共查询到20条相似文献,搜索用时 15 毫秒
1.
SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development 总被引:6,自引:0,他引:6
Tormo MA Martí M Valle J Manna AC Cheung AL Lasa I Penadés JR 《Journal of bacteriology》2005,187(7):2348-2356
2.
3.
4.
Staphylococcus aureus is a common pathogen associated with nosocomial infections. It can persist in clinical settings and gain increased resistance to antimicrobial agents through biofilm formation. We have found that alpha-toxin, a secreted, multimeric, hemolytic toxin encoded by the hla gene, plays an integral role in biofilm formation. The hla mutant was unable to fully colonize plastic surfaces under both static and flow conditions. Based on microscopy studies, we propose that alpha-hemolysin is required for cell-to-cell interactions during biofilm formation. 相似文献
5.
The staphylococcal accessory regulator SarA and the alternative sigma factor σB have been previously identified as positive regulators, and IcaR as a negative regulator, of icaADBC expression. Here, we show that in Staphylococcus aureus SarA and σB are also required for icaR expression and that IcaR does not have a significant effect on its own expression. 相似文献
6.
7.
The SarA protein family of Staphylococcus aureus 总被引:1,自引:0,他引:1
Cheung AL Nishina KA Trotonda MP Tamber S 《The international journal of biochemistry & cell biology》2008,40(3):355-361
Staphylococcus aureus is widely appreciated as an opportunistic pathogen, primarily in hospital-related infections. However, recent reports indicate that S. aureus infections can now occur in other wise healthy individuals in the community setting. The success of this organism can be attributed to the large array of regulatory proteins, including the SarA protein family, used to respond to changing microenvironments. Sequence alignment and structural data reveal that the SarA protein family can be divided into three subfamilies: (1) single domain proteins; (2) double domain proteins; (3) MarR homologs. Structural studies have also demonstrated that SarA, SarR, SarS, MgrA and thus possibly all members of this protein family are winged helix proteins with minor variations. Mutagenesis studies of SarA disclose that the winged helix motifs are important for DNA binding and function. Recent progress concerning the functions and plausible mechanisms of regulation of SarA and its homologs are discussed. 相似文献
8.
Sterba KM Mackintosh SG Blevins JS Hurlburt BK Smeltzer MS 《Journal of bacteriology》2003,185(15):4410-4417
The staphylococcal accessory regulator locus (sarA) encodes a DNA-binding protein (SarA) that modulates expression of over 100 genes. Whether this occurs via a direct interaction between SarA and cis elements associated with its target genes is unclear, partly because the definitive characteristics of a SarA binding site have not been identified. In this work, electrophoretic mobility shift assays (EMSAs) were used to identify a SarA binding site(s) upstream of the SarA-regulated gene cna. The results suggest the existence of multiple high-affinity binding sites within the cna promoter region. Using a SELEX (systematic evolution of ligands by exponential enrichment) procedure and purified, recombinant SarA, we also selected DNA targets that contain a high-affinity SarA binding site from a random pool of DNA fragments. These fragments were subsequently cloned and sequenced. Randomly chosen clones were also examined by EMSA. These DNA fragments bound SarA with affinities comparable to those of recognized SarA-regulated genes, including cna, fnbA, and sspA. The composition of SarA-selected DNAs was AT rich, which is consistent with the nucleotide composition of the Staphylococcus aureus genome. Alignment of selected DNAs revealed a 7-bp consensus (ATTTTAT) that was present with no more than one mismatch in 46 of 56 sequenced clones. By using the same criteria, consensus binding sites were also identified upstream of the S. aureus genes spa, fnbA, sspA, agr, hla, and cna. With the exception of cna, which has not been previously examined, this 7-bp motif was within the putative SarA binding site previously associated with each gene. 相似文献
9.
10.
11.
12.
