首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of Friend erythroleukemia cells with several different chemical agents causes an early decrease in the 86Rb+ influx mediated by Na+/K+ adenosine triphosphatase (ATPase). These agents, which induced Friend cells to differentiate, include dimethylsulfoxide (DMSO), ouabain, hypoxanthine, and actinomycin D. The magnitude of the early decrease in 86Rb+ influx correlates with the proportion of cells in cultures of inducible Friend cell clones which later go on to synthesize hemoglobin. Compounds which do not incude differentiation in these cells, such as xanthine, exogenous hematin, and erythropoietin, do not cause a change in 86Rb+ influx. A change in the intracellular K+ ion concentration does not occur during induction by DMSO because, although there is a decrease in K+ content per cell soon after induction, there is a parallel decrease in cell volume. These results and previous observations from this laboratory are discussed in terms of the posible involvement of the Na+/K+ ATPase in Friend cell differentiation.  相似文献   

2.
Friend murine erythroleukemia cells underwent apparently normal erythropoiesis when treated with dimethyl sulfoxide. One of the earliest events associated with this induction was a decrease in ouabain sensitive 86Rb+ uptake, an assay of the plasma membrane Na,K(ATPase). Ammonium vanadate (10 microM) blocked differentiation of these cells without affecting cell viability. Vanadium was taken up by Friend cells and prevented the dimethyl sulfoxide-induced decrease in ouabain sensitive 86Rb+ uptake. Vanadate reactivated 86Rb+ transport previously inhibited by dimethyl sulfoxide treatment but had no affect on 86Rb+ transport in untreated cells. These results suggest an essential role for the (Na,K)ATPase in cell differentiation.  相似文献   

3.
Erythrocyte membrane antigens have been detected on induced Friend erythroleukemic cells with a rabbit antiserum raised against mouse erythrocyte membranes. The antibody specificities of this antiserum have been quantitatively analyzed using a cellular radioimmunoassay. After absorption with thymocytes, the rabbit anti-erythrocyte membrane serum bound to dimethylsulfoxide (DMSO)-induced Friend erythroleukemic cells and to mouse erythrocytes but not to uninduced Friend cells or thymocytes. Reciprocal inhibition studies demonstrated that, following complete thymocyte absorption, the antiserum detected similar antigenic specificities, termed erythrocyte membrane antigens (EMA), on both mature erythrocytes and induced Friend cells. The expression of these erythrocyte membrane antigens was also induced on Friend cells by other agents, such as ouabain and dimethylacetamide (DMA). In contrast, exogenous hematin, which did not induce hemoglobin synthesis in the Friend cell clones used in this study, also did not induce erythrocyte membrane antigen expression. Two independently derived variant clones which do not produce hemoglobin in reponse to DMSO were analyzed for their ability to produce erythrocyte membrane antigens in response to various inducers of Friend cell differentiation. Clone TG-13 is not inducible by DMSO or hematin but is weakly induced by DMA for both hemoglobin production and erythrocyte membrane antigen expression. Another variant clone, M18, was also analyzed. This clone does not synthesize detectable hemoglobin when grown in either DMSO or hematin alone, but undergoes extensive hemoglobin synthesis when grown in medium containing both DMSO and hematin. M18 does, however, express erythrocyte membrane antigens when grown in DMSO alone: the presence of hematin and DMSO together in the growth medium does not enhance expression of these antigens. Thus M18 appears to be defective for hemoglobin inducibility, and this defect can be overcome by exogenous hematin; however, the expression of erythrocyte membrane antigens is not affected by this block in hemoglobin synthesis. The results with the variant clones are discussed in terms of a program for Friend cell differentiation in which the induction of hemoglobin synthesis and erythrocyte membrane antigen expression are under both co-ordinate and separate controls.  相似文献   

