首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amino acid substitutions at the Lys-650 codon within the activation loop kinase domain of fibroblast growth factor receptor 3 (FGFR3) result in graded constitutive phosphorylation of the receptor. Accordingly, the Lys-650 mutants are associated with dwarfisms with graded clinical severity. To assess the importance of the phosphorylation level on FGFR3 maturation along the secretory pathway, hemagglutinin A-tagged derivatives were studied. The highly activated SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) mutant accumulates in its immature and phosphorylated form in the endoplasmic reticulum (ER), which fails to be degraded. Furthermore, the Janus kinase (Jak)/STAT pathway is activated from the ER by direct recruitment of Jak1. Abolishing the autocatalytic property of the mutated FGFR3 by replacing the critical Tyr-718 reestablishes the receptor full maturation and inhibits signaling. Differently, the low activated hypochondroplasia mutant is present as a mature phosphorylated form on the plasma membrane, although with a delayed transition in the ER, and is completely processed. Signaling does not occur in the presence of brefeldin A; instead, STAT1 is activated when protein secretion is blocked with monensin, suggesting that the hypochondroplasia receptor signals at the exit from the ER. Our results suggest that kinase activity affects FGFR3 trafficking and determines the spatial segregation of signaling pathways. Consequently, the defect in down-regulation of the highly activated receptors results in the increased signaling capacity from the intracellular compartments, and this may determine the severity of the diseases.  相似文献   

2.
Expression of the cysteine-rich fibroblast growth factor (FGF) receptor (CFR) in COS-1 cells strongly inhibits the secretion of co-expressed FGF3. By using a column retention assay and affinity chromatography, we demonstrate that at physiological salt concentrations FGF3 binds with strong affinity to CFR in vivo and in vitro. Furthermore, to show that FGF3 binds to CFR in vivo, truncation mutants of CFR with changed subcellular distributions were shown to cause a similar redistribution of FGF3. Although CFR is a 150-kDa integral membrane glycoprotein that is primarily located in the Golgi apparatus, we show here that in COS-1 cells a substantial proportion of CFR is secreted. This is due to a carboxyl-terminal proteolytic cleavage that releases the intraluminal portion of the protein for secretion. However, the apparent size of the integral membrane and secreted CFR appears similar, since the loss of protein mass is balanced by a gain of complex carbohydrates. The released CFR is associated with the extracellular matrix through its affinity for glycosaminoglycans. These findings show that CFR can modulate the secretion of FGF3 and may control its biological activity by regulating its secretion.  相似文献   

3.
Although fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 3 (FGFR3) both inhibit longitudinal bone growth, little is known about the relationship between FGF2 and FGFR3. Accordingly, the current study examined the expression of FGFR3 mRNA after the administration of FGF2 using cultured chondrocytes from day 17 chick embryos to evaluate the relationship between FGF2 and FGFR3. The chondrocytes were isolated from the caudal one-third portion (LS) of sterna, peripheral regions (USP) and central core regions (USC) of the cephalic portion of the sterna, and lower portion of the proximal tibial growth plate (Ti) of day 17 chick embryo. The expression of FGFR1, FGFR3, and type II and X collagen mRNA in the chondrocytes from the LS, USP, USC, and Ti was determined. FGFR1 was not expressed in the LS and USP chondrocytes, yet strongly expressed in the USC and Ti chondrocytes. With a treatment of FGF2, the expression of FGFR1 slightly increased in the USC chondrocytes and was not related with the concentration of FGF2 in the Ti chondrocytes. FGFR3 was expressed in all the chondrocyte types, yet strongly increased in the LS, USC, USP, and Ti in that order according to the concentration of FGF2. For the LS and USP chondrocytes, the expression of FGFR3 with FGF2 increased in a 4-day culture, yet decreased in a 6-day culture, whereas for the USC chondrocytes, the expression of FGFR3 mRNA with FGF2 increased in a 2-day culture, yet decreased in a 4-day culture, suggesting that the hypertrophic chondrocytes were more numerous and sensitive compared to the proliferative chondrocytes. For all the chondrocyte types, FGF2 appeared to be up-regulated to FGFR3, as the expression of FGFR3 mRNA increased with a higher concentration of FGF2 until a peak level. In conclusion, FGF2 was found to up-regulate to FGFR3 until the peak level of FGFR3 mRNA expression, while in hypertrophic chondrocytes, FGFR3 appeared to cause the differentiaton of chondrocytes, resulting in the inhibition of longitudinal bone growth after the peak level of FGFR3 mRNA expression.  相似文献   

