首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noncompetitive and competitive intermolecular deuterium isotope effects were measured for the cytochrome P-450 catalyzed hydroxylation of a series of selectively deuterated chlorobenzenes. An isotope effect of 1.27 accompanied the meta hydroxylation of chlorobenzene-2H5 as determined by two totally independent methods (EC-LC and GC-MS assays). All isotope effects associated with the meta hydroxylation of chlorobenzenes-3,5-2H2 and -2,4,6-2H3 were approximately 1.1. In contrast, competitive isotope studies on the ortho and para hydroxylation of chlorobenzenes-4-2H1, -3,5-2H2, and -2,4,6-2H3 resulted in significant inverse isotope effects (approximately 0.95) when deuterium was substituted at the site of oxidation whereas no isotope effect was observed for the oxidation of protio sites. These results eliminate initial epoxide formation and initial electron abstraction (charge transfer) as viable mechanisms for the cytochrome P-450 catalyzed hydroxylation of chlorobenzene. The results, however, can be explained by a mechanism in which an active triplet-like oxygen atom adds to the pi system in a manner analogous to that for olefin oxidation. The resulting tetrahedral intermediate can then rearrange to phenol directly or via epoxide or ketone intermediates.  相似文献   

2.
The multifunctional cytochrome P450 monooxygenases P450-1 and P450-2 from Fusarium fujikuroi catalyze the formation of GA14 and GA4, respectively, in the gibberellin (GA)-biosynthetic pathway. However, the activity of these enzymes is qualitatively and quantitatively different in mutants lacking the NADPH:cytochrome P450 oxidoreductase (CPR) compared to CPR-containing strains. 3beta-Hydroxylation, a major P450-1 activity in wild-type strains, was strongly decreased in the mutants relative to oxidation at C-6 and C-7, while synthesis of C19-GAs as a result of oxidative cleavage of C-20 by P450-2 was almost absent whereas the C-20 alcohol, aldehyde and carboxylic acid derivatives accumulated. Interaction of the monooxygenases with alternative electron transport proteins could account for these different product distributions. In the absence of CPR, P450-1 activities were NADH-dependent, and stimulated by cytochrome b5 or by added FAD. These properties as well as the decreased efficiency of P450-1 and P450-2 in the mutants are consistent with the participation of cytochrome b5:NADH cytochrome b5 reductase as redox partner of the gibberellin monooxygenases in the absence of CPR. We provide evidence, from either incubations of GA12 (C-20 methyl) with cultures of the mutant suspended in [18O]H2O or maintained under an atmosphere of [18O]O2:N2 (20:80), that GA15 (C-20 alcohol) and GA24 (C-20 aldehyde) are formed directly from dioxygen and not from hydrolysis of covalently enzyme-bound intermediates. Thus these partially oxidized GAs correspond to intermediates of the sequential oxidation of C-20 catalyzed by P450-2.  相似文献   

3.
Anthocyanidin synthase (ANS), flavonol synthase (FLS), and flavanone 3beta-hydroxylase (FHT) are involved in the biosynthesis of flavonoids in plants and are all members of the family of 2-oxoglutarate- and ferrous iron-dependent oxygenases. ANS, FLS, and FHT are closely related by sequence and catalyze oxidation of the flavonoid "C ring"; they have been shown to have overlapping substrate and product selectivities. In the initial steps of catalysis, 2-oxoglutarate and dioxygen are thought to react at the ferrous iron center producing succinate, carbon dioxide, and a reactive ferryl intermediate, the latter of which can then affect oxidation of the flavonoid substrate. Here we describe work on ANS, FLS, and FHT utilizing several different substrates carried out in 18O2/16OH2, 16O2/18OH2, and 18O2/18OH2 atmospheres. In the 18O2/16OH2 atmosphere close to complete incorporation of a single 18O label was observed in the dihydroflavonol products (e.g. (2R,3R)-trans-dihydrokaempferol) from incubations of flavanones (e.g. (2S)naringenin) with FHT, ANS, and FLS. This and other evidence supports the intermediacy of a reactive oxidizing species, the oxygen of which does not exchange with that of water. In the case of products formed by oxidation of flavonoid substrates with a C-3 hydroxyl group (e.g. (2R,3R)-trans-dihydroquercetin), the results imply that oxygen exchange can occur at a stage subsequent to initial oxidation of the C-ring, probably via an enzyme-bound C-3 ketone/3,3-gem-diol intermediate.  相似文献   

