首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharide (LPS) preparations of 34 Pseudomonas syringae strains of 19 pathovars were prepared by saline extraction from wet cells and purified by repeated ultracentrifugation. The preparations reacted with homologous O-antisera, obtained by rabbit immunization with heat-killed bacterial cells. Through inhibition of homologous reactions between LPS preparations of heterologous strains (enzyme immunoassay, EIA), it was established for the first time that high serological affinity between strains is observed only if their LPS contains O-specific polysacc haride chains (OPS) comprised of completely identical rather than partially similar units. The central linear part of the OPS was found to be serologically inert when shielded with side groups. Data on immunochemical characteristics of the LPS and OPS structure are analyzed in relation to the design of P. syringae classification scheme.  相似文献   

2.
3.
Lipopolysaccharides of six Azospirillum brasilense strains (SR50, SR80, SR88, SR109, SR111, SR115) and A. lipoferum SR 42 isolated from the rhizosphere of cereal plants of Saratov oblast, Russia and referred to serogroup II by serological analysis were studied. In the lipid A fatty acid composition, the lipopolysaccharides under study were similar to those of other Azospirillum strains and were characterized by a predominance of 3-hydroxytetradecanoic, 3-hydroxyhexadecanoic, and octadecenoic acids. Monosaccharide analysis of the O-specific polysaccharides (including determination of the absolute configurations, methylation analysis, and one- and two-dimensional NMR spectroscopy) revealed the presence of two types of repeating units in varying ratios. A high degree of serological similarity between the strains under study was shown to result from the presence of repeating units with identical structure of their O antigens.  相似文献   

4.
Lipopolysaccharides (LPS) of the representatives of strains of serogroup VI Pseudomonas syringae (P. syringae pv. atrofaciens 2399, pv. phaseolicola 120a, 7842 and P. holci 8299) possessing virulence and confinement to the host-plant are characterized by high serological activity in direct and cross reactions of the binary diffusion in agar, immunoelectrophoresis, passive hemagglutination and inhibition of passive hemagglutination. A supernatant and a sediment obtained after ultracentrifugation of LPS preparations possessed O-antigenic activity. O-specific polysaccharide (PS) is serologically less active than the LPS preparations. Problems of the intergroup and intragroup serological affinity in connection with the structure of O-specific PS. It is proved that the basic chain of O-specific polysaccharide (D-rhamnane) plays definite (but not a single) part in displaying antigenic properties of the whole LPS macromolecule.  相似文献   

5.
Anomeric methyl 3-O-(D-mannopyranosyl- and L-rhamnopyranosyl)-beta-D-talopyranosides were synthesised by the stereoselective 1,2-cis- and 1,2-trans manno- and rhamnosylation of methyl 2,4,6-tri-O-acetyl-beta-D-talopyranoside, which has been prepared from methyl beta-D-galactopyranoside by a synthetic scheme including conversion of the C2 configuration. From 13C-NMR spectra of the disaccharides obtained the spectral alpha- and beta-effects of O3-glycosylation of talopyranose were determined.  相似文献   

6.
The composition, structure, and certain biological properties of lipopolysaccharides (LPS) isolated from six strains of bacteria Pseudomonas syringae pv. atrofaciens pathogenic for grain-crops (wheat, rye) are presented. The LPS-protein complexes were isolated by a sparing procedure (extraction from microbial cells with a weak salt solution). They reacted with the homologous O sera and contained one to three antigenic determinants. Against the cells of warm-blooded animals (mice, humans) they exhibited the biological activity typical of endotoxins (stimulation of cytokine production, mitogenetic activity, etc.). The LCD of the biovar type strain was highly toxic to mice sensitized with D-galactosamine. The structural components of LPS macromolecules obtained by mild acidic degradation were characterized: lipid A, core oligosaccharide, and O-specific polysaccharide (OPS). Fatty acids 3-HO-C10:0, C12:0, 2-HO-C12:0, 3-HO-C12:0, C16:0, C16:1, C18:0, and C18:1 were identified in lipid A of all the strains, as well as the components of the hydrophilic part: glucosamine (GlcN), ethanolamine (EtN), phosphate, and phosphoethanolamine (EtN-P). In the core LPS, glucose (Glc), rhamnose (Rha), L-glycero-D-manno-heptose (Hep), GlcN, galactosamine (GalN), 2-keto-3-deoxy-D-mannooctonic acid (KDO), alanine (Ala), and phosphate were present. The O chain of all the strains consisted of repeated elements containing a linear chain of three to four L- (two strains) or D-Rha (four strains) residues supplemented with a single residue of 3-acetamido-3,6-dideoxy-D-galactose (D-Fucp3Nac), N-acetyl-D-glucosamine (D-GlcpNAc), D-fucose (D-Fucf), or D-Rhap (strain-dependent) as a side substitute. In different strains the substitution position for Rha residues in the repeated components of the major rhamnan chain was also different. One strain exhibited a unique type of O-chain heterogeneity. Immunochemical investigation of the LPS antigenic properties revealed the absence of close serological relations between the strains of one pathovar; this finding correlates with the differences in their OPS structure. Resemblance between the investigated strains and other P. syringae strains with similar LPS structures was revealed. The results of LPS analysis indicate the absence of correlation between the OPS structure and the pathovar affiliation of the strains.  相似文献   

