首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melittin isolated from the venom of the common honey bee is a potent activator for bee venom phospholipase A2-catalyzed hydrolysis of unsonicated liposomes of egg phosphatidyl choline. At 37 °C and pH 8, the rate of this enzymatic reaction is increased approximately 300-fold by the addition of 8 × 10?5m melittin. The magnitude of facilitation of the phospholipase A2 reaction is much greater than that previously reported by other workers for systems involving sonicated egg phosphatidyl choline liposomes or Escherichia coli membrane fragments as substrates. Melittin having lysines quantitatively modified through reaction with methyl acetimidate is as effective a potentiator of phospholipase A2 activity as the unmodified material. The same result was obtained for melittin in which the single tryptophan residue was modified. Melittin modified by succinylation retained approximately 50% of its capacity to facilitate phospholipase A2 activity. In contrast, a modified melittin in which the C-terminal four amino residues were removed, acetimidated des(23–26)melittin, is a very poor activator, as is a mixture of this peptide with the C-terminal tetrapeptide. In contrast to the results with egg lecithin liposomes, melittin has little influence on the susceptibility of monomolecular aqueous solutions of dihexanoylphosphatidyl choline to phospholipase A2 attack.  相似文献   

2.
Conditions for the inactivation of phospholipase A2 which contaminates melittin preparations were studied. A method for the purification of that peptide from bee venom is proposed. It gives, with a high recovery, a product devoid of phospholipase A2 activity. In the first step, the venom is fractionated by gel filtration. Then the phospholipase A2 still present in the melittin fraction is destroyed by sequential sulfitolysis and cyanogen bromide cleavage. This leaves the melittin intact. The final cation-exchange chromatography yields an homogeneous melittin preparation as analyzed by gel filtration, reverse-phase HPLC, and amino acid analysis.  相似文献   

3.
Melittin, the main basic and hydrophobic peptide of bee venom, has been used for solubilizing membrane components of the human erythrocyte ghost. Up to 1.0 mM, it does not extract any phospholipid. Between 0.1 and 1.0 mM, it solubilizes partially glycophorin A and acetylcholinesterase. When the membrane is first degraded by phospholipase A2, the solubilization of both proteins by melittin is total, and 48% of the phospholipids are removed, mainly as lysoproducts, whereas phospholipase A2, by itself, has no solubilizing properties. In its melittin-solubilized state, acetylcholinesterase is in a dimeric form and displays a slow time-dependent irreversible inactivation. Triton X-100 at 1.0% (v/v) interrupts the inactivation. We suggest that melittin binds to the hydrophobic site of acetylcholinesterase which anchors it in the lipid bilayer.  相似文献   

4.
The rotational diffusion of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine vesicles was measured by the technique of flash-induced transient dichroism. In the presence of melittin, a cell lysing peptide from honey bee (Apis mellifera) venom, dose-dependent loss of rotational mobility was observed. Chemically modified melittin derivatives, in which free amine groups were either acetylated or succinylated, were impaired in their ability to induce immobilisation of bacteriorhodopsin. Bacteriorhodopsin reconstitutions of differing lipid/protein ratio were tested and it was found that the bacteriorhodopsin immobilisation phenomena depended on the melittin/protein ratio, not the melittin/lipid ratio. This suggests that melittin produces its effect via direct interaction with bacteriorhodopsin. A mechanism is proposed in which the aggregation of bacteriorhodopsin is induced by electrostatic attraction between its anionic surface moieties and the highly cationic C-terminal segment of melittin.  相似文献   

5.
《Biophysical journal》2022,121(8):1417-1423
While it is established that the topology of lipid membranes plays an important role in biochemical processes, few direct observations exist regarding how the membranes are actively restructured and its consequences on subsequent reactions. In this work, we investigated how the two major components of bee venom, melittin and phospholipase A2 (PLA2), achieve activation by such membrane remodeling. Their membrane-disrupting functions have been reported to increase when both are present, but the mechanism of this synergism had not been established. Using membrane reconstitution, we found that melittin can form large-scale membrane deformities upon which PLA2 activity is 25-fold higher. Tracking of single-molecule PLA2 revealed that its processive behavior on these deformities underlies the enhanced activity. These results show how melittin and PLA2 work synergistically to enhance the lytic effects of the bee venom. More broadly, they also demonstrate how the membrane topology may be actively altered to modulate cellular membrane-bound reactions.  相似文献   

