimulates glucose uptake. Conversely, a glucose gradient (outside greater than inside) results in the accumulation of H+ by the vesicles. Glucose uptake is not stimulated by either a Na+ or a K+ gradient. Furthermore, glucose transport is electrogenic, since glucose uptake may be driven by a membrane potential (negative interior) created by K+ diffusion mediated by valinomycin.  相似文献   

8.
Abstract Under conditions of derepression the yeast Candida wickerhamii formed a high-affinity glucose proton symport. Glucose and glucose analogues induced inactivation of the glucose proton symport and its interconversion into a low-affinity facilitated diffusion system. The specific inactivation rate increased with the concentration of the inactivating sugar and did not obey saturation kinetics. This dependence was still pronounced at sugar concentrations far above saturation of the glucose transport systems. This suggested that the inactivation and interconversion mechanism was triggered by interaction of the inactivating sugar with receptor sites located on the cell surface.  相似文献   

9.
The GLUT4 glucose transporter   总被引:5,自引:0,他引:5  
Huang S  Czech MP 《Cell metabolism》2007,5(4):237-252
Few physiological parameters are more tightly and acutely regulated in humans than blood glucose concentration. The major cellular mechanism that diminishes blood glucose when carbohydrates are ingested is insulin-stimulated glucose transport into skeletal muscle. Skeletal muscle both stores glucose as glycogen and oxidizes it to produce energy following the transport step. The principal glucose transporter protein that mediates this uptake is GLUT4, which plays a key role in regulating whole body glucose homeostasis. This review focuses on recent advances on the biology of GLUT4.  相似文献   

10.
E Shechter 《Biochimie》1986,68(3):357-365
Secondary active transport is defined as the transport of a solute in the direction of its increasing electrochemical potential coupled to the facilitated diffusion of a second solute (usually an ion) in the direction of its decreasing electrochemical potential. The coupling agents are membrane proteins (carriers), each of which catalyzes simultaneously the facilitated diffusion of the driving ion and the active transport of a given solute. The review starts with some considerations on the energetics followed by a presentation of the kinetics of secondary active transport. Examples of information which may be gained by such studies are discussed. In the second part, some examples of secondary transport are given; we also describe the characteristics of the corresponding carriers. The various transport systems presented are: the D-glucose/Na+ symport in brush-border membranes, the lactose/H+ symport in E. coli, the Na+/H+ antiport, the different transport systems in the inner mitochondrial membrane.  相似文献   

11.
The hexose supply and subsequent metabolism are crucial for the operations of the iono- and osmoregulatory mechanisms in fish, but how hexose is transported and supplied to cells of the ionoregulatory epithelia is unknown. Three zebrafish glucose transporters (zGLUTs), zGLUT1a, -13.1, and -6, were previously found to respectively be expressed by ionocytes (Na(+)-K(+)-ATPase-rich, Na(+)-Cl(-) cotransporter-expressing, and H(+)-ATPase-rich cells) and adjacent energy-depositing cells [glycogen-rich (GR) cells] in zebrafish skin and gills (32). The present study aimed to test if the transport kinetics of these three zGLUTs differ, and if the transport functional differences are of physiological relevance to the respective functions of epithelial cells. The three zGLUTs expressed by Xenopus laevis oocytes revealed different d-glucose transport kinetics; zGLUT13.1 showed the lowest Michaelis constant (K(m)), whereas zGLUT6 had the highest K(m) and maximal velocity. In morpholino injection experiments, translational knockdown of zGLUT1a and -13.1, respectively, impaired Cl(-)/Ca(2+) and Na(+)/Ca(2+) uptake, but loss-of-function of zGLUT6 did not cause a significant effect on ion uptake functions in zebrafish. Based on these results, zGLUT1a and -13.1 appear to be superior to zGLUT6 in competing for glucose under a situation of low blood glucose due to extensive energy consumption, whereas, in a high blood glucose situation, zGLUT6 is able to absorb the excess glucose for energy deposition. The timely and sufficient supply of energy to ionocytes so that they can carry out ion regulation is definitely a more important event than storing energy in GR cells, particularly when acute environmental change disturbs the ion balance in zebrafish.  相似文献   