7.
Serologically active O-specific polysaccharides were obtained on mild acid hydrolysis of lipopolysaccharides from Pseudomonas cerasi 467 and Pseudomonas syringae pv. syringae strains 218 and P-55. On the basis of 1H- and 13C-NMR analysis, it was concluded that the P. cerasi polysaccharide has the following structure: ----3)-alpha-D-Rhap-(1----3)-alpha-D-Rhap-(1----2)-alpha-D-+ ++Rhap-(1---- which is identical to that of O-specific polysaccharide from P. syringae pv. morsprunorum C28 (Smith A. R. W. et al. Eur. J. Biochem., 1985, V. 149, No 1, p. 73-78). The polysaccharides from P. syringae pv. syringae strains possess the same backbone but differ by the presence of D-fucose as monosaccharide branches. Methylation and 1H- and 13C-NMR analysis revealed the following structure of these polysaccharides: (Formula: see text). The degree of substitution of the backbone trisaccharide units by the fucofuranose residues is about 35% for the strain 218 and about 85% for the strain P-55.  相似文献   

8.
Y. enterocolitica lipopolysaccharides (LPS), serovars O5 and O5.27, have similar antigenic specificity. The LPS of serovar O5.27 has been shown to contain no factor O27. Residual alpha-L-rhamnose, glycosylated by D-xylulose, has been found to play an important role in the formation of factor O5, common for both serovars.  相似文献   

9.
A phytase (EC 3.1.3.8) from Pseudomonas syringae MOK1 was purified to apparent homogeneity in two steps employing cation and an anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The optimal activity occurred at pH 5.5 and 40 degrees C. The Michaelis constant (Km) and maximum reaction rate (Vmax) for sodium phytate were 0.38 mM and 769 U/mg of protein, respectively. The enzyme was strongly inhibited by Cu2+, Cd2+, Mn2+, and ethylenediaminetetraacetic acid (EDTA). It showed a high substrate specificity for sodium phytate with little or no activity on other phosphate conjugates. The enzyme efficiently released orthophosphate from wheat bran and soybean meal.  相似文献   

10.
Strains of Pseudomonas syringae pv. porri are characterized by a number of pathovar-specific phenotypic and genomic characters and constitute a highly homogeneous group. Using monoclonal antibodies, they all were classified in a novel P. syringae serogroup O9. The O polysaccharides (OPS) isolated from the lipopolysaccharides (LPS) of P. syringae pv. porri NCPPB 3365 and NCPPB 3364T possess multiple oligosaccharide O repeats, some of which are linear and composed of l-rhamnose (l-Rha), whereas the major O repeats are branched with l-rhamnose in the main chain and GlcNAc in side chains (structures 1 and 2). Both branched O repeats, which differ in the position of substitution of one of the Rha residues and in the site of attachment of GlcNAc, were found in the two strains studied, O repeat 1 being major in strain NCPPB 3365 and 2 in strain NCPPB 3364T. [formula: see text]. The relationship between OPS chemotype and serotype on one hand and the genomic characters of P. syringae pv. porri and other pathovars delineated in genomospecies 4 on the other hand is discussed.  相似文献   

11.
Lipopolysaccharides (LPS) were isolated from the crude bacterial mass of the Pseudomonas syringae pv. maculicola IMV 381 collection culture and its virulent and avirulent subcultures isolated earlier from the heterogeneous collection culture due to its natural variability during long-term storage. The composition, immunochemical properties, and certain parameters of the biological activity of the LPS preparations obtained were studied. The structural parts of the LPS macromolecule—lipid A, the core oligosaccharide, and O-specific polysaccharide (OPS)—were isolated and characterized. The following fatty acids were identified in the lipid A composition of all cultures: 3-OH-C10:0, C12:0, 2-OH-C12:0, 3-OH-C12:0, C16:1, C16:0, C18:1, and C18:0. Glucosamine (GlcN), ethanolamine (EtN), phosphoethanolamine (EtN-P), and phosphorus (P) were revealed in the hydrophilic portion of the macromolecule. In the core portion of the LPS macromolecule, glucose (Glc), rhamnose (Rha), GlcN, galactosamine (GalN), 2-keto-3-deoxyoctulosonic acid (KDO), alanine (Ala), and P were found. The peculiarities of the structure of LPS isolated from the stable collection culture (LPSstab) and its virulent (LPSvir) and avirulent (LPSavir) subcultures were studied. LPSvir and LPSavir were identical in the monosaccharide composition and contained as the main components L-rhamnose (L-Rha) and 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc), like LPSstab, studied earlier. The NMR spectra of LPSvir were identical to the spectra of LPSstab, whose O-chain repeating unit structure was studied by us earlier, whereas LPSavir differed from LPSvir in the NMR spectrum and was identified by us as the SR form. LPSavir was serologically identical to LPSstab and LPSvir. Hence, the degree of polymerism of the LPS O-chain of P. Syringae pv. maculicola IMV 381 is the main virulence factor in infected model plants. Serological relationships were studied between P. Syringae pv. maculicola IMV 381 and the strains of other pathovars with structurally similar LPS.Translated from Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 790–801.Original Russian Text Copyright © 2004 by G. Zdorovenko, Varbanets, E. Zdorovenko, Vinarskaya, Yakovleva.  相似文献   