6.
The emission maximum of the single tryptophan residue of melittin was measured in the presence of phosphatidylethanolamine liposomes and Escherichia coli cytoplasmic membranes. In both cases, the fluorescence maximum was shifted to shorter wavelengths indicating a transfer of the indole ring to an apolar environment. E. coli membranes were labelled in position 2 of their phospholipids with [14C]oleic acid. These membranes were used for measuring the activity of an endogenous phospholipase A2. A slow hydrolysis is observed, which can be accelerated by adding melittin. The extent of the stimulation depends on the molar ratio of melittin to membrane phospholipid. Under suitable conditions, the initial rate of hydrolysis is six to seven times higher in the presence than in the absence of melittin. The action of the phospholipase A2 from bee venom is also stimulated by melittin. An identical stimulation was observed with either E. coli membranes or pure phosphatidylethanolamine liposomes as substrate.  相似文献   

7.
Colominic acid is an 2,8-linked sialic acid polymer produced by Escherichia coli. We found that synthetic sulfated-colominic acids (SC) remarkably inhibited the cytotoxicity of bee and snake venom toward mouse fibroblast cells, but colominic acids showed no inhibition themselves, indicating the important role of sulfate groups in the inhibitory activity of SC. Other sulfated carbohydrates such as chondroitin sulfates, heparin and heparan sulfate showed no inhibition. SC also exhibited potent inhibition of melittin, a highly basic peptide, which is a major cytotoxic component of bee venom. SC did not inhibit phospholipase A2 activity in bee venom. This suggests that the inhibition of bee and snake venom by SC is due to inhibition of melittin and cardiotoxin, which is a cytolytic peptide in snake venom, respectively. SC with a higher sulfur content and a larger molecular mass showed more potent activity. The interaction between SC and melittin basically seems an ionic one, however, the conformation of SC is also likely important. For the binding of SC to melittin leading loss of its cytotoxic activity, the sulfate groups of SC must be properly arranged to interact with lysine and arginine residues of melittin molecules, which play an important role in the cytolytic activity. A higher molecular mass of SC substituted with more sulfate groups is required for more obvious inhibition of the cytotoxic activity.  相似文献   

8.
Human erythrocytes and erythrocyte ghost membranes were treated with native and modified melittins, up to 250 nmol/mg membrane protein. Native melittin induced aggregation of intramembranous particles (IMPs, observed by freeze-fracture electron microscopy), and created large, smooth bilayer areas devoid of IMP. The degree of IMP aggregation increased with increasing concentration of melittin, corresponding to hemolysis results. Membrane ghosts were slightly more susceptible to IMP aggregation than membranes on intact cells. The potency of inducing IMP aggregation was ranked in the order of: native melittin greater than acetylated melittin greater than succinylated melittin = 0. The concentration range of melittin which caused IMP aggregation corresponded to that which caused the immobilization of band 3 proteins as detected by measurement of rotational mobility by transient dichroism (Dufton et al. (1984) Eur. J. Biophys. 11, 17-24). Because both IMP aggregation and band 3 protein immobilization decreased with decreasing positive charge of the melittins used, the nature of melittin-protein interaction is likely to be at least in part electrostatic in the case of human erythrocyte membranes. Possible roles of IMP aggregation and the consequent creation of 'exposed' bilayer areas in the cytotoxic reaction of melittins are discussed.  相似文献   