4.
Cytochromes P450cam and P450BM3 oxidize alpha- and beta-thujone into multiple products, including 7-hydroxy-alpha-(or beta-)thujone, 7,8-dehydro-alpha-(or beta-)thujone, 4-hydroxy-alpha-(or beta-)thujone, 2-hydroxy-alpha-(or beta-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring-opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 +/- 0.3 x 10(10) s(-1) to 12.5 +/- 3 x 10(10) s(-1) for the trapping of the carbon radical by the iron-bound hydroxyl radical equivalent. 7-[2H]-alpha-Thujone has been synthesized and used to amplify C-4 hydroxylation in situations where uninformative C-7 hydroxylation is the dominant reaction. The involvement of a carbon radical intermediate is confirmed by the observation of inversion of stereochemistry of the methyl-substituted C-4 carbon during the hydroxylation. With an L244A mutation that slightly increases the P450(cam) active-site volume, this inversion is observed in up to 40% of the C-4 hydroxylated products. The oxidation of alpha-thujone by human CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 occurs with up to 80% C-4 methyl inversion, in agreement with a dominant radical hydroxylation mechanism. Three minor desaturation products are produced, with at least one of them via a cationic pathway. The cation involved is proposed to form by electron abstraction from a radical intermediate. The absence of a solvent deuterium isotope effect on product distribution in the P450cam reaction precludes a significant role for the P450 ferric hydroperoxide intermediate in substrate hydroxylation. The results indicate that carbon hydroxylation is catalyzed exclusively by a P450 ferryl species via radical intermediates whose detailed properties are substrate- and enzyme-dependent.  相似文献   

5.
Moe LA  Hu Z  Deng D  Austin RN  Groves JT  Fox BG 《Biochemistry》2004,43(50):15688-15701
Toluene 4-monooxygenase (T4MO) catalyzes the hydroxylation of toluene to yield 96% p-cresol. This diiron enzyme complex was used to oxidize norcarane (bicyclo[4.1.0]heptane), 1,1-dimethylcyclopropane, and 1,1-diethylcyclopropane, substrate analogues that can undergo diagnostic reactions upon the production of transient radical or cationic intermediates. Norcarane closely matches the shape and volume of the natural substrate toluene. Reaction of isoforms of the hydroxylase component of T4MO (T4moH) with different regiospecificities for toluene hydroxylation (k(cat) approximately 1.9-2.3 s(-)(1) and coupling efficiency approximately 81-96%) revealed similar catalytic parameters for norcarane oxidation (k(cat) approximately 0.3-0.5 s(-)(1) and coupling efficiency approximately 72%). The products included variable amounts of the un-rearranged isomeric norcaranols and cyclohex-2-enyl methanol, a product attributed to rearrangement of a radical oxidation intermediate. A ring-expansion product derived from the norcaranyl C-2 cation, cyclohept-3-enol, was not produced by either the natural enzyme or any of the T4moH isoforms tested. Comparative studies of 1,1-dimethylcyclopropane and 1,1-diethylcyclopropane, diagnostic substrates with differences in size and with approximately 50-fold slower k(cat) values, gave products consistent with both radical rearrangement and cation ring expansion. Examination of the isotopic enrichment of the incorporated O-atoms for all products revealed high-fidelity incorporation of an O-atom from O(2) in the un-rearranged and radical-rearranged products, while the O-atom found in the cation ring-expansion products was predominantly obtained by reaction with H(2)O. The results show a divergence of radical and cation pathways for T4moH-mediated hydroxylation that can be dissected by diagnostic substrate probe rearrangements and by changes in the source of oxygen used for substrate oxygenation.  相似文献   

6.
Microsomal preparations from the epidermal oil glands of Mentha piperita, Mentha spicata, and Perilla frutescens leaves catalyze the NADPH- and O2-dependent allylic hydroxylation of the monoterpene olefin (-)-limonene at C-3, C-6, and C-7, respectively, to produce the corresponding alcohols, (-)-trans-isopiperitenol, (-)-trans-carveol, and (-)-perillyl alcohol. These transformations are the key steps in the biosynthesis of oxygenated monoterpenes in the respective species, and the responsible enzyme systems meet most of the established criteria for cytochrome P450-dependent mixed function oxygenases. The reactions catalyzed are completely regiospecific and, while exhibiting only a modest degree of enantioselectivity, are highly specific for limonene as substrate. Of numerous monoterpene olefins tested, including several positional isomers of limonene, only the 8,9-dihydro analog served as an alternate substrate for ring (C-3 and C-6) hydroxylation, but not side chain (C-7) hydroxylation. In addition to the regiospecificity of the allylic hydroxylation, these enzymes are also readily distinguishable based on differential inhibition by substituted imidazoles.  相似文献   

