首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the isolation of a cDNA clone encoding a 60-kDa protein termed fragmin60 that cross-reacts with fragmin antibodies. Unlike other gelsolin-related proteins, fragmin60 contains a unique N-terminal domain that shows similarity with C2 domains of aczonin, protein kinase C, and synaptotagmins. The fragmin60 C2 domain binds three calcium ions, one with nanomolar affinity and two with micromolar affinity. Actin binding by fragmin60 requires higher calcium concentrations than does binding of actin by a fragmin60 mutant lacking the C2 domain, suggesting that the C2 domain secures the actin binding moiety in a conformation preventing actin binding at low calcium concentrations. The fragmin60 C2 domain does not bind phospholipids but interacts with the endogenous homologue of Saccharomyces cerevisiae S-phase kinase-associated protein (Skp1), as shown by pull-down assays and co-expression in mammalian cells. Recombinant fragmin60 promotes in vitro phosphorylation of actin Thr-203 by the actin-fragmin kinase. We further show that in vivo phosphorylation of actin in the fragmin60-actin complex occurs in sclerotia, a dormant stage of Physarum development, as well as in plasmodia. Our findings indicate that we have cloned a novel type of gelsolin-related actin-binding protein that is involved in controlling regulation of actin phosphorylation in vivo.  相似文献   

2.
The Physarum EGTA-resistant actin-fragmin complex, previously named cap 42(a+b), is phosphorylated in the actin subunit by an endogenous kinase [Maruta and Isenberg (1983) J. Biol. Chem., 258, 10151-10158]. This kinase has been purified and characterized. It is an 80 kDa monomeric enzyme, unaffected by known kinase regulators. Staurosporine acts as a potent inhibitor. The actin-fragmin complex is the preferred substrate. The phosphorylation is inhibited by micromolar Ca2+ concentrations, but only in the presence of additional actin. Polymerized actin (vertebrate muscle and non-muscle isoforms) and actin complexes with various actin-binding proteins are poorly phosphorylated. The heterotrimer consisting of two actins and one fragmin, which is formed from cap 42(a+b) and actin in the presence of micromolar concentrations of Ca2+, is also a poor substrate. From the other substrates tested, only histones were significantly phosphorylated, in particular histone H1. In the same manner, casein kinase I could also phosphorylate the actin-fragmin complex. The major phosphorylation site in actin is Thr203. A second minor site is Thr202. These residues constitute one of the contact sites for DNase I [Kabsch et al. (1990) Nature, 347, 37-44] and are also part of one of the predicted actin-actin contact sites in the F-actin model [Holmes et al. (1990) Nature, 347, 44-49].  相似文献   

3.
Coordinated temporal and spatial regulation of the actin cytoskeleton is essential for diverse cellular processes such as cell division, cell motility and the formation and maintenance of specialized structures in differentiated cells. In plasmodia of Physarum polycephalum, the F-actin capping activity of the actin-fragmin complex is regulated by the phosphorylation of actin. This is mediated by a novel type of protein kinase with no sequence homology to eukaryotic-type protein kinases. Here we present the crystal structure of the catalytic domain of the first cloned actin kinase in complex with AMP at 2.9 A resolution. The three-dimensional fold reveals a catalytic module of approximately 160 residues, in common with the eukaryotic protein kinase superfamily, which harbours the nucleotide binding site and the catalytic apparatus in an inter-lobe cleft. Several kinases that share this catalytic module differ in the overall architecture of their substrate recognition domain. The actin-fragmin kinase has acquired a unique flat substrate recognition domain which is supposed to confer stringent substrate specificity.  相似文献   