9.
The interaction of bee venom melittin with erythrocyte membrane ghosts has been investigated by means of fluorescence quenching of membrane tryptophan residues, fluorescence polarization and ESR spectroscopy. It has been revealed that melittin induces the disorders in lipid-protein matrix both in the hydrophobic core of bilayer and at the polar/non-polar interface of melittin complexed with erythrocyte membranes. The peptide has been found to act most efficiently at the concentration of the order of 10(-10) mol/mg membrane protein. The apparent distance separating the membrane tryptophan and bound 1-anilino-8-naphthalenesulphonate (ANS) molecules is decreased upon melittin binding, which results in a significant increase of the maximum energy transfer efficiency. Significant changes in the fluorescence anisotropy of both 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalenesulphonate bound to erythrocyte ghosts, which have been observed in the presence of melittin and crude venom, indicate membrane lipid bilayer rigidization. The effect of crude honey bee venom has been found to be of similar magnitude as the effect of pure melittin at the concentration of 10(-10) mol/mg membrane protein. Using two lipophilic spin labels, methyl 5-doxylpalmitate and 16-doxylstearic acid, we found that melittin at its increasing concentrations induces a well marked rigidization in the deeper regions of lipid bilayer, whereas the effect of rigidization near the membrane surface maximizes at the melittin concentration of 10(-10) mol/mg (10(-4) mol melittin per mole of membrane phospholipid). The decrease in the ratio hw/hs of maleimide and the rise in relative rotational correlation time (tau c) of iodacetamid spin label, indicate that melittin effectively immobilizes membrane proteins in the plane of the lipid bilayer. We conclude that melittin-induced rigidization of the lipid bilayer may induce a reorganization of lipid assemblies as well as the rearrangements in membrane protein pattern and consequently the alterations in lipid-protein interactions. Thus, the interaction of melittin with erythrocyte membranes is supposed to produce local conformational changes in membranes, which are discussed in the connection with their significance during the synergistic action of melittin and phospholipase of bee venom on red blood cells.  相似文献   

10.
The allergenic activities of four purified components of honeybee venom were studied by using histamine release from leukocytes of bee sting-allergic patients. The components studied were hyaluronidase, phospholipase A2, melittin and apamin with molecular weights, respectively, of about 50,000, 15,800, 2840 and 2038 d. In six of the seven patients studied, hyaluronidase and phospholipase were, respectively, on the average about two and eight times more active by weight than the venom. The situation was reversed in one patient in that hyaluronidase and phospholipase A2 were, respectively, 90 and 0.5 times more active than the venom. With this single exception, hyaluronidase and phospholipase were about equally active on a molar basis as allergens. Melittin was on the average about one-tenth as active as the venom, and apamin was inactive as an allergen.Chemical modifications of phospholipase A2 were carried out. Succinylation of eight of its eleven amino groups yielded a derivative that retained 4% of the enzymic activity of the native enzyme. Reduction and carboxymethylation of its four disulfide bonds or cyanogen bromide cleavage of its three methionyl bonds yielded enzymatically inactive derivatives. These derivatives showed varying decreases of allergenic activities when compared to the native enzyme. The results indicate that the antigenic determinants of phospholipase depend on the charge, the amino acid sequence and the conformation of the molecule.  相似文献   

11.
The distribution of phospholipids across the membrane bilayer of Semliki Forest virus grown in BHK cells has been examined by treating the virus with bee venom phospholipase A2 and sphingomyelinase C from Staphylococcus aureus. From the amounts of different phospholipids which are degraded rapidly (half-time about 1 min for phospholipase A2) we calculate that in virus isolated 16 h after infection about 95% of sphingomyelin, 55% of phosphatidylcholine, 20% of phosphatidylethanolamine and less then 5% of phosphatidylserine is present on the outer leaflet of the virus envelope. Less than 5% of the virus was permeable to macromolecules before or after treatment with phospholipases as judged by accessibility of the genome to external ribonuclease. A much slower (half-time about 1 h) breakdown by phospholipase A2 of originally inaccessible phosphatidylcholine and phosphatidylethanolamine appeared to be due to an enzyme-induced loss of lipid asymmetry since the original asymmetric distribution of phospholipids was maintained for several hours when the virus alone was incubated at 37°C. However, virus incubated for 20 h at 37°C showed a marked loss of phosphatidylethanolamine and phosphatidylserine asymmetry and a greater susceptibility to lysis by longer treatment with phospholipase A2.  相似文献   