7.
J N Wright  M Akhtar 《Steroids》1990,55(4):142-151
The conversion of androgens into estrogen involves three distinct generic reactions which are catalyzed by a single P450 enzyme (aromatase or P450(aromatase)). The first step in the process is the conversion of 19-methyl into a hydroxymethyl group which requires NADPH + O2, thus representing the well-known hydroxylation process. The next stage, converting the -CH2OH into -CHO, also requires NADPH + O2 and may be rationalized either through a second hydroxylation reaction producing a gem-diol, CH(OH)2 (which dehydrates to the aldehyde), or via another route. The final stage in the process again uses NADPH + O2, culminating in the release of C-19 as formate. Our extensive studies using precursors containing 2H, 3H, and 18O have shown that the carbonyl oxygen of the 19-aldehyde group is the one that was introduced in the first step as the hydroxyl group. The aldehydic oxygen along with another, from O2, used in the third step of the process, is incorporated into the released formate. It was found that at each stage of the process, oxygen atoms were introduced or transferred as "whole numbers." In light of these data, mechanisms in which H2O is used to promote the C-10-C-19 bond cleavage or those in which the conversion of the 19-oxoandrostenedione into estrogen is considered to occur via the sequence -CHO----(-)CH(OH)2----estrogen are eliminated. In addition, our mechanistic analysis makes it unlikely that 1 beta-, 2 beta-, or 10 beta-hydroxysteroids serve as intermediates in estrogen biosynthesis. We consider a free radical mechanism for the hydroxylation process.  相似文献   

8.
The mechanism of enzymatic epoxide hydration by a cytosolic or 100,000 g soluble mammalian liver enzyme (in contrast to the microsomal enzymes) was examined by monitoring 18O distribution following chemical and enzymatic hydrations of 16O or 18O epoxide labeled (±) 1-(4′-ethylphenoxy)-3, 7-dimethyl-6, 7-epoxyoctane. Acid catalyzed hydration of the 18O epoxide in 16O water, and hydration of the 16O epoxide in 18O water, indicated that attack by water was predominantly on the tertiary carbon (C-7). Enzymatic epoxide hydration led to attack predominantly on secondary carbon (C-6). These data are consistent with water attacking as a nucleophile in the enzymatic reaction.  相似文献   

9.
Therapy with the antidepressant trazodone has been associated with several cases of idiosyncratic hepatotoxicity. While the mechanism of hepatotoxicity remains unknown, it is possible that reactive metabolites of trazodone play a causative role. Studies were initiated to determine whether trazodone undergoes bioactivation in human liver microsomes to electrophilic intermediates. LC/MS/MS analysis of incubations containing trazodone and NADPH-supplemented microsomes or recombinant P4503A4 in the presence of glutathione revealed the formation of conjugates derived from the addition of the sulfydryl nucleophile to mono-hydroxylated- and hydrated-trazodone metabolites. Product ion spectra suggested that mono-hydroxylation and sulfydryl conjugation occurred on the 3-chlorophenyl-ring, whereas hydration and subsequent sulfydryl conjugation had occurred on the triazolopyridinone ring system. These findings are consistent with bioactivation sequences involving: (1) aromatic hydroxylation of the 3-chlorophenyl-ring in trazodone followed by the two-electron oxidation of this metabolite to a reactive quinone-imine intermediate, which reacts with glutathione in a 1,4-Michael fashion and (2) oxidation of the pyridinone ring to an electrophilic epoxide, ring opening of which, by glutathione or water generates the corresponding hydrated-trazodone-thiol conjugate or the stable diol metabolite, respectively. The pathway involving trazodone bioactivation to the quinone-imine has also been observed with many para-hydroxyanilines including the structurally related antidepressant nefazodone. It is proposed that the quinone-imine and/or the epoxide intermediate(s) may represent a rate-limiting step in the initiation of trazodone-mediated hepatotoxicity.  相似文献   