4.
Under various environmental stresses, the true slime mold Physarum polycephalum converts into dormant forms, such as microcysts, sclerotia, and spores, which can survive in adverse environments for a considerable period of time. In drought-induced sclerotia, actin is threonine phosphorylated, which blocks its ability to polymerize into filaments. It is known that fragmin and actin-fragmin kinase (AFK) mediate this phosphorylation event. In this work, we demonstrate that high levels of actin threonine phosphorylation are also found in other dormant cells, including microcysts and spores. As the threonine phosphorylation of actin in microcysts and sclerotia were induced by drought stress but not by other stresses, we suggest that drought stress is essential for actin phosphorylation in both cell types. Although characteristic filamentous actin structures (dot- or rod-like structures) were observed in microcysts, sclerotia, and spores, actin phosphorylation was not required for the formation of these structures. Prior to the formation of both microcysts and sclerotia, AFK mRNA expression was activated transiently, whereas fragmin mRNA levels decreased. Our results suggest that drought stress and AFK might be involved in the threonine phosphorylation of actin.  相似文献   

5.
We reported previously that myosins from amoebal and plasmodial stages in the life cycle of Physarum polycephalum differ in the primary structure of heavy chains and phosphorylatable 18,000 Mr light chains, while Ca-binding 14,000 Mr light chains are common to both myosins (Kohama & Takano-Ohmuro, Proc Jpn acad 60B (1984) 431; Kohama et al., J biol chem 260 (1986) 8022). We have carried out immunofluorescence microscopical studies upon differentiating cultures of amoebic colonies, which show apogamic amoebo-plasmodial differentiation as follows: Typical amoebae differentiate into mono-nucleate intermediate cells with swollen nuclei and then into two or multi-nucleate young plasmodia (Anderson et al., Protoplasma 89 (1976) 29. Antibodies against plasmodial myosin heavy chain (PMHC) and 18,000 Mr plasmodial myosin light chain (PMLC18) stained intermediate cells and young plasmodia, but not typical amoebae. On the other hand, antibody against amoebal myosin heavy chain (AMHC) stained typical amoebae and intermediate cells--but not young plasmodia. Thus staining was detected using antibodies against both PMHC and AMHC in intermediate cells. Intermediate cells were also stained by antibody against another plasmodium-specific cytoskeletal protein, viz., high molecular weight actin-binding protein (HMWP). We propose that synthesis of myosin subunits switches immediately from amoebal to plasmodial type in mono-nucleate cells with swollen nuclei. This myosin switching is associated with the initiation of HMWP synthesis.  相似文献   

6.
In the acellular slime mold, Physarum polycephalum, the differentiation of amoebae into plasmodia is controlled by a mating type locus, mt. Amoebae carrying heterothallic alleles usually do not differentiate within clones; plasmodia form when two amoebae carrying different alleles fuse and undergo karyogamy. In this paper, we show that amoebae heterozygous for heterothallic alleles can be isolated and maintained as amoebae; the amoebae form plasmodia in clones without a change in ploidy. Plasmodia were also found to be formed, infrequently, by heterothallic amoebae of a single mating type. The plasmodia are healthy and are also formed without a change in ploidy. Thus, the presence of two different heterothallic mating type genes in a single nucleus is compatible with the amoebal state and one heterothallic mating type gene is compatible with the plasmodial state, once established.  相似文献   

7.
In the heterothallic myxomycete Physarum polycephalum, uninucleate amoebae normally differentiate into syncytial plasmodia following heterotypic mating. In order to study the genetic control of this developmental process, mutations affecting the amoebal-plasmodial transition have been sought. Numerous mutants characterized by self-fertility have been isolated. The use of alkylating mutagens increases the mutant frequency over the spontaneous level but does not alter the mutant spectrum. Three spontaneous and 14 induced mutants have been analyzed genetically. In each, the mutation appears to be linked to the mating type locus. In three randomly selected mutants, the nuclear DNA content is the same in amoebae and plasmodia, indicating that amoebal syngamy does not precede plasmodium development in these strains. These results indicate that a highly specific type of mutational event, occurring close to or within the mating type locus, can abolish the requirement for syngamy normally associated with plasmodial differentiation. These mutations help define a genomic region regulating the switch from amoebal to plasmodial growth.  相似文献   