4.
Colchicine resistant (CchR) mutants have been isolated from Friend erythroeleukemic cells by successive single-step selections. Measurements of the rate of uptake of [3H]-colchicine into whole cells, and the binding of [3H]-colchicine to cytoplasmic extracts, suggest that these mutants are colchicine-resistant due to a reduced membrane permeability to colchicine, rather than an altered intracellular colchicine-binding target. Consistent with this conclusion is the observation that non-toxic concentrations of Tween–80, a non-ionic detergent, potentiated colchicine uptake into mutant cells. In addition, these Friend cell mutants, like CchR mutants of other cell types, are cross-resistant to a variety of unrelated drugs, including daunomycin, puromycin, emetine, and actinomycin D. A comparison of the dose-response curves for the induction of Friend cell differentiation by actinomycin D of both wild-type and two CchR cells suggests that actinomycin D permeation is required for its effects on Friend cell differentiation. Potentiation of actinomycin D uptake by Tween–80 significantly lowered the concentration of drug required to induce hemoglobin synthesis in the CchR cells, but had no significant effect on either actinomycin D induction of CchS cells or DMSO induction of both CchS and CchR cells. In common with other chemical inducers of Friend cell differentiation, the addition of actinomycin D results in an early decrease in 86 RbCl uptake, although this effect on transport occurred 14 hours later than that observed with DMSO.  相似文献   

5.
In this study, the mechanism of inhibition of differentiation of Friend erythroleukemia cells by the phorbol ester tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), has been examined. These studies indicate that some early events associated with Friend cell differentiation, including an early change in 86Rb+ transport and a decrease in cell volume, still occur in the presence of TPA. However, several late events in the program of Friend cell differentiation, including the induction of heme synthesis and the loss of proliferative capacity, are inhibited by TPA. These effects of TPA can be reversed by hemin, which alone does not induce Friend cells to differentiate. The addition of hemin to cultures grown in the presence of inducer plus TPA for several days results in the rapid restoration of hemoglobin synthesis, and also causes a parallel decrease in colony-forming ability. These results suggest that tumor promoters may inhibit only heme-dependent events, rather than the entire program of Friend cell differentiation.  相似文献   

6.
The effect of hyperthermia on the Na+-K+ pump was determined by measuring influx and efflux of 86Rb+ in Chinese hamster ovary cells from 31 to 50 degrees C. The maximum initial rate of ouabain-sensitive influx increased with temperature between 31 and 45 degrees C although Km increased significantly above 37 degrees C, implying a diminished affinity of the transport protein for its substrate. The changes in the kinetics of influx at temperatures up to 45 degrees C were rapidly reversible on return to 37 degrees C. Above 45 degrees C an irreversible decrease in 86Rb+ uptake was observed. Efflux of 86Rb+ increased from 31 to 40 degrees C but above 43 degrees C showed a small but significant decrease. The study of 86Rb+ influx after varying times of exposure to elevated temperatures showed that the Na+-K+ pump remains functional in cells which are reproductively dead. We have shown that although the kinetics of K+ transport are sensitive to temperature changes in the range used in clinical hyperthermia, the inactivation of the Na+-K+ pump is not a primary event in cell killing.  相似文献   

7.
Dimethylsulfoxide (DMSO) induces hemoglobin synthesis and erythroid differentiation of Friend erythroleukemia cells in vitro. Induction is accompanied by increased transferrin-binding activity which is necessary for the cellular acquisition of iron from transferrin for hemoglobin synthesis. There are Friend cell variants in which hemoglobin synthesis is not induced by DMSO unless exogenous hemin is also present. In this study we have compared the inducibility of transferrin receptors and iron incorporation in DMSO-inducible (745) and -uninducible (M-18 and TG-13) Friend cell lines. Cellular transferrin-binding sites were estimated by Scatchard analysis of data obtained from specific binding of [125I]transferrin by the cells. Our results show that unlike 745, DMSO treatment of the variant cell lines M-18 and TG-13 does not result in increased transferrin-binding activity. The number of transferrin-binding sites and the rate of iron uptake is similar in uninduced 745 and DMSO-treated M-18 and TG-13 cells. Although exposure of M-18 cells to DMSO and hemin induces hemoglobinization, this treatment does not cause induction of transferrin receptors. These results indicate that the primary defect in M-18 cells may be the uninducibility of transferrin receptors. We have also shown that exposure of 745 cells to hemin during DMSO treatment prevents the induction of transferrin receptors, suggesting that hemin may control the expression of transferrin receptors in erythroid cells.  相似文献   