10.
alpha-Ecdysone (2beta,3beta,14alpha,22R,25-pentahydroxy-5beta-cholest-7-en-6-one) has been identified as the metabolism product of 3beta,14alpha-dihydroxy-5beta-cholest-7-en-6-one in isolated prothoracic glands of the tobacco hornworm, Manduca sexta. In contrast, 3beta-hydroxy-5beta-cholest-7-en-6-one is metabolized to 14-deoxy-alpha-ecdysone and a variety of intermediates all lacking the 14-hydroxy group. The results suggest that either the normal precursor for the synthesis of alpha-ecdysone by prothoracic glands is a sterol more highly oxygenated than cholesterol or that hydroxylation of a minimally oxygenated precursor at C-14 must precede introduction of the C-6 ketone and/or delta7 bond. The data further suggest that several alternative hydroxylation routes may exist for the latter steps of alpha-ecdysone biosynthesis.  相似文献   

11.
trans-1-Phenyl-2-vinylcyclopropane, a hypersensitive radical probe, is oxidized by cytochrome P450cam (CYP101) to a diastereomeric mixture of the corresponding epoxide (81%), (trans-2-phenylcyclopropyl)acetaldehyde (6%), and trans-5-phenyl-2-penten-1,5-diol (13%). trans-5-Phenyl-2-penten-1-ol and (trans-2-phenylcyclopropyl)ethane-1,2-diol are not detectably formed. Authentic standards of all the products have been synthesized and used to establish the identities (or the absence) of the metabolites. Studies with [18O]H2O demonstrate that the oxygens at positions 1 and 5 in the rearranged diol derive from molecular oxygen and water, respectively. Catalytic turnover of the enzyme is required for product formation from the olefin, but incubation of the epoxide metabolite with the enzyme, or with buffer alone, yields both the aldehyde and the rearranged diol products. The absence of trans-5-phenyl-2-penten-1-ol implies that the lifetime of the putative radical intermediate is so short that its existence as a discrete entity is questionable. A cationic intermediate is unlikely but cannot be excluded because the same metabolites are formed in a secondary reaction, even at pH 8.0, from the epoxide. The results provide no evidence for the involvement of radicals or cations in the epoxidation reaction, in agreement with results on the oxidation of olefins in organic solvents by metalloporphyrin catalysts.  相似文献   

12.
A purified rat hepatic monooxygenase system containing cytochrome P-450b oxidizes testosterone to androstenedione and 16 alpha- and 16 beta-hydroxytestosterone at approximately equal rates. The metabolism of epitestosterone by the same system is characterized by a marked stereoselectivity in favor of 16 beta-hydroxylation (4- to 5-fold relative to 16 alpha-hydroxylation), formation of 15 alpha-hydroxyepitestosterone, and a rate of androstenedione formation which is three to five times higher than that observed with testosterone. Apparent Km values for 16 alpha- and 16 beta-hydroxylation and androstenedione formation are 20-30 microM with either substrate. Mass spectral analysis of the androstenedione formed from [16,16-2H2]testosterone and [16,16-2H2] epitestosterone indicates essentially complete retention of deuterium, thereby ruling out a mechanism of androstenedione formation via C-16 hydroxylation followed by loss of water and rearrangement. Mass spectral analysis of the C-16 hydroxylation products from incubations of testosterone or epitestosterone in 18O2 shows essentially complete incorporation of 18O (greater than 95%). Androstenedione formed from testosterone is enriched in 18O only 2-fold (5-8%) over background, while the androstenedione formed from epitestosterone shows 84% enrichment. Kinetic experiments utilizing [17-2H]testosterone and [17-2H]epitestosterone as substrates indicate that cleavage of the C-17 carbon-hydrogen bond is involved in a rate-limiting step in the formation of androstenedione from both substrates. Taken together, our results indicate that androstenedione formation from epitestosterone proceeds exclusively through the gem-diol pathway, while androstenedione formation from testosterone may proceed through a combination of gem-diol and dual hydrogen abstraction pathways.  相似文献   