12.
Petrosaspongiolides are sponge metabolites belonging to the family of the γ-hydroxybutenolide marine terpenoids. They possess a remarkable in vitro and in vivo anti-inflammatory profile, due to the specific inhibition of group II and III secretory phospholipase A2 enzymes, and for this reason can be considered as potential lead for the development of anti-inflammatory drugs. The molecular mechanism of bee venom phospholipase A2 inactivation has been identified, and the ligand-enzyme complex formation is guided by either non-covalent and covalent interactions. In this work we have analyzed the conformational changes induced by petrosaspongiolide R on the bee venom phospholipase A2 topology during the molecular recognition process, through the application of limited proteolysis and mass spectrometric methodologies. The results are indicative of structural changes at the N- and C-terminal domains producing a more compact conformational arrangement of the enzyme.  相似文献   

13.
The effects of phospholipase A2 treatment on the tetrodotoxin receptors in Electrophorus electricus was studied. (1) The binding of [3H]tetrodotoxin to electroplaque membranes was substantially reduced by treatment of the membranes with low concentrations of phospholipase A2 from a number of sources, including bee venom, Vipera russelli and Crotalus adamanteus and by β-bungarotoxin. (2) Phospholipase A2 from bee venom and from C. adamanteus both caused extensive hydrolysis of electroplaque membrane phospholipids although the substrate specificity differed. Analysis of the phospholipid classes hydrolyzed revealed a striking correlation between loss of toxin binding and hydrolysis of phosphatidylethanolamine but not of phosphatidylserine. (3) The loss of toxin binding could be partially reversed by treatment of the membranes with bovine serum albumin, conditions which are known to remove hydrolysis products from the membrane. (4) Equilibrium binding studies on the effects of phospholipase A2 treatment on [3H]tetrodotoxin binding showed that the reduction reflected loss of binding sites and not a change in affinity. (5) These results are interpreted in terms of multiple equilibrium states of the tetrodotoxin-receptors with conformations determined by the phospholipid environment.  相似文献   

14.
Previous studies demonstrated that melittin, the main peptide in bee venom, could cause persistent spontaneous pain, primary heat and mechanical hyperalgesia, and enhance the excitability of spinal nociceptive neurons. However, the underlying mechanism of melittin-induced cutaneous hypersensitivity is unknown. Effects of melittin applied topically to acutely dissociated rat dorsal root ganglion neurons were studied using whole-cell patch clamp and calcium imaging techniques. Melittin induced intracellular calcium increases in 60% of small (<25 μm) and medium (<40 μm) diameter sensory neurons. In current clamp, topical application of melittin evoked long-lasting firing in 55% of small and medium-sized neurons tested. In voltage clamp, melittin evoked inward currents in sensory neurons in a concentration-dependent manner. Repeated application of melittin caused increased amplitude of the inward currents. Most melittin-sensitive neurons were capsaicin-sensitive, and 65% were isolectin B4 positive. Capsazepine, the TRPV1 receptor inhibitor, completely abolished the melittin-induced inward currents and intracellular calcium transients. Inhibitions of signaling pathways showed that phospholipase A2, but not phospholipase C, was involved in producing the melittin-induced inward currents. Inhibitors of cyclooxygenases (COX) and lipoxygenases (LOX), two key components of the arachidonic acid metabolism pathway, each partially suppressed the inward current evoked by melittin. Inhibitors of protein kinase A (PKA), but not of PKC, also abolished the melittin-induced inward currents. These results indicate that melittin can directly excite small and medium-sized sensory neurons at least in part by activating TRPV1 receptors via PLA2-COXs/LOXs cascade pathways.  相似文献   

15.
About 30% of the phosphatidylglycerol in oleic acid-enriched Acholeplasma laidlawii membranes are not hydrolyzed at temperatures below 10 °C by phospholipase A2 from porcine pancreas. Removal of 53% of the membrane proteins by proteolysis did not reduce the size of this inaccessible phosphatidylglycerol pool. However, modification of the membrane proteins with 2,4,6-trinitrobenzenesulfonic acid or glutaraldehyde did make an additional 70% of this protected pool of phosphatidylglycerol accessible to phospholipase A2. Complete hydrolysis of phosphatidylglycerol at low incubation temperatures was achieved only after heat treatment of the membranes which resulted in an extensive aggregation of intrinsic membrane proteins as visualized by freeze-etch electron microscopy. Phospholipase A2 from bee venom was more effective in hydrolyzing phosphatidylglycerol at low temperature than the pancreatic enzyme. These results show that the inaccessibility of phosphatidylglycerol is not due to resealing of isolated membranes, the presence of a crystalline phase in the membrane lipids, or a shielding effect of surface proteins. The protection against hydrolysis may be due to an interaction of phosphatidylglycerol with intrinsic membrane proteins which is stabilized at low temperatures. Increasing the temperature favors the exchange of protein-bound phosphatidylglycerol with other membrane lipids resulting in complete hydrolysis.  相似文献   