12.
Lipopolysaccharides (LPS) were isolated from the crude bacterial mass of the Pseudomonas syringae pv. maculicola IMV 381 collection culture and its virulent and avirulent subcultures isolated earlier from the heterogeneous collection culture due to its natural variability during long-term storage. The composition, immunochemical properties, and certain parameters of the biological activity of the LPS preparations obtained were studied. The structural parts of the LPS macromolecule--lipid A, the core oligosaccharide, and O-specific polysaccharide (OPS)--were isolated and characterized. The following fatty acids were identified in the lipid A composition of all cultures: 3-OH-C10:0, C12:0, 2-OH-C12:0, 3-OH-C12:0, C16:1, C16:0, C18:1, and C18:0. Glucosamine (GlcN), ethanolamine (EtN), phosphoethanolamine (EtN-P), and phosphorus (P) were revealed in the hydrophilic portion of the macromolecule. In the core portion of the LPS macromolecule, glucose (Glc), rhamnose (Rha), GlcN, galactosamine (GalN), 2-keto-3-deoxyoctulosonic acid (KDO), alanine (Ala), and P were found. The peculiarities of the structure of LPS isolated from the stable collection culture (LPS(stab)) and its virulent (LPS(vir)) and avirulent (LPS(air)) subcultures were studied. LPS(vir) and LPS(avir) were identical in the monosaccharide composition and contained as the main components L-rhamnose (L-Rha) and 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc), like LPS(stab) studied earlier. The NMR spectra of LPS(vir) were identical to the spectra of LPS(stab), whose O-chain repeating unit structure was studied by us earlier, whereas LPS(avir) differed from LPS(vir) in the NMR spectrum and was identified by us as the SR form. LPS(avir) was serologically identical to LP(stab) and LPS(vir). Hence, the degree of polymerism of the LPS O-chain of P. syringae pv. maculicola IMV 381 is the main virulence factor in the infected model plants. Serological relationships were studied between P. syringae pv. maculicola IMV 381 and the strains of other pathovars with structurally similar LPS.  相似文献   

13.
Fermentor growth of Bacteroides fragilis under controlled conditions in a complex medium containing 1% glucose and 10% fetal calf serum resulted in high yields of bacteria. After hot phenol-water extraction of the organisms, capsular polysaccharide was isolated from the aqueous phase and purified by Sephacryl S-300 chromatography in a buffer with 3% sodium deoxycholate. Lipopolysaccharide was isolated by phenol-chloroform-light petroleum ether extraction. The capsular polysaccharide from B. fragilis strain NCTC 9343 contained six sugars: L-fucose, D-galactose, D- and L-quinovosamine, D-glucosamine, and galacturonic acid. The capsule of strain ATCC 23745 also contained D-glucose, L-fucosamine, L-rhamnosamine, and a 3-amino-3,6-dideoxyhexose but lacked D-quinovosamine. The latter capsule also contained alanine (4%). The capsular polysaccharides were different immunochemically by ELISA inhibition. The lipopolysaccharide of both strains contained the same sugars (L-rhamnose, D-glucose, D-galactose, and D-glucosamine) and fatty acids (13-methyl-tetradecanoic and 3-hydroxy-hexadecanoic and 3-hydroxy-15 methyl-hexadecanoic as major constituents) and were identical by ELISA inhibition.  相似文献   

14.
The putative O-specific polymers of lipopolysaccharides from two reference strains of Pseudomonas cepacia have been isolated and characterized. Both polymers have disaccharide repeating-units. Structure 1 was established for the O3 polymer, and structure 2 for the O5 polymer. Polymers with the same repeating units have been found previously as the O antigens of other bacteria. ----2)-beta-D-Ribf-(1----4)-alpha-D-GalpNAc-(1---- ----4)-alpha-L-Rhap-(1----3)-beta-D-ManpNAc-(1----  相似文献   