13.
《Insect Biochemistry》1988,18(7):729-734
Ecdysone and 20-hydroxyecdysone metabolism was investigated in third instar Drosophila larvae both in vivo by injecting radiolabelled ecdysteroids and in vitro by incubating various tissues with labelled ecdysteroids.Ecdysone metabolism proceeds through different pathways: (1) C-20 hydroxylation; (2) C-26 hydroxylation and C-26 oxidation leading to the formation of 26-hydroxyecdysteroids (26-hydroxyecdysone and 20,26-dihydroxyecdysone) and acidic compounds (ecdysonoic acid and 20-hydroxyecdysonoic acid); C-3 oxidation and C-3 epimerization then conjugation leading to the formation of 3-dehydrocompounds (3-dehydroecdysone and 3-dehydro-20-hydroxyecdysone), 3-epimers (3-epiecdysone and 3-epi-20-hydroxyecdysone) and conjugates (only one conjugate was tentatively characterized as 3-epi-20-hydroxyecdysone-3-phosphate). 3-Dehydrocompounds are the major metabolites formed in third instar Drosophila larvae and C-3 oxidation occurs in various tissues. Experiments using tritiated cholesterol provided evidence that 3-dehydroecdysone and 3-dehydro-20-hydroxyecdysone are true endogenous ecdysteroids in Drosophila larvae.  相似文献   

14.
The degradation of epichlorohydrin (3-chloropropylene oxide or 1-chloro-2,3-epoxypropane) by whole-cell suspensions of Xanthobacter strain Py2 was investigated. Cell suspensions prepared from cultures grown with propylene as the carbon source readily degraded epichlorohydrin. The ability to degrade epichlorohydrin correlated with the expression of enzymes involved in alkene and epoxide metabolism, since cell suspensions prepared from cultures grown with glucose or acetone, in which the enzymes of alkene and epoxide oxidation are not expressed, did not degrade epichlorohydrin. The alkene monooxygenase-specific inhibitor propyne had no effect on the degradation of epichlorohydrin, demonstrating that alkene monooxygenase is not involved in epichlorohydrin conversion. The interaction of epichlorohydrin and epibromohydrin with the epoxidase which catalyzes aliphatic epoxide conversions was established by showing that the epihalohydrins were specific and potent inhibitors of propylene oxide-dependent O(inf2) consumption by cell suspensions. The rates of degradation of epoxides in whole-cell suspensions decreased in the series propylene oxide > epifluorohydrin > epichlorohydrin > epibromohydrin. The pathway of epichlorohydrin degradation was investigated and found to proceed with stoichiometric dechlorination of epichlorohydrin. The first detectable product of epichlorohydrin degradation was chloroacetone. Chloroacetone was further degraded by the cell suspensions, and in the process, acetone was formed as a nonstoichiometric product. Acetone was further degraded by the cell suspensions with enzymes apparently induced by the accumulation of acetone. The metabolism of allyl chloride (3-chloropropylene) by propylene-grown cells was initiated by alkene monooxygenase and proceeded through epichlorohydrin, chloroacetone, and acetone as intermediate degradation products. These studies reveal a new pathway for halogenated epoxide degradation which involves halogenated and aliphatic ketones as well as other unidentified intermediates and which is unique from previously characterized hydrolytic degradative pathways.  相似文献   

15.
The study was designed to identify 'atypical' bile acids in gastric contents from three neonates with high intestinal obstruction on the basis that this was likely to represent a rich source of primary bile acids. Cholic acid was the major component, and related 'atypical' bile acids included its C-3 and C-7 oxidation products, its 3 beta-epimer and 2 beta- and 6 alpha-hydroxylation products. Allocholic acid was the only 5 alpha-cholanic acid derivative identified. 7 alpha, 12 alpha-Dihydroxy-3-oxochol-4-en-24-oic acid was found in all three specimens and might be an intermediate in a biosynthetic pathway from cholesterol to cholic acid in which side-chain oxidation precedes at least some of the nuclear changes. Side-chain-hydroxylated derivatives of trihydroxycoprostanic acid were also detected and these may represent intermediates in biosynthetic pathways from cholesterol to cholic acid via 5 beta-cholestan-3 alpha, 7 alpha, 12 alpha-triol. The most abundant bile acid of this type was (25 epsilon)-3 alpha, 7 alpha, 12 alpha, 25-tetrahydroxy-5 beta-cholestan-26-oic acid, which suggested that C-25 hydroxylation may be an important step in the shortening of the C8 side chain of the cholestane triol to the C5 side chain of cholic acid in the neonatal period. Bile acids lacking a substituent at C-12 included chenodeoxycholic acid, its C-3 and C-7 oxidation products, its 3 beta-epimer and its 6 alpha-hydroxylation product (hyocholic acid).  相似文献   