12.
The acute effects of insulin on glucose utilization in isolated rat quiescent cardiac myocytes were studied. Insulin (80 nM) increased the rate of glucose clearance by 2-3 times in the presence of glucose ranging from 0.3 microM to 5.5 mM. Glucose transport, which was measured in terms of both D-glucose uptake in the presence of 0.3 microM D-glucose and initial rate of uptake of 3-O-methylglucose, was stimulated 3-fold in the presence of insulin. At higher glucose concentrations (greater than 100 microM), a decrease in glucose clearance rate due to a shift of the rate-limiting step from glucose transport to a post-transport step in the pathway of glucose metabolism was observed. At the physiological concentration of glucose (5.5 mM), about 73% of glucose was metabolized into lactate, about 10% was oxidized into CO2 and the rest (17%) remained inside the cells. The pentose phosphate pathway did not contribute to the glucose metabolism in these cells. Insulin (80 nM) significantly increased the uptake of glucose (112%), and the conversions of glucose into lactate (16%), glycogen (64%), and triglyceride (18%), but not into CO2 (3%). Insulin transiently increased the percentage of I-form of glycogen synthase by 16% above basal, but did not affect the percentage of a-form of glycogen phosphorylase. The content of glucose 6-phosphate in the cells was increased by 46% above the basal value in the presence of insulin. These results indicate that insulin has different acute stimulatory effects on various steps in the metabolic pathway of glucose in isolated quiescent cardiac myocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Abstract Saccharomyces cerevisiae IGC4261, a brewing strain, transported fructose and sorbose but not glucose by a high-affinity, low-capacity proton symport. The symport was not subject to glucose repression and coexisted with the facilitated diffusion system for glucose, fructose, sorbose and other sugars. Transport by the symport was accumulative. The stoichiometry was one proton per molecule of fructose. Maltose acted as a non-competitive inhibitor.  相似文献   

14.
Hind leg muscles of female rats (85-99 g) were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D-[U-14C]glucose, release of lactate and pyruvate, incorporation of D-[U-14C]glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-[1,2-3H]glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased by 50% the concentration of insulin receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.  相似文献   

15.
Xenopus laevis oocytes were used for expression and characterization of lobster (Homarus americanus) hepatopancreas Na(+)-dependent D-glucose transport activity. Poly(A)(+) RNA from the whole hepatopancreatic tissue was injected and transport activity was assayed by alpha-D-[2-(3)H] glucose. Injection of lobster hepatopancreatic poly(A)(+) RNA resulted in a dose (1-20 ng) and time (1-5 days) dependent increase of Na(+)-dependent D-glucose uptake. Kinetics of Na(+)-dependent glucose transport was a hyperbolic function (K(m)=0.47+/-0.04 mM) of external D-glucose concentration and a sigmoidal function (K(Na)=68.32+/-1.57 mM; Hill coefficient=2.22+/-0.09) of external Na(+) concentration. In addition, Na(+)-dependent D-glucose uptake was significantly inhibited by both (0.1-0.5 mM) phloridzin and (0.1-0.5 mM) methyl-alpha-D-glucopyranoside. After size fractionation through a sucrose density gradient, poly(A)(+) RNA fractions with an average length of 2-4 kb induced a twofold increase in Na(+)-dependent phloridzin-inhibited D-glucose uptake as compared to total poly(A)(+) RNA-induced uptake. The results of this study provide the functional basis to screen lobster hepatopancreatic cDNA libraries for clones encoding putative and still not known crustacean SGLT-type Na(+)/glucose co-transporter(s).  相似文献   