8.
The Friend murine erythroleukemia cell system and the Daudi Burkitt's lymphoma cell system were used to study the effect of growth-inhibitory concentrations of interferon on membrane functions. Experiments with Friend-cell clones sensitive and resistant to interferon indicated that a number of changes in membrane transport occur rapidly after the addition of interferon to sensitive cells. While no change was observed in the activity of the (Na+/K+) ATPase in Friend cells sensitive or resistant to interferon, a piretanide-inhibitable Na+,K+, 2Cl- co-transport system was specifically inhibited after interferon treatment of sensitive cells. In contrast, treatment of Daudi cells with purified molecularly cloned or standard preparations of human leukocyte interferon gave rise to no early changes in the transport of amino acids, 32Pi, sugars, or 86Rb+. The major change observed in Daudi cells was a marked reduction in the uptake and incorporation of thymidine, which begins to decrease after 8-10 h of exposure to interferon.  相似文献   

9.
The addition of a chemical inducer, such as dimethylsulfoxide (DMSO), to cultures of mouse Friend erythroleukemic cells results in the induction of a number of late erythroid events, including the accumulation of globin mRNA, the inducation of hemoglobin synthesis, the appearance of erythrocyte membrane antigens (EMA), and the cessation of cell division. The experiments presented in this study demonstrate that heme is necessary but not sufficient for the loss of proliferative capacity associated with DMSO-induced Friend cell differentiation, whereas the accumulation of globin mRNA and EMA can occur in the absence of heme synthesis or heme itself. These conclusions were reached by selectively inhibiting heme synthesis in DMSO-treated cells in two independent ways: (i) Inducible cells were treated with 3-amino-1,2,4-triazole (AT), a drug which inhibits the induction of heme synthesis in Friend cells in a dose-dependent manner. Treatment of inducible Friend cells with 1.5% DMSO for five days caused the plating efficiency in methyl cellulose to decrease to 1% of that in untreated cultures. However, treatment of the cells with DMSO plus AT almost totally prevented this decrease in plating efficiency. The addition of exogenous hemin, which alone had no significant effect on plating efficiency, largely reversed the effect of AT in DMSO-treated cells, reducing the plating efficiency to below 5%. In contrast to the marked effects of AT on the proliferative capacity of differentiating Friend cells, the levels of globin mRNA and EMA were only partially decreased in cells treated with DMSO plus AT, compared to cells treated with DMSO alone. (ii) The relationship between heme synthesis, terminal cell division, and the induction of globin mRNA was investigated further through the use of non-inducible Friend cell variant clones. One such non-inducible clone, M18, appears to be a phenotypic analog of inducible cells treated with DMSO plus AT. Clone M18 did not accumulate heme or hemoglobin, as detected by benzidine staining, nor lose its proliferative capacity in response to DMSO. However, globin mRNA was induced by DMSO in this clone. Treatment of clone M18 with DMSO plus hemin overcame the block in hemoglobin accumulation suggesting that M18 has a defect in the induction of heme biosynthesis. In addition, exposure of M18 cells to DMSO plus hemin caused a gradual decrease in plating efficiency which was not due to non-specific toxicity. Prior incubation of M18 cells in DMSO for three to five days was necessary before hemin caused a rapid loss of proliferative capacity. Thus, these results, in agreement with the AT studies on inducible Friend cells and previous studies on the induction of EMA in clone M18, indicate that there may be both heme-dependent and heme-independent events in the program of Friend cell differentiation.  相似文献   

10.
Surface carbohydrates of Friend erythroleukemic-cells were modified by treatment with the exoglycosidases, alpha-galactosidase, beta-galactosidase, and neuraminidase without affecting cell growth and viability either in the presence of absence of 1.8% DMSO as inducer. When cells were incubated with a combination of alpha-galactosidase and neuraminidase and then induced, they showed an increased rate of differentiation as measured by the formation of benzidine-positive cells. These enzymes used singly, or beta-galactosidase treatment alone, or in combination with neuraminidase, did not change the rate of differentiation. Cell-surface labeling and electrophoretic separation of the glycoconjugates revealed that two regions of approximate molecular weights of 195,000 and 185,000 were neuraminidase-sensitive and one other of molecular weight of about 75,000 was sensitive to alpha-galactosidase. Both untreated and the combined alpha-galactosidase, neuraminidase-modified cells exhibited the same rate of uptake of carbon-14 DMSO, ruling out the possibility that the observed increased rate of differentiation was due to faster penetration of DMSO into enzyme-treated cells. On the other hand, the decrease in the rate of uptake of rubidium-86, an analogue of K+, by treated-induced cells was significantly enhanced over that observed with untreated-induced cells, suggesting that alpha-galactosidase plus neuraminidase modification of the cell surface was affecting at least one of the early events occurring in the Friend erythroleukemic cell differentiation program.  相似文献   

