首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Beginning in October 2000, subadult loggerhead sea turtles Caretta caretta showing clinical signs of a neurological disorder were found in waters off south Florida, USA. Histopathology indicated generalized and neurologic spirorchiidiasis. In loggerhead sea turtles (LST) with neurospirorchiidiasis, adult trematodes were found in the meninges of the brain and spinal cord of 7 and 3 affected turtles respectively, and multiple encephalic intravascular or perivascular eggs were associated with granulomatous or mixed leukocytic inflammation, vasculitis, edema, axonal degeneration and occasional necrosis. Adult spirorchiids were dissected from meningeal vessels of 2 of 11 LST brains and 1 of 10 spinal cords and were identified as Neospirorchis sp. Affected LST were evaluated for brevetoxins, ciguatoxins, saxitoxins, domoic acid and palytoxin. While tissues from 7 of 20 LST tested positive for brevetoxins, the levels were not considered to be in a range causing acute toxicosis. No known natural (algal blooms) or anthropogenic (pollutant spills) stressors co-occurred with the turtle mortality. While heavy metal toxicosis and organophosphate toxicosis were also investigated as possible causes, there was no evidence for their involvement. We speculate that the clinical signs and pathologic changes seen in the affected LST resulted from combined heavy spirorchiid parasitism and possible chronic exposure to a novel toxin present in the diet of LST.  相似文献   

2.
The onset of spring, noted by the timing of wildlife migratory and breeding behaviors, has been occurring earlier over the past few decades. Here, we examine 15 years of loggerhead sea turtle, Caretta caretta, nesting patterns along a 40.5 km beach on Florida's Atlantic coast. This small section of beach is considered to be the most important nesting area for this threatened species in the western hemisphere. From 1989 to 2003, the annual number of nests fluctuated between 13 000 and 25 000 without a conspicuous trend; however, based on a regression analysis, the median nesting date became earlier by roughly 10 days. The Julian day of median nesting was significantly correlated with near‐shore, May sea surface temperatures that warmed an average of 0.8°C over this period. This marine example from warm temperate/subtropical waters represents another response of nature to recent climate trends.  相似文献   

3.
Young loggerhead sea turtles (Caretta caretta) from eastern Florida, U.S.A., undertake a transoceanic migration in which they gradually circle the North Atlantic Ocean before returning to the North American coast. Hatchlings in the open sea are guided at least partly by a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial locations along the migratory route. The magnetic map exists in turtles that have never migrated and thus appears to be inherited. Turtles derive both longitudinal and latitudinal information from the Earth's field, most likely by exploiting unique combinations of field inclination and intensity that occur in different geographic areas. Similar mechanisms may function in the migrations of diverse animals.  相似文献   

4.
Rapid, safe, and effective methods of anesthetic induction and recovery are needed for sea turtles, especially in cases eligible for immediate release. This study demonstrates that intravenous propofol provides a rapid induction of anesthesia in loggerhead (Caretta caretta) sea turtles and results in rapid recovery, allowing safe return to water shortly after the procedure. Forty-nine loggerhead sea turtles were recovered as local fishery by-catch in pound nets and transported to a surgical suite for laparoscopic sex determination. Treatment animals (n = 32) received 5 mg/kg propofol intravenously (i.v.) as a rapid bolus, whereas control animals (n = 17) received no propofol. For analgesia, all animals received a 4 ml infusion of 1% lidocaine, locally, as well as 2 mg/kg ketoprofen intramuscularly (i.m.). Physiologic data included heart and respiratory rate, temperature, and a single blood gas sample collected upon termination of the laparoscopy. Subjective data included jaw tone and ocular reflex: 3 (vigorous) to 0 (none detected). Anesthetic depth was scored from 1, no anesthesia, to 3, surgical anesthesia. Turtles receiving propofol became apneic for a minimum of 5 min with a mean time of 13.7 +/- 8.3 min to the first respiration. Limb movement returned at a mean time of 21.1 +/- 16.8 min. The treatment animals were judged to be sedated for approximately 30 min (mean anesthetic depth score > or = 1.5) when compared to controls. Median respiratory rates for treatment animals were slower compared to controls for the first 15 min, then after 35 min, they became significantly faster than the controls. Median heart rates of control animals became significantly slower than treatment animals between 40 and 45 min. Physiologic differences between groups persisted a minimum of 55 min. Possible explanations for heart rate and respiratory rate differences later in the monitoring period include a compensatory recovery of treatment animals from anesthesia-induced hypoxia and hypercapnia or, alternatively, an induced response of the nonsedated control animals. The animals induced with propofol were easier to secure to the restraint device and moved less during laparoscopy. In conclusion, propofol is a safe and effective injectable anesthetic for use in free-ranging loggerhead sea turtles that provides rapid induction and recovery.  相似文献   