16.
The enzymatic conversion of various tylosin precursors was carried out using a cell-free system of the tylosin producer Streptomycesfradiae to determine the order and intermediates of oxidations of the 16-membered branched lactone ring at C-20 and C-23 in the biosynthesis of tylosin. It was found that the order of the oxidation of the lactone is: (1) hydroxylation of 5-O-mycaminosylprotylonolide at C-20, (2) oxidation of C-20 hydroxymethyl to formyl, (3) hydroxylation at C-23 to give 5-O-mycaminosyltylonolide. The formation of 23-hydroxy-5-O-mycaminosylprotylonolide from 5-O-mycaminosylprotylonolide was not observed.  相似文献   

17.
The in vitro metabolism of 12(R)-hydroxyeicosatetraenoic acid was studied using freshly isolated rat liver microsomes. Ten metabolites were isolated and identified by a combination of ultraviolet spectroscopy and gas chromatography/mass spectrometry. The two major metabolites were dihdroxyeicosatetraenoic acids generated by ω /ω − 1 hydroxylation. Oxidation at C-5 resulted in the formation of four leukotriene-like compounds, two of which differed from leukotriene B4 in double-bond geometry alone. The other two differed from leukotriene B4 in olefin geometry and C-5 configuration. Epoxidation at the 14,15-olefin resulted in the formation of two diastereomeric epoxy alcohols, while C-16 hydroxylation gave two diastereomeric dihydroxyeicosatetraenoic acids.  相似文献   

18.
Biotransformation of ent-3beta,12alpha-dihydroxy-13-epi-manoyl oxide with Fusarium moniliforme gave the regioselective oxidation of the hydroxyl group at C-3 and the ent-7beta-hydroxylation. The action of Gliocladium roseum in the 3,12-diketoderivative originated monohydroxylations at C-1 and C-7, both by the ent-beta face, while Rhizopus nigricans produced hydroxylation at C-7 or C-18, epoxidation of the double bond, reduction of the keto group at C-3, and combined actions as biohydroxylation at C-2/epoxidation of the double bond and hydroxylation at C-7/reduction of the keto group at C-3. In the ent-3-hydroxy-12-keto epimers, G. roseum originated monohydroxylations at C-1 and C-7 and R. nigricans originated the oxidation at C-3 as a major transformation, epoxidation of double bond and hydroxylation at C-2. Finally, in the ent-3beta-hydroxy epimer R. nigricans also originated minor hydroxylations at C-1, C-6, C-7 and C-20 and F. moniliforme produced an hydroxylation at C-7 and a dihydroxylation at C-7/C-11.  相似文献   

19.
ten Have R  Franssen MC 《FEBS letters》2001,487(3):313-317
The O2-dependent formation of side products during the oxidation of veratryl alcohol (VA) by lignin peroxidase has previously been proposed to start with the attack of H2O on the VA radical cation (VA*+). This initial reaction is unlikely since it would also lead to side product formation in the absence of O2, which is not the case. In the current mechanism VA* reacts first with O2, whereafter H2O attacks. Furthermore, this paper describes an alternative explanation for the inhibitory effect of Mn2+ on VA side product formation. It is proposed that Mn2+ reduces reactive intermediates back to VA.  相似文献   

20.
Kinetic analysis has been used to access how well scavenger inhibition can characterize the reactivity of oxidants produced in the iron-catalyzed reaction of H2O2 with xanthine oxidase-derived O2-.. Formate oxidation to CO2, deoxyribose oxidation, benzoate hydroxylation, and ethylene production from alpha-keto-gamma-methiolbutyric acid (KMB) were measured. With Fe(EDTA) as catalyst, inhibition by most scavengers was quantitatively as expected for OH. involvement. Exceptions were urate and thiourea, which inhibited excessively and appeared to scavenge intermediates of the detection reactions. With nonchelated iron, there was minimal formate oxidation, but benzoate, KMB, and deoxyribose gave, respectively, 17%, 25%, and approximately the same product yield as with Fe(EDTA). Deoxyribose oxidation was not inhibited by some scavengers and excessively inhibited by others. However, scavengers that did not inhibit deoxyribose oxidation did inhibit with KMB and benzoate, and differences in scavenger effects in the presence and absence of EDTA in these assays were relatively minor. The results with formate and deoxyribose, but not KMB and benzoate, can therefore exclude free OH. as a significant oxidant product of the nonchelated iron-catalyzed Haber-Weiss reaction. It is proposed that the different patterns of scavenger inhibition arise in the different assays because scavengers can react with intermediates in the detection reactions, all of which are multistep chains. Thus, inhibition may not signify OH. involvement, and similarities with inhibition expected for OH. my be fortuitous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号