11.
The selection and biochemical characterization of ouabain-resistant erythroleukemia cell lines are described. Treatment of ouabain-resistant Friend erythroleukemia cell (FLC) lines with 1 mM ouabain demonstrated a reduced ouabain-sensitive 86Rb+-uptake after Na+-preloading in comparison with ouabain-sensitive cells. The ouabain- and diuretic (piretanide)-insensitive component of the 86Rb+-uptake (residual influx) was significantly enhanced in the ouabain-resistant FLC clones. Measurements of the Na+,K+-ATPase activity (E.C. 3.6.1.3) in plasma membrane preparations of the ouabain-resistant FLC clone B6/2 indicated that a ouabain-resistant Na+,K+-ATPase activity of about 20% of the total enzyme activity existed in the presence of 1 mM ouabain. Further experiments showed that the Na+,K+-ion-gradient in ouabain-resistant B6/2 cells was unaffected by ouabain exposure whereas the gradient collapsed in wild type 12 N cells. Another property of the ouabain-resistant cell lines was a decrease of the 86Rb+-uptake due to the Na+,K+, 2Cl(-)-cotransport system measured as piretanide-sensitive 86Rb+-uptake. The data on ion transport mechanisms in QuaR and QuaS FLC are discussed with respect to mutagen-induced and spontaneous cellular ouabain resistance. In addition, the role of altered ion transport mechanisms is considered for induced erythroid differentiation.  相似文献   

12.
Friend erythroleukemic cells can be induced by a variety of agents to synthesize hemoglobin and to exhibit other characteristics suggesting erythroid maturation. Upon induction of hemoglobin synthesis with dimethylsulfoxide (DMSO), the chloride flux in Friend cells gradually increases, until after five days of exposure to DMSO (when the hemoglobin content of the cells approaches that of the mature erythrocyte) the flux is three times the value in non-induced cells. A similar flux increase is observed in the presence of a different type of inducer, hypoxanthine, but no increase in flux is seen in the mutant cell line, TG-13, which does not synthesize hemoglobin after DMSO treatment. Thus, the flux increase seems to be associate d with the induction process, rather than being a direct effect of the inducing agent. After DMSO treatment, the sulphate flux decreases and the chloride/sulphate selectivity increases, aswould be expected if the cells were becoming more like red cells. On the other hand, the sensitivity of the chloride flux to the inhibitor, furosemide, and to temperature is the same in the induced as in the non-induced Friend cells, and different from that of the mature red cell. Thus, the anion transport properties of the induced Friend cell are different from those of both the non-induced Friend cell and the mature erythrocyte. Either the system in the induced cell represents an intermediate stage in the development of the mature red cell characteristics, or else the maturation of transport function in the Friend cell differs from that in normal erythrocyte precursors.  相似文献   

13.
DMSO resistant clones have been isolated from the inducible Friend leukemia cell line 5-86 both from unmutagenized cultures and following EMS mutagenesis. All the clones can grow in the presence of 1.8% DMSO and are non-inducible or poorly inducible for hemoglobin synthesis by DMSO as well as by other known inducers of Friend leukemia (FL) cells differentiation like hemin, hypoxanthine, hexamethylene bisacetamide. The clones are also defective for the expression of other properties of differentiating Friend cells like agglutinability by plant lectins and expression of the surface protein glycophorin. Some of the clones show an impaired ability to form tumors in vivo. These resistant clones might be useful for a genetic analysis of the differentiation process of Friend leukemia cells.  相似文献   