香芹酚抑制金黄色葡萄球菌生物被膜的形成 总被引:1,自引:0,他引:1
【背景】生物被膜是细菌的一种自我保护形式,可以增强细菌对药物及宿主免疫应答的抵抗力,引起细菌耐药性和持续性感染。【目的】探究香芹酚对金黄色葡萄球菌生物被膜的作用机制,为开发新型抗生物被膜药物提供可靠的理论依据。【方法】通过结晶紫染色法检测香芹酚对供试菌株生物被膜形成的抑制和对成熟生物被膜的清除作用;使用刚果红平板法探究香芹酚对供试菌株生物被膜形成过程中细胞间多糖黏附素(polysaccharide intercellular adhesion,PIA)合成的作用;通过分光光度法检测香芹酚对胞外DNA (extracellular DNA,eDNA)分泌的抑制作用;利用RT-PCR技术检测香芹酚对供试菌株的生物被膜相关基因icaA、cidA和sarA转录水平的影响。【结果】香芹酚对生物被膜形成的抑制和生物被膜的清除均有较强作用效果。256μg/mL香芹酚抑制PIA合成和e DNA释放的效果显著。香芹酚可通过抑制相关基因转录从而抑制生物被膜的形成,当64μg/mL的香芹酚作用后,sarA的转录水平降低了60.44%±2.91%,cidA的转录水平降低了76.48%±1.67%,icaA的转... 相似文献
13.
Tammy M. Rechtin Allison F. Gillaspy Maria A. Schumacher Richard G. Brennan Mark S. Smeltzer & Barry K. Hurlburt 《Molecular microbiology》1999,33(2):307-316
Staphylococcus aureus is a potent human pathogen that expresses a large number of virulence factors in a temporally regulated fashion. Two pleiotropically acting regulatory loci were identified in previous mutational studies. The agr locus comprises two operons that express a quorum-sensing system from the P2 promoter and a regulatory RNA molecule from the P3 promoter. The sar locus encodes a DNA-binding protein that activates the expression of both agr operons. We have cloned the sarA gene, expressed SarA in Escherichia coli and purified the recombinant protein to apparent homogeneity. The purified protein was found to be dimeric in the presence and absence of DNA and to consist mostly of alpha-helices. DNase I footprinting of SarA on the putative regulatory region cis to the agr promoters revealed three high-affinity binding sites composed of two half-sites each. Quantitative electrophoretic mobility shift assays (EMSAs) were used to derive equilibrium binding constants (KD) for the interaction of SarA with these binding sites. An unusual ladder banding pattern was observed in EMSA with a large DNA fragment including all three binding sites. Our data indicate that SarA regulation of the agr operons involves binding to multiple half-sites and may involve other sites located downstream of the promoters. 相似文献
14.
The polymerization of peptidoglycan is the result of two types of enzymatic activities: transglycosylation, the formation of linear glycan chains, and transpeptidation, the formation of peptide cross-bridges between the glycan strands. Staphylococcus aureus has four penicillin binding proteins (PBP1 to PBP4) with transpeptidation activity, one of which, PBP2, is a bifunctional enzyme that is also capable of catalyzing transglycosylation reactions. Additionally, two monofunctional transglycosylases have been reported in S. aureus: MGT, which has been shown to have in vitro transglycosylase activity, and a second putative transglycosylase, SgtA, identified only by sequence analysis. We have now shown that purified SgtA has in vitro transglycosylase activity and that both MGT and SgtA are not essential in S. aureus. However, in the absence of PBP2 transglycosylase activity, MGT but not SgtA becomes essential for cell viability. This indicates that S. aureus cells require one transglycosylase for survival, either PBP2 or MGT, both of which can act as the sole synthetic transglycosylase for cell wall synthesis. We have also shown that both MGT and SgtA interact with PBP2 and other enzymes involved in cell wall synthesis in a bacterial two-hybrid assay, suggesting that these enzymes may work in collaboration as part of a larger, as-yet-uncharacterized cell wall-synthetic complex. 相似文献
15.
16.
17.
18.