8.
Myosin was isolated from amoebae of Physarum polycephalum and compared with myosin from plasmodia, another motile stage in the Physarum life cycle. Amoebal myosin contained heavy chains (Mr approximately 220,000), phosphorylatable light chains (Mr 18,000), and Ca2+-binding light chains (Mr 14,000) and possessed a two-headed long-tailed shape in electron micrographs after rotary shadow casting. In the presence of high salt concentrations, myosin ATPase activity increased in the following order: Mg-ATPase activity less than K-EDTA-ATPase activity less than Ca-ATPase activity. In the presence of low salt concentrations, Mg-ATPase activity was activated approximately 9-fold by skeletal muscle actin. This actin-activated ATPase activity was inhibited by micromolar levels of Ca2+. Amoebal myosin was indistinguishable from plasmodial myosin in ATPase activities and molecular shape. However, the heavy chain and phosphorylatable light chains of amoebal myosin could be distinguished from those of plasmodial myosin in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, and immunological studies, suggesting that these are different gene products. Ca2+-binding light chains of amoebal and plasmodial myosins were found to be identical using similar criteria, supporting our hypothesis that the Ca2+-binding light chain plays a key role in the inhibition of actin-activated ATPase activity in Physarum myosins by micromolar levels of Ca2+.  相似文献   

9.
10.
A full-length cDNA coding a calmodulin (CaM)-dependent protein kinase gene was cloned from Physarum plasmodia poly(A)-RNA by polymerase chain reaction with the oligonucleotide primers that were designed after the amino acid sequence of highly conserved regions of myosin light-chain kinase. Sequence analysis of the cDNA revealed that this Physarum kinase was a 42,519-Da protein with an ATP-binding domain, Ser/Thr kinase active site signature, and CaM-binding domain. Expression of the cDNA in Escherichia coli demonstrated that the Physarum kinase in the presence of Ca2+ and CaM phosphorylated the recombinant phosphorylatable light chain (PLc) of Physarum myosin II. The peptide analysis after proteolysis of the phosphorylated PLc indicated that Ser 18 was phosphorylated. The site was confirmed by the failure of phosphorylation of PLc, the Ser 18 of which was replaced by Ala. The physiological role of the kinase will be discussed with special reference to the 55-kDa kinase, which had been previously purified from Physarum plasmodia for phosphorylated PLc.  相似文献   

11.
1. Using hybridisation techniques nuclei from both amoebae and plasmodia of Physarum polycephalum were found to contain 275 genes each coding for 5.8-S, 19-S and 26-S rRNA, 685 genes for 5-S rRNA and 1050 genes for tRNA. 2. Hybridisation of these RNA species to both amoebal and plasmodial DNA fractionated on CsCl gradients reveal that the 5.8-S, 19-S and 26-S rRNA genes are located at a satellite position (formula: see text) with respect to the main band of DNA, whereas 4-S RNA genes are located exclusively in the main band of DNA (formula: see text). 3. This result was confirmed by demonstrating that only the 5.8-S, 19-S and 26-S rRNA species hybridise to purified plasmodial ribosomal DNA. 4. The 19-S and 26-S rRNA genes of amoebae are located on extrachromosomal DNA molecules of a discrete size (Mr = 38 X 10(6)) with identical properties to plasmodial ribosomal DNA.  相似文献   

12.
Fragmin is a Ca2(+)-sensitive F-actin-severing protein purified from a slime mold, Physarum polycephalum (Hasegawa, T., S. Takahashi, H. Hayashi, and S. Hatano. 1980. Biochemistry. 19:2677-2683). It binds to G-actin to form a 1:1 fragmin/actin complex in the presence of micromolar free Ca2+. The complex nucleates actin polymerization and caps the barbed end of the short F-actin (Sugino, H., and S. Hatano. 1982. Cell Motil. 2:457-470). Subsequent removal of Ca2+, however, hardly dissociates the complex. This complex nucleates actin polymerization and caps the F-actin regardless of Ca2+ concentration. Here we report that this activity of fragmin-actin complex can be abolished by phosphorylation of actin of the complex. When crude extract from Physarum plasmodium was incubated with 5 mM ATP and 1 mM EGTA, the activities of the complex decreased to a great extent. The inactivation of the complex in the crude extract was not observed in the presence of Ca2+. In addition, the activities of the complex inactivated in the crude extract were restored under conditions suitable for phosphatase reactions. We purified factors that inactivated fragmin-actin complex from the crude extract. These factors phosphorylated actin of the complex, and the activities of the complex decreased with an increased level of phosphorylation of the complex. These factors, termed actin kinase, also inactivated the complex that capped the barbed end of short F-actin, leading to elongation of the short F-actin to long F-actin. Thus the length of F-actin can be controlled by phosphorylation of fragmin-actin complex by actin kinase.  相似文献   