14.
Changes in several mechanisms of sodium transport across the cell membranes are described in essential hypertension. We studied ouabain-sensitive and insensitive 86Rb+ influx into the red blood cells (RBC) of 16 healthy controls and 51 patients with essential hypertension (EH) divided according to their plasma renin activity (PRA) in 3 groups: 11 patients with high PRA (HREH), 18 patients with normal PRA (NREH) and 22 patients with low PRA (LREH). In addition to studying 86RB+ uptake by patients RBC, we tested also the effect of the patients' sera on 86Rb+ influx into the RBC of healthy subjects. Red blood cells of patients with HREH and NREH had lower ouabain-sensitive 86Rb+ influx in comparison with controls. No significant differences were found between these hypertensive groups. In contrast 86Rb+ uptake by the RBC of LREH patients was always higher than in controls or HREH and NREH. It was chiefly the ouabain-sensitive component that was raised, but some increase in ouabain-insensitive 86Rb+ influx also could be seen. The serum of patients with HREH and NREH, when incubated with RBC of healthy controls, lowered their ouabain-sensitive 86Rb+ influx. The decrease was more pronounced in NREH than in HREH group. Plasma from LREH patients increased both ouabain-sensitive and ouabain-insensitive 86Rb+ influx into the control RBC. These findings indicate that there may be differences in the sodium/potassium transport mechanisms across the cell membrane in various kinds of EH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Stimulation of K+ transport systems by Ha-ras   总被引:1,自引:0,他引:1  
The expression of Ha-ras in quiescent NIH3T3 cells carrying a glucocorticoid-inducible human Ha-ras gene (Val-Gly mutation at codon 12) stimulates total 86Rb+ influx. This effect is predominantly due to an elevated 86Rb+ uptake through an ouabain-resistant, furosemide-sensitive system. The ouabain-sensitive Na+/K(+)-ATPase is less affected. The transport which is resistant to both inhibitors is not altered by Ha-ras. Overexpression of the Ha-ras proto-oncogene causes only a marginal increase in total 86Rb+ uptake. The stimulation of the furosemide-sensitive influx by Ha-ras is paralleled by an increase in mean cell volume which can be inhibited by furosemide. A rapid stimulation of the furosemide-sensitive Rb+ influx is also observed after addition of bombesin to growth-arrested cells. Furosemide inhibits the mitogenic response after expression of Ha-ras or addition of bombesin. Both the Ha-ras and the bombesin-induced stimulation of the furosemide-sensitive Rb+ transport can be blocked by protein kinase C depletion or the protein kinase C inhibitor staurosporine. In contrast to bombesin-induced phosphatidylinositol-4,5-bisphosphate hydrolysis which is down-modulated by Ha-ras, the stimulation of the furosemide-sensitive Rb+ influx by bombesin is elevated in Ha-ras-expressing cells. This is in accordance with the increased mitogenic activity of bombesin in Ha-ras-expressing cells.  相似文献   

16.
The effects of insulin and glucagon on the (Na+-K+)-ATPase transport activity in freshly isolated rat hepatocytes were investigated by measuring the ouabain-sensitive, active uptake of 86Rb+. The active uptake of 86Rb+ was increased by 18% (p less than 0.05) in the presence of 100 nM insulin, and by 28% (p less than 0.005) in the presence of nM glucagon. These effects were detected as early as 2 min after hepatocyte exposure to either hormone. Half-maximal stimulation was observed with about 0.5 nm insulin and 0.3 nM glucagon. The stimulation of 86Rb+ uptake by insulin occurred in direct proportion to the steady state occupancy of a high affinity receptor by the hormone (the predominant insulin-binding species in hepatocytes at 37 degrees C. For glucagon, half-maximal response was obtained with about 5% of the total receptors occupied by the hormone. Amiloride (a specific inhibitor of Na+ influx) abolished the insulin stimulation of 86Rb+ uptake while inhibiting that of glucagon only partially. Accordingly, insulin was found to rapidly enhance the initial rate of 22Na+ uptake, whereas glucagon had no detectable effect on 22Na+ influx. These results indicate that monovalent cation transport is influenced by insulin and glucagon in isolated rat hepatocytes. In contrast to glucagon, which appears to enhance 86Rb+ influx through the (Na+-K+)-ATPase without affecting Na+ influx, insulin stimulates Na+ entry which in turn may increase the pump activity by increasing the availability of Na+ ions to internal Na+ transport sites of the (Na+-K+)-ATPase.  相似文献   