15.
The Antarctic psychrotrophic bacterium Pseudomonas syringae was more sensitive to polymyxin B at a lower (4 degrees C) temperature of growth than at a higher (22 degrees C) temperature. The amount of hydroxy fatty acids in the lipopolysaccharides (LPS) also increased at the lower temperature. These changes correlated with the increase in fluidity of the hydrophobic phase of lipopolysaccharide aggregates in vitro.  相似文献   

16.
Two strains (B728a and Y37) of the phytopathogenic bacterium Pseudomonas syringae pv. syringae isolated from bean (Phaseolus vulgaris) plants were shown to produce in culture both syringomycin, a lipodepsinonapeptide secreted by the majority of the strains of the bacterium, and a new form of syringopeptin, SP(22)Phv. The structure of the latter metabolite was elucidated by the combined use of mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy and chemical procedures. Comparative phytotoxic and antimicrobial assays showed that SP(22)Phv did not differ substantially from the previously characterized syringopeptin 22 (SP(22)) as far as toxicity to plants was concerned, but was less active in inhibiting the growth of the test fungi Rhodotorula pilimanae and Geotrichum candidum and of the Gram-positive bacterium Bacillus megaterium.  相似文献   

17.
Lipopolysaccharides (LPS) were isolated from rough-type mutant strains of Pseudomonas aeruginosa (Delta algC) derived from wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Structural studies of the LPS core region with a special focus on the phosphorylation pattern were performed by 2D NMR spectroscopy, including a 1H,(31)P HMQC-TOCSY experiment, MALDI-TOF MS, and Fourier-transform ion cyclotron resonance ESIMS using the capillary skimmer dissociation technique. Both LPS were found to contain two residues each of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and L-glycero-D-manno-heptose (Hep), one residue of N-(L-alanyl)-D-galactosamine and one O-carbamoyl group (Cm) on the distal Hep residue. The following structures of a tetrasaccharide trisphosphate from strain PAC1R Delta algC and that carrying an additional ethanolamine phosphate group (PEtN) from strain PAO1 Delta algC were elucidated: [carbohydrate structre: see text] where R=P in PAC1R Delta algC and PPEtN in PAO1 Delta algC. To our knowledge, in this work the presence of ethanolamine diphosphate is unambiguously confirmed and its position established for the first time in the LPS core of a rough-type strain of P. aeruginosa. In addition, the structure of the complete LPS core of wild-type strain P. aeruginosa PAO1 was reinvestigated and the position of the phosphorylation sites was revised.  相似文献   

18.
AIMS: The present study describes a system based on PCR to distinguish tabtoxin-producing strains of Pseudomonas syringae from other Ps. syringae plant pathogens that produce chlorosis-inducing phytotoxins. METHODS AND RESULTS: Thirty-two strains of Ps. syringae and related species were examined. Two sets of PCR primers were developed to amplify genes (tblA and tabA) required for tabtoxin production. Only a PCR product of 829 bp or 1020 bp was produced in PCR reactions with the tblA or tabA primer sets, respectively, and cells from tabtoxin-producing pathovars of Pseudomonas syringae. All known non-tabtoxin producing bacterial species failed to produce an amplification product with either primer set. CONCLUSIONS: PCR of genes required for tabtoxin production is a simple, rapid and reliable method for identifying tabtoxin-producing strains of Ps. syringae. SIGNIFICANCE AND IMPACT OF THE STUDY: The protocol can effectively distinguish tabtoxin-producing strains of Ps. syringae from other Ps. syringae pathovars and Ps. syringae pv. tabaci strains from other tabtoxin-producing Ps. syringae pathovars.  相似文献   

19.
The structure of the O-specific polysaccharide chain of Pseudomonas syringae pv. tabaci strain 223 (serogroup VII) lipopolysaccharide was established on the basis of one- and two-dimensional 1H NMR analysis, 13C NMR analysis and calculation of optical rotation. The structure determined by the non-destructive way was confirmed by acid hydrolysis and methylation. (Sequence: see text). O-Antigen of the strain studied is similar in structure and serological properties to O-antigens of Pseudomonas syringae strains belonging to serogroup I.  相似文献   

20.
Lipopolysaccharides of serologically related strains of Pseudomonas syringae pv. atrofaciens K-1025 and Pseudomonas holci 90a possess the identical O-specific polysaccharide chains, representing a homopolymer of D-rhamnose. On the basis of methylation, partial and complete Smith degradation, and analysis by 1H- and 13C-NMR-spectroscopy, it was concluded that the repeating unit of the polysaccharide is a branched pentasaccharide of the following structure: (formula; see text)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号