16.
The phospholipid composition of erythrocyte membranes from patients with multiple sclerosis (MS) was found to be normal, in agreement with previous reports. The transbilayer asymmetry of the glycerophospholipids in MS red cells was probed using bee venom phospholipase A2 and was also found not to be significantly different from normal. Abnormal membrane glycerophospholipid organisation is therefore not involved in the increased red cell size, osmotic fragility, and electrophoretic mobility associated with MS.  相似文献   

17.
The 25 residue presequence (p25) for subunit IV of yeast cytochrome oxidase had previously been shown to possess structural and behavioural characteristics in common with the bee venom polypeptide, melittin. The present study extends the results of leakage experiments on model-membrane systems to the haemolysis of human erythrocytes, which both peptides are shown to accomplish in a manner sensitive to membrane potential. In addition, the laser flash-induced transient dichroism technique for measuring protein rotational diffusion has been used to show that both peptides aggregate band 3, the major integral membrane protein of the erythrocyte. Aggregation cannot be reversed by high ionic strength; this serves to differentiate these peptides from other positively charged species such as polylysine that aggregate band 3 at low ionic strength. These results suggest that aggregation of membrane proteins may possibly prove to be a feature of the interaction of p25 signal peptide with mitochondrial membranes.  相似文献   

18.
Brain Coated Vesicle Destabilization and Phosphorylation of Coat Proteins   总被引:3,自引:1,他引:2  
Abstract: Two basic polypeptides, bee venom melittin and poly-L-lysine, induced concentration-dependent destabilization of bovine brain coated vesicles. Ultrastructurally the changes observed were aggregation of clathrin coats and segregation of the vesicle membrane, concomitant with the appearance of elongated cisternae of various sizes. Changes in coated vesicle morphology induced by melittin and poly-L-lysine were concurrent with stimulation of phosphate incorporation in proteins of the coat lattice: M, 33,000 and 100,000. Melittin-stimulated phosphorylation was Ca2+ sensitive and inhibited by EGTA. The initiation of vesicle membrane segregation by melittin, followed by fusion and formation of elongated membrane cisternae, paralleled an increase of endogenous phospholipase A2 activity. The data suggest that a correlation exists between the state of assembly of the coat proteins on coated vesicles and protein phosphorylation.  相似文献   

19.
The method of melittin (a lytic peptide from bee venom) purification is described. The method is based on application of immunosorbent with antibodies against phospholipase A2 and permits obtaining peptide without the residual phospholipase activity. It can be also used for the phospholipase A2 purification from melittin admixtures.  相似文献   

20.
There exists considerable controversy regarding membrane topography in vesicles derived by osmotic lysis of spheroplasts of Gram-negative bacteria. It has been reported by others that bee venom can be used to quantitate the portion of a heterogeneous vesicle population with an inside-out orientation by determining the degree of loss of crypticity of NADH dehydrogenase activity. We have demonstrated that a major component of bee venom, melittin, causes an increase in the activity of several different respiratory enzymes in isolated membrane vesicles of Paracoccus denitrificans. The degree of stimulation produced by melittin is dependent upon (i) the nature of the respiratory substrates, (ii) the pH, (iii) the presence of Mg2+, (iv) the melittin: membrane protein ratio, and (v) the growth history of the cells from which the membrane vesicles were derived. Melittin-induced enhancement of TMPD:ascorbate and cytochrome c oxidase activities cannot be accounted for by increased accessibility of nonpermeant substrate to the interior of the vesicle. The stimulatory effect of melittin may rely in part on its ability to alter the proton permeability of the membrane thereby abolishing respiratory control. Collectively these observations call into question the usefulness of bee venom melittin in quantitative analyses of membrane topography. These results are consistent with the postulated existence of a homogeneous vesicle population in which the topography of the NADH dehydrogenase is different from that of the intact cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号