17.
We have investigated the mechanism(s) by which dexamethasone inhibit DMSO-induced Friend erythroleukemia cell differentiation in vitro. In particular, we examined the effects of dexamethasone on (a) the early events of differentiation such as cell volume alterations and 'memory response' and (b) the onset of biochemical events associated with terminal erythroid cell differentiation. By analysing kinetics of commitment of Friend cells to terminal erythroid differentiation on a clonal basis, we have observed that dexamethasone inhibited the completion of the latent period (time elapsed prior to commitment) and impaired "memory" (ability to inducer-treated cells to continue differentiation after a discontinuous exposure to inducer). Treatment of Friend cells with dexamethasone did not prevent the occurrence of DMSO-induced alterations in cell volume. However, dexamethasone treatment prevented a series of biochemical events associated with terminal Friend cell differentiation. These include the decrease in the rate of both cytoplasmic and nuclear RNA synthesis as well as the induction of cytidine deaminase activity and hemoglobin synthesis. These data indicate that the dexamethasone-sensitive process(es) operate during the early stages of Friend cell differentiation and that they are responsible for the inhibition of terminal erythroid maturation. These dexamethasone-sensitive processes, however, appear to be different from those regulating cell volume alterations during the early steps of DMSO-induced Friend cell differentiation.  相似文献   

18.
The effects of dimethyl sulfoxide (DMSO)-induced differentiation of Friend leukemia cells in vitro on the lipid composition of these cells have been examined. DMSO had no early effect on the incorporation of either [14C] glycerol or [3H] methyl choline chloride into the total lipids or individual phospholipids of Friend cells up to 240 min after addition of the inducer. Examination of DMSO-diferentiated Friend cell phospholipids revealed a percentage composition which was similar to control cells, with phosphatidylcholine and phosphatidylethanolamine in both uninduced and differentiated cells accounting for over 75% of the total phospholipid. Sphingomyelin levels were significantly lower in Friend cells than in normal adult mouse erythrocytes, and differentiation of murine erythroleukemia cells resulted in a further lowering of this phospholipid. In contrast, a significant increase in the level of phosphatidylethanolamine occured as a result of maturation. Fatty acid analysis of major lipid classes of differentiated Friend cells showed significant reduction in saturation, but no alteration in chain length in comparison to undifferentiated cells. A pronounced decrease in the cellular content of both free and esterified cholesterol, which resulted in a 45% decrease in the ratio of cholesterol/phospholipids, occurred in cells differentiated by the polar solvent. The findings indicate that erythrodifferentiation induced by DMSO results in a variety of changes in the lipid composition of the membranes of Friend leukemia cells.  相似文献   

19.
The effects of amiloride on increased 86Rb+ influx, an early event of lymphocyte activation, and on the late event, [3H]thymidine uptake, were compared in anti-Ig-stimulated human B-lymphoma cells in vitro. Both events were inhibited to significant and comparable extents, and the drug effects were apparently not due to unspecific toxicity. This suggests that the increased 86Rb+ influx reflects early changes (e.g. amiloride-sensitive Na+-H+ exchange) which are required for anti-Ig induction of B-lymphocyte proliferation.  相似文献   

20.
The preceding paper (Ciapa et al., 1984) provided biochemical and kinetic characterization of the Na+-K+ exchange in Paracentrotus lividus eggs. The present work is a study of the ionic events involved in the stimulation of the Na+-K+ transporter after fertilization. Fertilization in low Na+-external medium containing amiloride (0.1 mM) suppresses the stimulation of the net efflux of H+ and 86Rb uptake. Activation of eggs with the ionophore A23187 leads to stimulation of both Na+-H+ exchange and ouabain-sensitive 86Rb influx. When eggs were activated with A23187 in artificial seawater, 86Rb uptake and 24Na influx showed similar saturable kinetics with respect to the external Na+. A23187 treatment of eggs in Na+-free artificial seawater did not stimulate the Na+-K+ exchange until 10 mEq Na+ was added. Activation of eggs by NH4Cl (5 mM) stimulated 86Rb influx and Na+ exit; both fluxes were ouabain sensitive. Monensin increased cell Na+ of unfertilized eggs without any significant increase in intracellular pH: a condition in which 86Rb influx was not markedly stimulated. Addition of 10 mEq Na+ to unfertilized eggs in Na+-free artificial seawater stimulated 86Rb uptake but to a lower extent that did 10 mEq Na+ plus sperm. It is concluded that (1) the stimulation of the Na+-K+ pump at fertilization has an absolute requirement for the Na+-H+ exchange; (2) the alkalinization of eggs resulting from the acid efflux is a prerequisite for the enhancement of the Na+-K+ pump; (3) the amount of Na+ entering eggs at fertilization determines the intensity of the Na+-K+ exchange; (4) early events of fertilization such as exocytosis and calcium release which may be involved in the stimulation of the Na+-K+ pump must necessarily be coupled to cell alkalinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号