5.
6.
Twelve loggerhead sea turtle hatchlings (Caretta caretta) were removed from a nest site (A) at the Back Bay National Wildlife Refuge (U.S. Fish and Wildlife Service), Virginia Beach, VA. Hatchlings were distributed among study participants, and raised in captivity for a period of two years. Growth of the loggerheads was recorded weekly by straight-line caliper measurements of carapace lengths as well as measurements of total weights. Growth rates from the present study were much greater than those measured in previous studies. Mean weights for Nest A turtles at 1.5 years ranged from 10.3 to 17.6 kg, with one exceptional individual reaching 20.0 kg. The data from this study provide new insights into the early growth potential of loggerhead sea turtles. How this accelerated development may affect sexual maturity and post-release viability remain to be determined. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Mating‐induced ovulation is common in mammals, but has been rarely described in other taxa. Observations of several mature female loggerhead sea turtles, Caretta caretta, held in captivity seemed to indicate that ovulation did not occur in the absence of a male. This study was designed to determine whether this was an effect of captivity or an effect of the absence of a male. Two mature female loggerheads were followed over six annual reproductive cycles. Ultrasound exams were performed approximately every 2 weeks to follow the development of follicles in the ovaries. During the first two seasons, no male was present, in the next two seasons, a mature male was present without mating, and in the final two seasons a mature male was present, mating with one or both females. When no male was present or when present without mating, ovarian follicles developed to full size, but ovulation did not occur and the follicles gradually began to decrease in diameter and undergo changes evident on ultrasound. In the fifth season, only one of the females mated, dropping two eggs after 7 days, and continued to oviposit throughout the following months (total 275 eggs). The unmated female did not ovulate, showing the same pattern as earlier seasons. In the final season, both females mated and ovulated, dropping eggs for the next four months (total 539 eggs). The following year, no males were present and neither female ovulated. This study provides clear evidence that ovulation in loggerhead sea turtles is induced by mating. Zoo Biol 27:213–225, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Given the threats of climate change, understanding the relationship of climate with long‐term population dynamics is critical for wildlife conservation. Previous studies have linked decadal climate oscillations to indices of juvenile recruitment in loggerhead sea turtles (Caretta caretta), but without a clear understanding of mechanisms. Here, we explore the underlying processes that may explain these relationships. Using the eddy‐resolving Ocean General Circulation Model for the Earth Simulator, we generate hatch‐year trajectories for loggerhead turtles emanating from Japan over six decades (1950–2010). We find that the proximity of the high‐velocity Kuroshio Current to the primary nesting areas in southern Japan is remarkably stable and that hatchling dispersal to oceanic habitats itself does not vary on decadal timescales. However, we observe a shift in latitudes of trajectories, consistent with the Pacific Decadal Oscillation (PDO). In a negative PDO phase, the Kuroshio Extension Current (KEC) is strong and acts as a physical barrier to the northward transport of neonates. As a result, hatch‐year trajectories remain mostly below 35°N in the warm, unproductive region south of the Transition Zone Chlorophyll Front (TZCF). During a positive PDO phase, however, the KEC weakens facilitating the neonates to swim north of the TZCF into cooler and more productive waters. As a result, annual cohorts from negative PDO years may face a lack of resources, whereas cohorts from positive PDO years may find sufficient resources during their pivotal first year. These model outputs indicate that the ocean circulation dynamics, combined with navigational swimming behavior, may be a key factor in the observed decadal variability of sea turtle populations.  相似文献   

9.
Intrapopulational polymorphism in habitat use is widely reported in many animal species. The phenomenon has recently also been recognized in adult female loggerhead sea turtles Caretta caretta , with small females tending to inhabit oceanic areas (where water depths are >200 m) while presumably feeding pelagically and large females tending to inhabit neritic areas (where depths are <200 m) while presumably feeding benthically. In this study, dive recording satellite telemetry units were used to verify their foraging and diving behaviours in these habitats. Two females that nested on Yakushima Island, Japan, were tracked for 124 and 197 days. The small female wandered in the oceanic Pacific, and spent most of the time at 0–25 m depths regardless of day or night, implying that she foraged pelagically at the surface and shallow depths. Her mean dive durations were significantly longer at night than during the day. The large female moved into the neritic East China Sea, and spent most of the time over the continental shelf at 100–150 m depths during the day and at 0–25 m depths at night, suggesting that she alternated between diurnal benthic foraging and nocturnal resting within the depths where she could attain neutral buoyancy. Her mean dive durations were not significantly different between day and night. The increase in dive duration for both turtles coincided with a seasonal decrease in water temperature. The small female sometimes showed midwater dormancy at 0–25 m depths with a duration of >5 h that was in contrast with bottom dormancy by sea turtles inhabiting other regions. The diving behaviours observed during this study were consistent with their estimated main feeding habits, which demonstrated resource polymorphism in a marine reptile.  相似文献   