4.
A truncated form of the type 1 fibroblast growth factor receptor (FGFR1) lacking most of its cytoplasmic domain was tested for its ability to inhibit signal transduction by each of three different wild-type FGFRs (FGFR1, 2, and 3). When the truncated FGFR1 was expressed in Xenopus oocytes in excess of each wild-type FGFR, mobilization of intracellular calcium mediated by the wild-type FGFRs was completely blocked. The truncated FGFR did not inhibit signal transduction by the co-expressed platelet-derived growth factor beta-receptor. A form of truncated FGFR1 which lacked the first immunoglobulin-like domain also inhibited signal transduction by wild-type FGFRs. Truncated FGFR formed complexes with wild-type FGFR in the presence of basic FGF in intact cells. These observations were consistent with the hypothesis that the truncated FGFR interacted with wild-type FGFRs to form nonfunctional heterodimers, thus eliminating the signaling by the wild-type FGFRs. The observation that signaling by multiple types of FGFR can be blocked by a single type of truncated FGFR suggests that the different types of FGFR can interact with each other in ligand-mediated complexes. These findings provide a molecular basis for inhibiting the actions of FGFs in vivo.  相似文献   

5.
Identification of a new fibroblast growth factor receptor, FGFR5.   总被引:9,自引:0,他引:9  
  相似文献   

6.
We have confirmed the hypothesis that a mitotoxin resulting from the conjugation of basic fibroblast growth factor and saporin exerts its cytotoxic effect through specific interaction with the basic fibroblast growth factor (FGF) receptor. Accordingly, the mitotoxin stimulates tyrosine phosphorylation of the 90 kD substrate that characterizes the initial cellular response to basic FGF. Cross-linking experiments show that radio-labeled basic fibroblast growth factor-saporin (FGF-SAP) binds to the receptor. Suramin, an inhibitor of growth factor receptor binding, inhibits the cytotoxicity of basic FGF-SAP. In a study of 4 different cell types, there is a decrease in the ED50 of the mitotoxin as the receptor number per cell increases. We have verified the cytotoxicity of the mitotoxin in 3 different assay systems. As expected, it is effective in the inhibition of protein synthesis and DNA synthesis, as well as of cell count. Binding of basic FGF-SAP which will result in cytotoxicity occurs very rapidly; 5 minutes of incubation of 10 nM basic FGF-SAP with cells results in 80% inhibition of cell count. The in vitro data indicate that the basic FGF-SAP is a receptor specific and potent suicide antagonist of basic FGF. Its potential as an anti-FGF for therapeutic and research uses in vivo is discussed.  相似文献   

7.

OBJECTIVE:

The Objective of this study was to identify the association of mutation of fibroblast growth factor receptor 1 (FGFR1), FGFR2 genes with syndromic as well as non-syndromic craniosynostosis in Indian population.

MATERIALS AND METHODS:

Retrospective analysis of our records from January 2008 to December 2012 was done. A total of 41 cases satisfying the inclusion criteria and 51 controls were taken for the study. A total volume of 3 ml blood from the patient as well as parents was taken. Deoxyribonucleic acid extracted using phenol chloroform extraction method followed by polymerase chain reaction-restriction fragment length polymorphism method.

RESULTS:

There were 33 (80.4%) non-syndromic cases of craniosynostosis while 8 (19.5%) were syndromic. Out of these 8 syndromic cases, 4 were Apert syndrome, 3 were Crouzon syndrome and 1 Pfeiffer syndrome. Phenotypically the most common non-syndromic craniosynostosis was scaphocephaly (19, 57.7%) followed by plagiocephaly in (14, 42.3%). FGFR1 mutation (Pro252Arg) was seen in 1 (2.4%) case of non-syndromic craniosynostosis while no association was noted either with FGFR1 or with FGFR2 mutation in syndromic cases. None of the control group showed any mutation.