13.
Summary Asynchronous amoebal cultures of temperature-sensitive mutants of Physarum polycephalum were examined cytologically, and two cell cycle mutants were identified. Genetic analysis indicated that each mutant carried a single mutation that was expressed in both amoebal and plasmodial phases. Thus it is possible to isolate cell cycle mutations expressed in plasmodia by initial isolation and analysis of amoebal mutants, a quicker procedure than the alternative of isolating plasmodial mutants directly. The two mutants were studied further by measuring nuclear DNA contents and synthesis of macromolecules. Both mutants gave results consistent with a block in nuclear division.  相似文献   

14.
Fragmin from plasmodium of Physarum polycephalum binds G-actin and severs F-actin in the presence of Ca2+ over 10(-6) M. The fragmin-actin complex consisting of fragmin and G-actin nucleates actin polymerization and caps the barbed (fast growing) end of F-actin, regardless of the concentrations of Ca2+, and the actin filaments are shortened. Actin kinase purified from plasmodium abolishes the nucleation and capping activities of the complex by phosphorylating actin of the fragmin-actin complex (Furuhashi, K., and Hatano, S. (1990) J. Cell. Biol. 111, 1081-1087). This inactivation of the complex leads to production of long actin filaments. We obtained evidence that Physarum actin is phosphorylated by actin kinase at Thr-201, and probably at Thr-202 and/or Thr-203, with 1 mol of phosphate distributed among them. This finding raises the possibility that the site of phosphorylation, Thr-201 to Thr-203, is positioned on the pointed (slow growing) end domain of the actin molecule, because growth of actin filaments from the fragmin-actin complex occurs only from the pointed end. These observations are consistent with a model of the three-dimensional structure of G-actin. Inactivation of the fragmen-actin complex may follow phosphorylation of the pointed end domain of actin.  相似文献   

15.
Actin-fragmin interactions as revealed by chemical cross-linking   总被引:6,自引:0,他引:6  
K Sutoh  S Hatano 《Biochemistry》1986,25(2):435-440
A one to one complex of actin and fragmin (a capping protein from Physarum polycephalum plasmodia) was cross-linked with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linking reaction generated two cross-linked products with slightly different molecular weights (88 000 and 90 000) as major species. They were cross-linked products of one actin and one fragmin. The cross-linking site of fragmin in the actin sequence was determined by peptide mappings [Sutoh, K. (1982) Biochemistry 21, 3654-3661] after partial chemical cleavages of cross-linked products with hydroxylamine. The results indicated that the N-terminal segment of actin spanning residues 1-12 participated in cross-linking with fragmin. The cross-linker used in this study covalently bridges lysine side chains and side chains of acidic residues when they are in direct contact. Therefore, it seems that acidic residues in the N-terminal segment of actin (Asp-1, Glu-2, Asp-3, Glu-4, and Asp-11), at least some of them, are in the binding site of fragmin. It has already been shown that the same acidic segment of actin is in the binding site of myosin or depactin (an actin-depolymerizing protein isolated from starfish oocytes). We suggest that the unusual amino acid sequence of the N-terminal segment of actin makes its N-terminal region a favorable anchoring site for various types of actin-binding proteins.  相似文献   

16.
Summary Strain CL ofPhysarum polycephalum forms multinucleate plasmodia within clones of uninucleate amoebae. The plasmodia have the same nuclear DNA content as the amoebae. Analysis of plasmodial development, using time-lapse cinematography, showed that binucleate cells were formed as a result of nuclear division in uninucleate cells. Binucleate cells developed into plasmodia by further nuclear divisions and cell fusions. No fusions involving uninucleate cells were observed. A temporary increase in cell and nuclear size occurred at the time of binucleate cell formation.  相似文献   