10.
Loggerhead sea turtles (Caretta caretta) derive both directional and positional information from the Earths magnetic field, but the mechanism underlying magnetic field detection in turtles has not been determined. One hypothesis is that crystals of biogenic, single-domain magnetite provide the physical basis of the magnetic sense. As a first step toward determining if magnetite is involved in sea turtle magnetoreception, hatchling loggerheads were exposed to pulsed magnetic fields (40 mT, 4 ms rise time) capable of altering the magnetic dipole moment of biogenic magnetite crystals. A control group of turtles was treated identically but not exposed to the pulsed fields. Both groups of turtles subsequently oriented toward a light source, implying that the pulsed fields did not disrupt the motivation to swim or the ability to maintain a consistent heading. However, when swimming in darkness under conditions in which turtles normally orient magnetically, control turtles oriented significantly toward the offshore migratory direction while those that were exposed to the magnetic pulses did not. These results are consistent with the hypothesis that at least part of the sea turtle magnetoreception system is based on magnetite. In principle, a magnetite-based magnetoreception system might be involved in detecting directional information, positional information, or both.  相似文献   

11.
Post-hatchling loggerhead turtles (Caretta caretta) in the northern Pacific and northern Atlantic Oceans undertake transoceanic developmental migrations. Similar migratory behaviour is hypothesized in the South Pacific Ocean as post-hatchling loggerhead turtles are observed in Peruvian fisheries, yet no loggerhead rookeries occur along the coast of South America. This hypothesis was supported by analyses of the size-class distribution of 123 post-hatchling turtles in the South Pacific and genetic analysis of mtDNA haplotypes of 103 nesting females in the southwest Pacific, 19 post-hatchlings stranded on the southeastern Australian beaches and 22 post-hatchlings caught by Peruvian longline fisheries. Only two haplotypes (CCP1 93% and CCP5 7%) were observed across all samples, and there were no significant differences in haplotype frequencies between the southwest Pacific rookeries and the post-hatchlings. By contrast, the predominant CCP1 haplotype is rarely observed in North Pacific rookeries and haplotype frequencies were strongly differentiated between the two regions (Fst=0.82; p=<0.00001). These results suggest that post-hatchling loggerhead turtles emerging from the southwest Pacific rookeries are undertaking transoceanic migrations to the southeastern Pacific Ocean, thus emphasizing the need for a broader focus on juvenile mortality throughout the South Pacific to develop effective conservation strategies.  相似文献   

12.
Ontogenetic niche theory predicts that individuals may undergo one or more changes in habitat or diet throughout their lifetime to maintain optimal growth rates, or to optimize trade-offs between mortality risk and growth. We combine skeletochronological and stable nitrogen isotope (δ15N) analyses of sea turtle humeri (n = 61) to characterize the growth dynamics of juvenile loggerhead sea turtles (Caretta caretta) during an oceanic-to-neritic ontogenetic shift. The primary objective of this study was to determine how ontogenetic niche theory extends to sea turtles, and to individuals with different patterns of resource use (discrete shifters, n = 23; facultative shifters n = 14; non-shifters, n = 24). Mean growth rates peaked at the start of the ontogenetic shift (based on change in δ15N values), but returned to pre-shift levels within 2 years. Turtles generally only experienced 1 year of relatively high growth, but the timing of peak growth relative to the start of an ontogenetic shift varied among individuals (before, n = 14; during, n = 12; after, n = 8). Furthermore, no reduction in growth preceded the transition, as is predicted by ontogenetic niche theory. Annual growth rates were similar between non-transitioning turtles resident in oceanic and neritic habitats and turtles displaying alternative patterns of resource use. These results suggest that factors other than maximization of size-specific growth may more strongly influence the timing of ontogenetic shifts in loggerhead sea turtles, and that alternative patterns of resource use may have limited influence on somatic growth and age at maturation in this species.  相似文献   