CONCLUSION:

Our study proposed that FGFR1, FGFR2 mutation, which confers predisposition to craniosynostosis does not exist in Indian population when compared to the western world.  相似文献   

8.
We have previously identified two novel members of the fibroblast growth factor receptor (FGFR) gene family expressed in K562 erythroleukemia cells. Here we report cDNA cloning and analysis of one of these genes, named FGFR-4. The deduced amino acid sequence of FGFR-4 is 55% identical with both previously characterized FGFRs, flg and bek, and has the structural characteristics of a FGFR family member including three immunoglobulin-like domains in its extracellular part. Antibodies raised against the carboxy terminus of FGFR-4 detected 95 and 110 kd glycoproteins with a protein backbone of 88 kd in COS cells transfected with a FGFR-4 cDNA expression vector. The FGFR-4 protein expressed in COS cells could also be affinity-labeled with radioiodinated acidic FGF. Furthermore, ligand binding experiments demonstrated that FGFR-4 binds acidic FGF with high affinity but does not bind basic FGF. FGFR-4 is expressed as a 3.0 kb mRNA in the adrenal, lung, kidney, liver, pancreas, intestine, striated muscle and spleen tissues of human fetuses. The expression pattern of FGFR-4 is distinct from that of flg and bek and the yet additional member of the same gene family, FGFR-3, which we have also cloned from the K562 leukemia cells. Our results suggest that FGFR-4 along with other fibroblast growth factor receptors performs cell lineage and tissue-specific functions.  相似文献   

9.
A chimeric molecule consisting of the extracellular domain of the adhesion molecule, N-cadherin, fused to the Fc region of human IgG (NCAD-Fc) supports calcium-dependent cell adhesion and promotes neurite outgrowth following affinity-capture to a tissue culture substrate. When presented to cerebellar neurons as a soluble molecule, the NCAD-Fc stimulated neurite outgrowth in a manner equivalent to that seen for N-cadherin expressed as a cell surface glycoprotein. Neurons expressing a dominant-negative version of the fibroblast growth factor (FGF) receptor did not respond to soluble NCAD-Fc. In cells transfected with full-length N-cadherin and the FGF receptor, antibody-clustering of N-cadherin resulted in a co-clustering of the FGF receptor to discrete patches in the cell membrane. The data demonstrate that the ability of N-cadherin to stimulate neurite outgrowth can be dissociated from its ability to function as a substrate associated adhesion molecule. The N-cadherin and the FGF receptor co-clustering in cells provides a basis for the neurite outgrowth response stimulated by N-cadherin being dependent on FGF receptor function.  相似文献   

10.
11.
Treatment of Swiss 3T3 fibroblasts with basic fibroblast growth factor (bFGF) lead to a rapid reduction in epidermal growth factor (EGF) binding and a slower inhibition of EGF receptor autophosphorylation. The reduction in binding was due to a complete loss of the highest affinity EGF binding sites and a reduction in the lower affinity binding sites. Neither the inhibition of EGF binding nor the inhibition of EGF receptor autophosphorylation required protein kinase C. Treatment of cells with bFGF stimulated the phosphorylation of the EGF receptor, which persisted for several hours. The inhibition of EGF receptor autophosphorylation by bFGF was reduced in the presence of cycloheximide. However, cycloheximide had no effect on the reduction of EGF binding by bFGF. In contrast to these results with Swiss 3T3 fibroblasts, treatment of PC12 cells with bFGF lead to a reduction in EGF binding but no inhibition of EGF receptor autophosphorylation. Thus inhibited of EGF receptor autophosphorylation and inhibition of EGF binding can be uncoupled. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Fibroblast growth factor (FGF) receptors (FGFRs) are membrane-spanning tyrosine kinase receptors that mediate regulatory signals for cell proliferation and differentiation in response to FGFs. We have previously determined that the Lys650-->Glu mutation in the activation loop of the kinase domain of FGFR3, which is responsible for the lethal skeletal dysplasia thanatophoric dyplasia type II (TDII), greatly enhances the ligand-independent kinase activity of the receptor. Here, we demonstrate that expression of this construct induces a c-fos promoter construct approximately 10-fold but does not lead to proliferation or morphological transformation of NIH 3T3 cells. In contrast, the isolated kinase domain of activated FGFR3, targeted to the plasma membrane by a myristylation signal, is able to stimulate c-fos expression by 40-fold, induce proliferation of quiescent cells, and morphologically transform fibroblasts. This result suggests that the extracellular and transmembrane domains of FGFRs exert a negative regulatory influence on the activity of the kinase domain. Targeting of the activated kinase domain to either the cytoplasm or the nucleus does not significantly affect biological signaling, suggesting that signals from FGFR3 resulting in mitogenesis originate exclusively from the plasma membrane. Furthermore, our novel observation that expression of a highly activated FGFR3 kinase domain is able to morphologically transform fibroblasts suggests that dysregulation of FGFR3 has the potential to play a role in human neoplasia.  相似文献   