17.
Cloning and expression of a beta tubulin gene of Physarum polycephalum   总被引:1,自引:0,他引:1  
A beta tubulin gene of Physarum polycephalum has been isolated from a genomic library in the phage EMBL4. Southern-blot hybridization to genomic DNA indicates that the cloned DNA is derived from the betB1 locus of the beta tubulin gene family. A tubulin-specific subfragment of the phage DNA was used as a hybridization probe to construct a restriction map of the betB1 locus. The probe consisted of the almost complete coding region of the 5' half of the tubulin gene, interrupted by one intron. The derived amino acid sequence of this subclone deviates from the protein sequence for Physarum amoebal beta tubulin (amino acids 4-207) in two of 207 amino acids. We used both recA and recBC sbcB bacterial host strains, which have been recommended for cloning of instability-conferring sequences of the Physarum genome, but were unable to subclone the 3' part of the gene from the phage DNA. Primer-extension analysis indicates that the betB gene is expressed in the vegetatively proliferating amoebal and plasmodial stages of the life cycle as well as in differentiating (sporulating) plasmodia.  相似文献   

18.
Many protein factors regulating actin polymerization can be extracted from plasmodia of Physarum polycephalum in the presence of a high EGTA concentration (30 mM). A protein factor with the molecular weight of 60,000 (60 kDa protein) was especially interesting because of its fragmin-like properties. We purified and characterized this 60 kDa protein in the present study. The purified 60 kDa protein enhanced the initial rate of G-actin polymerization, severed F-actin, and capped the barbed end of F-actin in a Ca2+-dependent way. The threshold concentration for Ca2+ was around 10(-6) M. The flow birefringence measurement showed that the length of F-actin decreased from 2.8 to 1.0 microns depending on the concentration of 60 kDa protein added to F-actin. These properties were identical to those of fragmin (Mr 42,000) isolated from plasmodia (Hasegawa et al. (1980) Biochemistry 19, 2677-2683). However, the molecular weight, the tryptic peptide map, and the cross-reactivities with polyclonal anti-fragmin antibodies were different from those of fragmin. We concluded from these results that 60 kDa protein is a new Ca2+-sensitive F-actin-severing protein. Considering its similarity to fragmin, we termed the 60 kDa protein fragmin 60.  相似文献   

19.
Plasmodial fragmin, a Physarum polycephalum F-actin severing and capping protein, is phosphorylated by casein kinase II at Ser(266) (De Corte, V., Gettemans, J., De Ville, Y., Waelkens, E., and Vandekerckchove, J. (1996), Biochemistry 35, 5472-5480). In this study, we report the purification and characterization of the corresponding fragmin phosphatases. One of the enzymes was purified to near homogeneity from a cytosolic extract; it dephosphorylates CKII-phosphorylated fragmin, a peptide encompassing the CKII phosphorylation site of fragmin as well as histone 2A, CKII-phosphorylated casein and the CKII model-peptide substrate: R(3)E(3)S(P)E(3). Its activity was highly stimulated by Mn(2+) and Mg(2+), and based on its lack of sensitivity toward phosphatase effectors we could exclude similarities with PP1, PP2A and PP2B phosphatases. All biochemical properties of the phosphatase point to a PP2C-like enzyme. A second phosphatase dephosphorylating fragmin was identified as a Physarum alkaline phosphatase.  相似文献   

20.
Fluorescently labeled phallacidin, a F-actin specific drug, was used to demonstrate the morphological variety in the cytoskeletal actin pattern of thin-spread plasmodia of the acellular slime mould Physarum polycephalum. The patterns observed in phallacidin-stained specimens consisted of a polygonal network in the anterior region, and of longitudinal as well as helically twisted fibrils in plasmodial strands of the posterior region. These observations are in complete accordance with our recent results obtained on comparable plasmodia by immunofluorescence microscopy using specific antibodies against actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号