13.
Mating systems are a central component in the evolution of animal life histories and in conservation genetics. The patterns of male reproductive skew and of paternal shares in batches of offspring, for example, affect genetic effective population size. A prominent characteristic of mating systems of sea turtles seem to be a considerable intra- and interspecific variability in the degree of polyandry. Because of the difficulty of observing the mating behaviour of sea turtles directly in the open sea, genetic paternity analysis is particularly useful for gaining insights into this aspect of their reproductive behaviour. We investigated patterns of multiple paternity in clutches of loggerhead sea turtles in the largest Mediterranean rookery using four highly variable microsatellite loci. Furthermore, we tested for a relationship between the number of fathers detected in clutches and body size of females. More than one father was detected in the clutches of 14 out of 15 females, with two clutches revealing the contribution of at least five males. In more than half the cases, the contributions of different fathers to a clutch did not depart from equality. The number of detected fathers significantly increased with increasing female body size. This relationship indicates that males may prefer to mate with large, and therefore productive, females. Our results suggest that polyandry is likely to increase effective population size compared to a population in which females would mate with only one male; male reproductive contributions being equal.  相似文献   

14.
The goal of this study was to assess the consequences of single versus multiple paternity by identifying paternity of clutches per female to identify whether there were detectable costs or benefits. Multiple mating can occur when the benefits of mating outweigh the costs, but if costs and benefits are equal, no pattern is expected. Previous research on loggerhead sea turtle (Caretta caretta) populations found male‐biased breeding sex ratios and multiple mating by many females nesting in southwestern Florida. A sample of nesting loggerhead females who laid more than one nest over the course of the season and a subset of their hatchlings were examined from 36 clutches in 2016 on Sanibel Island, Florida. Males that fathered hatchlings in the first clutch sampled were identified in subsequent clutches. Interestingly, 75% of the females analyzed had mated singly. No male was represented in more than one female's clutches. The results suggest that females likely mate at the beginning of the season and use stored sperm for multiple clutches. Evidence for mating between laying events was limited. There was no consistent pattern across the subsequent multiple paternity clutches, suggesting benefits to loggerhead females likely equal their costs and subsequent mating is likely determined by female preference.  相似文献   

15.
The present study describes pathological and microbiological findings in 9 stranded loggerhead sea turtles Caretta caretta, whose only observed lesion was bilateral purulent salt gland adenitis. Histological lesions ranged from the presence of abundant eosinophilic material associated with bacterial colonies in the lumen of the central ducts of the glandular lobules to the destruction of the glandular tissue and presence of abundant eosinophilic material composed of heterophils and cell debris, lined by multinucleated giant cells. Aeromonas hydrophila, Staphylococcus sp., and Vibrio alginolyticus were the bacteria most frequently isolated. Plasma concentrations of sodium and chloride and plasma osmolality from 2 turtles suffering from salt gland adenitis were, respectively 45.7, 69.2, and 45.7% higher than the mean value for healthy turtles. These cases suggest that failure to maintain homeostasis due to severe lesions in the salt glands can cause stranding and/or death of loggerhead sea turtles.  相似文献   

16.
The barnacle, Chelonibia testudinaria, is a common inhabitant of the marine turtle epibiont community and plays a key role in the development of this community. Phylogeographic analysis of 79 cytochrome c oxidase I (COX1) sequences for barnacles collected from five populations found contrasting patterns of divergence for populations in the Atlantic vs. the Pacific Ocean. Our analysis indicates that the two Pacific populations, Senri Beach, Japan and Bahia Magdalena, Mexico, were not only highly divergent from the Atlantic populations but are highly divergent from one another. We suggest that barnacles from these populations may represent cryptic species. In contrast, sequence divergence was greatly reduced among barnacles collected from Wassaw Island, GA, USA, Keewaydin, FL, USA, and Kyparissia, Pèloponnésus Island, Greece. A reduction in sequence diversity at the latter site was attributed to a recent range expansion into the Mediterranean Sea. We examined historical patterns of migration among the three Atlantic and Mediterranean populations using the program migrate. This analysis indicates a high rate of migration from Keewaydin to Wassaw Island, contrasted with a much lower rate of migration in the opposite direction. The estimated migration rate from Kyparissia to Keewaydin was also non-negligible. We suggest that the association between C. testudinaria and loggerhead turtles and the patterns of turtle migration have played key roles in the expansion of the range of C. testudinaria into the Mediterranean Sea and the subsequent patterns of barnacle migration. We further propose that the difference between ocean basins, with respect to the impact of host migration on barnacle gene flow, probably stems from the fact that host-mediated dispersal in the Atlantic depends on advanced stage juveniles and adults while any host-mediated dispersal in the Pacific would have to involve early "pelagic" stage juvenile loggerheads.  相似文献   