13.
14.
15.
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. KGF exhibits potent mitogenic activity for a variety of epithelial cell types but is distinct from other known FGFs in that it is not mitogenic for fibroblasts or endothelial cells. We report saturable specific binding of 125I-KGF to surface receptors on intact Balb/MK mouse epidermal keratinocytes. 125I-KGF binding was completed efficiently by acidic FGF (aFGF) but with 20-fold lower efficiency by basic FGF (bFGF). The pattern of 125I-acidic FGF binding and competition on Balb/MK keratinocytes and NIH/3T3 fibroblasts suggests that these cell types possess related but distinct FGF receptors. Scatchard analysis of 125I-KGF binding suggested major and minor high affinity receptor components (KD = 400 and 25 pM, respectively) as well as a third high capacity/low affinity heparin-like component. Covalent affinity cross-linking of 125I-KGF to its receptor on Balb/MK cells revealed two species of 115 and 140 kDa. KGF also stimulated the rapid tyrosine phosphorylation of a 90-kDa protein in Balb/MK cells but not in NIH/3T3 fibroblasts. Together these results indicate that Balb/MK keratinocytes possess high affinity KGF receptors to which the FGFs may also bind. However, these receptors are distinct from the receptor(s) for aFGF and bFGF on NIH/3T3 fibroblasts, which fail to interact with KGF.  相似文献   

16.
17.
FGFs 19, 21, and 23 are hormones that regulate in a Klotho co-receptor-dependent fashion major metabolic processes such as glucose and lipid metabolism (FGF21) and phosphate and vitamin D homeostasis (FGF23). The role of heparan sulfate glycosaminoglycan in the formation of the cell surface signaling complex of endocrine FGFs has remained unclear. Here we show that heparan sulfate is not a component of the signal transduction unit of FGF19 and FGF23. In support of our model, we convert a paracrine FGF into an endocrine ligand by diminishing heparan sulfate-binding affinity of the paracrine FGF and substituting its C-terminal tail for that of an endocrine FGF containing the Klotho co-receptor-binding site to home the ligand into the target tissue. In addition to serving as a proof of concept, the ligand conversion provides a novel strategy for engineering endocrine FGF-like molecules for the treatment of metabolic disorders, including global epidemics such as type 2 diabetes and obesity.  相似文献   

18.
19.
20.
Signal transduction by tyrosine kinase growth factor receptors involves ligand-induced phosphorylation of substrates for the kinase, resulting in mediation of common or receptor-specific biological signals. We have compared signal transduction pathways for the fibroblast growth factor receptor-1 (FGFR-1), the platelet-derived growth factor beta-receptor (PDGFR-beta), and a chimeric FGFR-1 molecule, FGFRchim, in which the FGFR-1 kinase insert was replaced with that of the PDGFR-beta. The different receptors were characterized and found to be functional as ligand-stimulatable kinases, after expression of the respective human cDNAs in porcine aortic endothelial cells. Substrates for the receptors were analyzed by ligand stimulation of [32P]orthophosphate-labeled cells and immunoprecipitation with phosphotyrosine antiserum. A number of phosphoproteins were induced in all the different types of cells, but components specifically induced after stimulation of FGFR-1 and PDGFR-beta expressing cells could also be detected. Examination of receptor-associated substrates by in vitro kinase assays revealed phosphoproteins of 65 and 85 kDa, which were associated with PDGFR-beta and FGFRchim, but not with FGFR-1. The 85-kDa phosphoprotein could correspond to the regulatory subunit of phosphatidylinositol 3' kinase (PI3-K), since phosphatidylinositol 3' kinase activity was detected after ligand stimulation of FGFRchim- and PDGFR-beta- but not FGFR-1-expressing cells. In addition, ligand stimulation of FGFRchim- and PDGFR-beta-expressing cells, but not FGFR-1-expressing cells, led to induction of actin reorganization in the form of circular membrane ruffling. Thus, replacement of a discrete segment of the intracellular domain of the FGFR-1 with the corresponding stretch from the PDGFR-beta resulted in transfer of PDGFR-beta-specific signaling properties to the chimeric molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号