Hochbaum AI Kolodkin-Gal I Foulston L Kolter R Aizenberg J Losick R 《Journal of bacteriology》2011,193(20):5616-5622
Biofilms are communities of cells held together by a self-produced extracellular matrix typically consisting of protein, exopolysaccharide, and often DNA. A natural signal for biofilm disassembly in Bacillus subtilis is certain D-amino acids, which are incorporated into the peptidoglycan and trigger the release of the protein component of the matrix. D-amino acids also prevent biofilm formation by the related Gram-positive bacterium Staphylococcus aureus. Here we employed fluorescence microscopy and confocal laser scanning microscopy to investigate how D-amino acids prevent biofilm formation by S. aureus. We report that biofilm formation takes place in two stages, initial attachment to surfaces, resulting in small foci, and the subsequent growth of the foci into large aggregates. D-amino acids did not prevent the initial surface attachment of cells but blocked the subsequent growth of the foci into larger assemblies of cells. Using protein- and polysaccharide-specific stains, we have shown that D-amino acids inhibited the accumulation of the protein component of the matrix but had little effect on exopolysaccharide production and localization within the biofilm. We conclude that D-amino acids act in an analogous manner to prevent biofilm development in B. subtilis and S. aureus. Finally, to investigate the potential utility of D-amino acids in preventing device-related infections, we have shown that surfaces impregnated with D-amino acids were effective in preventing biofilm growth. 相似文献
19.
【目的】研究和厚朴酚(HNK)抑制MRSA生物被膜(BF)形成的作用机制。【方法】使用TTC法测定了HNK对供试菌株BF的形成和成熟BF的抑制作用;刚果红平板法定性检测了HNK对PIA合成的影响;分光光度法测定了HNK对供试菌株eDNA释放量的影响;RT-PCR技术检测了HNK对供试菌株icaA、cidA以及agrA基因表达量的影响。【结果】HNK对MRSA 41573 BF的形成和成熟BF均有较强的抑制作用,其中,HNK抑制MRSA 41573 BF形成的MIC和MBC分别为10μg/mL和20μg/mL;抑制成熟BF的MIC和MBC分别为50μg/mL和100μg/mL。当用亚抑菌浓度的HNK与万古霉素联合作用后,可显著提高成熟BF对万古霉素的敏感性。HNK能显著抑制PIA的合成,且呈浓度剂量依赖。HNK能抑制供试菌株eDNA的释放量,其中1/8 MIC的HNK作用供试菌株16 h后,与对照组相比,e DNA的释放量降低了28.3%。HNK可抑制供试菌株BF形成的相关基因,其中1/2 MIC的HNK作用供试菌株16 h后,与对照相比,icaA的表达量降低了59.1%,cidA的表达量降低了56%,agrA的表达量降低了72.3%。【结论】HNK能显著抑制MRSA 41573 BF的形成,其作用机制主要是通过抑制icaA和cidA基因表达量,影响PIA和eDNA的合成,进而抑制BF的形成。此外HNK也可通过调控细菌的QS系统影响BF的形成。 相似文献
20.
【背景】金黄色葡萄球菌是一种常见的食源性致病菌,易在食品及加工器具表面形成生物膜,引起食品腐败和疾病的传播,威胁食品安全。【目的】研究冬凌草甲素抑制金黄色葡萄球菌生物膜形成的作用机制。【方法】使用结晶紫染色法和扫描电镜观察冬凌草甲素对金黄色葡萄球菌生物膜形成的抑制作用,刚果红平板法定性检测冬凌草甲素对细胞间多糖黏附素(polysaccharideintercellular adhesion,PIA)合成的影响,分光光度法测定冬凌草甲素对供试菌株胞外DNA (eDNA)释放量的影响,RT-PCR技术检测冬凌草甲素对供试菌株ica A、cid A、agr A和sar A基因表达量的影响。【结果】冬凌草甲素对金黄色葡萄球菌生物膜形成有较强的抑制作用;冬凌草甲素能显著抑制PIA的合成,且呈浓度剂量依赖;冬凌草甲素能抑制供试菌株e DNA的释放量,其中1/4最小抑菌浓度(minimum inhibitory concentration,MIC)的冬凌草甲素作用金黄色葡萄球菌16 h后,与对照组相比,e DNA的释放量降低了48.62%;冬凌草甲素可显著抑制金黄色葡萄球菌生物膜形成相关基因的表达,其中1/2MIC的冬凌草甲素作用金黄色葡萄球菌16 h后,ica A、cid A、agr A和sar A基因的表达量分别比对照降低了91.6%、94.7%、77.6%和70.4%。【结论】冬凌草甲素通过抑制ica A和cid A基因的表达,影响PIA的合成和eDNA的释放,进而干预生物膜的形成。 相似文献