17.
Visual evoked potentials measure dynamic properties of the visual system by recording transient electric responses of neural tissue identified to correspond to a specific visual stimulus, such as light or a striped grid. In this study, visual evoked potentials were used to test the visual acuity of juvenile loggerhead sea turtles (Caretta caretta) in water. Subject animals were fitted with a Plexiglas goggle filled with filtered seawater. Stimuli of black and white striped gratings were presented to the turtles using a slide projector directing an image onto a screen via a rotatable mirror that shifted the striped pattern laterally one-half cycle. Bioelectric activity was collected using a digital averaging computer and subdermal platinum electrodes, implanted under the head scutes directly above the optic nerve and the contralateral optic tectum. To isolate the response signal from the noise, signal averaging techniques were used when collecting visual evoked potentials. The resulting response waveforms included a robust positive-negative compound that was used to track the turtle's response to visual stimulation. Acuity thresholds for these sea turtles, which were derived from linear regressions analysis of the positive-negative compound amplitudes versus stripe size, ranged from 0.130 to 0.215. This acuity level is comparable to other inshore, shallow water marine species.  相似文献   

18.
Swimming animals may experience a wide range of destabilizing forces resulting from the movements of their propulsors. These forces often cause movements in directions other than the intended trajectory (i.e., recoil motions), potentially increasing locomotor costs. We quantified rectilinear swimming stability for posthatchling loggerhead (Caretta caretta) and green turtles (Chelonia mydas). Sea turtles predominantly swim via “aquatic flight”, which is characterized by synchronous dorsoventral flapping of their forelimbs. We tested four predictions about the effects of “aquatic flight” on stability: (1) it would produce little lateral recoil; (2) lateral recoil motions would be non-cyclic; (3) vertical recoil motions would be larger than lateral recoil motions; and (4) vertical recoil motions would be cyclic. Additionally, because posthatchling loggerheads possess dorsal keels on the shell that are absent in green turtles, we evaluated whether such keels might improve stability in swimming turtles. While our expectations for patterns of cyclicity in recoil motions (predictions 2 and 4) were met, our expectations for differences in their absolute and relative magnitudes (predictions 1 and 3) were not. We suggest that lateral recoil motions were greater than predicted due to slight asynchronies between the motions of the left and right foreflippers. Additionally, although minimum lateral recoil motions were smaller than minimum vertical recoil motions, maximum recoil motions were greater in the lateral direction, so that average recoil did not differ significantly between these directions. Finally, because loggerheads did not display higher levels of stability compared to green turtles, there is little evidence to support a stabilizing role for dorsal keels in loggerhead turtles.  相似文献   

19.
Bycatch of endangered loggerhead turtles in longline fisheries results in high rates of post-release mortality that may negatively impact populations. The factors contributing to post-release mortality have not been well studied, but traumatic injuries and physiological disturbances experienced as a result of capture are thought to play a role. The goal of our study was to gauge the physiological status of loggerhead turtles immediately upon removal from longline gear in order to refine our understanding of the impacts of capture and the potential for post-release mortality. We analysed blood samples collected from longline- and hand-captured loggerhead turtles, and discovered that capture in longline gear results in blood loss, induction of the systemic stress response, and a moderate increase in lactate. The method by which turtles are landed and released, particularly if released with the hook or line still attached, may exacerbate stress and lead to chronic injuries, sublethal effects or delayed mortality. Our study is the first, to the best of our knowledge, to document the physiological impacts of capture in longline gear, and our findings underscore the importance of best practices gear removal to promote post-release survival in longline-captured turtles.  相似文献   

20.
Standard biochemical parameters were determined in wild juvenile loggerhead sea turtles Caretta caretta living offshore Madeira Island, northeast Atlantic. We analyzed the influence of age, sex, sea surface temperature, and body condition index on biochemical parameters including uric acid, total bilirubin, total cholesterol, creatinine kinase (CK), glucose, total protein, urea nitrogen, lactate dehydrogenase, aspartate aminotranspherase (AST), gamma-glutamyl transferase (GGT), albumin, alkaline phosphatase (ALP), sodium (NA), potassium (K), chloride, calcium, phosphorus, and magnesium. Significant positive correlations were found between turtle body size and total cholesterol, total protein, and albumin. Total protein and the enzymes AST and CK were lower than reported levels in adults. Calcium levels were lower than those reported in adult or captive turtles, but similar to wild juveniles from Australian waters, and were interpreted as normal for this age category. These data may be useful to evaluate the health status of stranded or injured animals and to improve veterinary care at rehabilitation centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号