16.
Neves L  Lages F  Lucas C 《FEBS letters》2004,565(1-3):160-162
Previous studies evidenced in Saccharomyces cerevisiae the activity of a H(+)/glycerol symport, derepressed by growth on non-fermentable carbon sources, later associated with GUP1 and GUP2 genes. It was also demonstrated that only the combined deletion of GUP1, GUP2 together with GUT1 (glycerol kinase) abolished active transport in ethanol-induced cells. In this work, we show that a glycerol H(+)/symport, with identical characteristics to the previously described, was found in gup1gup2gut1 grown under salt-stress, particularly high in cells collected during diauxic-shift. These results suggest different roles for Gup1/2p than glycerol transport. The gene encoding for glycerol active uptake is thus yet unknown.  相似文献   

17.
Glycerol has been shown to cross the plasma membrane of Saccharomyces cerevisiae through (1) a H(+)/symport detected in cells grown on non-fermentable carbon sources, (2) the constitutively expressed Fps1p channel and (3) by passive diffusion. The Fps1p channel has been named a facilitator for mediating glycerol low affinity transport of the facilitated diffusion type. We present experimental evidence that this kinetic is an artefact created by glycerol kinase activity. Instead, the channel is shown to mediate the major part of glycerol's passive diffusion. This is not incompatible with Fps1p's major role in vivo, which has been previously shown to be the control of glycerol export under osmotic stress or in reaction to turgor changes. We also verified that FPS1 overexpression caused an increase in H(+)/symport V(max). Furthermore, yfl054c and fps1 mutants were equally affected by exogenously added ethanol, being the correspondent passive diffusion stimulated. For the first time, to our knowledge, a phenotype attributed to the functioning of YFL054c gene is presented. Glycerol passive diffusion is thus apparently channel-mediated. This is discussed according to glycerol's chemical properties, which contradict the widely spread concept of glycerol's liposoluble nature. The discussion considers the multiple roles that the intracellular levels of glycerol and its pathway regulation might play as a central key to metabolism control.  相似文献   

18.
We examined branchial Na(+) and Cl(-) uptake in two species of stenohaline, freshwater fish (goldfish and the Amazonian neon tetra). Kinetic analysis revealed that the two species had similar uptake capacities and affinities for Na(+) and Cl(-). However, while uptakes of Na(+) and Cl(-) (JNain and JClin, respectively) by goldfish were completely inhibited at pH 4.5 and below, uptake in tetras was unaffected by pH down to 3.25. Examination of Cl(-) transport with blockers indicated that goldfish and neon tetras utilize Cl(-)/HCO-3 exchange; SITS and SCN(-) inhibited Cl(-) uptake in both species. In contrast, large differences in Na(+) transport were indicated between the species. In goldfish, exposure to four Na(+)/H(+) exchange blockers, as well as the Na(+) channel blocker phenamil, strongly inhibited JNain. Further, Na(+) and Cl(-) uptake were strongly inhibited by the Na(+)/K(+)/Cl(-) cotransport inhibitor furosemide, as was JNain in "Cl(-)-free" water and JClin in "Na(+)-free" water. This suggests the presence of multiple transporters and possibly even a direct linkage between the transport of Na(+) and Cl(-) in goldfish. In contrast, none of these drugs strongly reduced Na(+) transport in neon tetras, which raises the possibility of a significantly different Na(+) transport mechanism in this acid-tolerant species.  相似文献   

19.
The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing, impairment of insulin action on muscle glucose transport and uptake. Thus maximal insulin-stimulated glucose uptake at 12 mM-glucose decreased from 34.8 +/- 1.9 to 11.5 +/- 1.1 mumol/h per g (mean +/- S.E.M., n = 10) during 5 h perfusion. This decrease in glucose uptake was accompanied by a similar change in muscle glucose transport as measured by uptake of 3-O-[14C]-methylglucose. Simultaneously, muscle glycogen stores increased to 2-3.5 times initial values, depending on fibre type. Perfusion for 5 h in the presence of glucose but in the absence of insulin decreased subsequent insulin action on glucose uptake by 80% of the effect of glucose with insulin, but without an increase in muscle glycogen concentration. Perfusion for 5 h with insulin but without glucose, and with subsequent addition of glucose back to the perfusate, revealed glucose uptake and transport similar to initial values obtained in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.  相似文献   

20.
Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser(645), Ser(649), Ser(653), Ser(657)) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. "Insulin resistance" is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号