首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of actively transported sugars to the solution bathing the mucosal surface of an in vitro preparation of distal rabbit ileum results in a rapid increase in the transmural potential difference, the short-circuit current, and the rate of active Na transport from mucosa to serosa. These effects are dependent upon the active transport of the sugar per se and are independent of the metabolic fate of the transported sugar. Furthermore, they are inhibited both by low concentrations of phlorizin in the mucosal solution and by low concentrations of ouabain in the serosal solution. The increase in the short-circuit current, ΔIsc, requires the presence of Na in the perfusion medium and its magnitude is a linear function of the Na concentration. On the other hand, ΔIsc is a saturable function of the mucosal sugar concentration which is consistent with Michaelis-Menten kinetics suggesting that the increase in active Na transport is stoichiometrically related to the rate of active sugar transport. An interpretation of these findings in terms of a hypothetical model for intestinal Na and sugar transport is presented.  相似文献   

2.
In the present study, further evidence was adduced for energy-dependent regulation of passive apical transport of Na in toad bladder epithelium. In potassium-depolarized preparations studied by current-voltage analysis, additions of pyruvate or glucose to the media of substrate-depleted bladders evoked proportionate increases in the transepithelial Na current and in apical Na permeability. These responses were large in aldosterone pretreated hemibladders and almost absent in the aldosterone-depleted preparations or when hormonal action was blocked by spironolactone or cycloheximide. The substrate-induced increases in apical Na permeability were fully reversed by appropriate metabolic inhibitors, i.e. 2-deoxyglucose and oxythiamine. Moreover, the inhibitory effect of 2-deoxyglucose was bypassed by the addition of pyruvate to the serosal medium. Thus apical Na permeability is clearly sensitive to the supply of cellular energy. The possibility that changes in intracellular free Na activity may mediate metabolic regulation of apical Na permeability was evaluated by prolonged exposure to Na-free mucosal and serosal media, with and without inhibition of the Na/K-pump by ouabain. The stimulatory and inhibitory effects of pyruvate, 2-deoxyglucose and oxythiamine on Na currents and Na conductances were preserved under these circumstances. Furthermore, reduction of serosal Ca to a minimal level of 3 microM, was without effect on the response to metabolic inhibition. These experiments demonstrate the existence of Na-independent metabolic regulation of apical Na transport and imply that neither basal-lateral nor mitochondrial Na/Ca exchange is required for this regulatory process under the imposed conditions. The possibility that a Na-independent, Ca transport mechanism in mitochondria or endoplasmic reticulum may be involved in metabolic regulation of apical Na transport, however, remains to be evaluated.  相似文献   

3.
1. Effects of alpha-cyano-4-hydroxycinnamate and alpha-cyanocinnamate on a number of enzymes involved in pyruvate metabolism have been investigated. Little or no inhibition was observed of any enzyme at concentrations that inhibit completely mitochondrial pyruvate transport. At much higher concentrations (1 mM) some inhibition of pyruvate carboxylase was apparent. 2. Alpha-Cyano-4-hydroxycinnamate (1-100 muM) specifically inhibited pyruvate oxidation by mitochondria isolated from rat heart, brain, kidney and from blowfly flight muscle; oxidation of other substrates in the presence or absence of ADP was not affected. Similar concentrations of the compound also inhibited the carboxylation of pyruvate by rat liver mitochondria and the activation by pyruvate of pyruvate dehydrogenase in fat-cell mitochondria. These findings imply that pyruvate dehydrogenase, pyruvate dehydrogenase kinase and pyruvate carboxylase are exposed to mitochondrial matrix concentrations of pyruvate rather than to cytoplasmic concentrations. 3. Studies with whole-cell preparations incubated in vitro indicate that alpha-cyano-4-hydroxycinnamate or alpha-cyanocinnamate (at concentrations below 200 muM) can be used to specifically inhibit mitochondrial pyruvate transport within cells and thus alter the metabolic emphasis of the preparation. In epididymal fat-pads, fatty acid synthesis from glucose and fructose, but not from acetate, was markedly inhibited. No changes in tissue ATP concentrations were observed. The effects on fatty acid synthesis were reversible. In kidney-cortex slices, gluconeogenesis from pyruvate and lactate but not from succinate was inhibited. In the rat heart perfused with medium containing glucose and insulin, addition of alpha-cyanocinnamate (200 muM) greatly increased the output and tissue concentrations of lactate plus pyruvate but decreased the lactate/pyruvate ratio. 4. The inhibition by cyanocinnamate derivatives of pyruvate transport across the cell membrane of human erythrocytes requires much higher concentrations of the derivatives than the inhibition of transport across the mitochondrial membrane. Alpha-Cyano-4-hydroxycinnamate appears to enter erythrocytes on the cell-membrane pyruvate carrier. Entry is not observed in the presence of albumin, which may explain the small effects when these compounds are injected into whole animals.  相似文献   

4.
The transmural potential difference, short-circuit current, and Na fluxes have been investigated in an in vitro preparation of isolated rabbit ileum. When the tissue is perfused with a physiological buffer, the serosal surface is electrically positive with respect to the mucosal surface and the initial potential difference in the presence of glucose averages 9 mv. Unidirectional and net Na fluxes have been determined under a variety of conditions, and in each instance, most if not all of the simultaneously measured short-circuit current could be attributed to the active transport of Na from mucosa to serosa. Active Na transport is dependent upon the presence of intact aerobic metabolic pathways and is inhibited by low concentrations of ouabain in the serosal medium. A method is described for determining whether a unidirectional ionic flux is the result of passive diffusion alone, in the presence of active transport of that ion in the opposite direction. Using this method we have demonstrated that the serosa-to-mucosa flux of Na may be attributed to passive diffusion with no evidence for the presence of carrier-mediated exchange diffusion or the influence of solvent-drag.  相似文献   

5.
The relationship of lactate metabolism to renal function was studied in the isolated perfused rat kidney. A new radioisotopic method has been developed that enables the simultaneous measurement of lactate production and consumption in the presence of physiological concentrations of both lactate and glucose. In kidneys from fed rats, when glucose was absent, lactate production was only 12 mumol/h per g dry wt, and in kidneys from starved rats there was no lactate production, indicating that neither the phosphoenolpyruvate/pyruvate substrate cycle nor other analogous cycles for the recycling of lactate carbon are operating in the intact kidney cortex. Lactate production from glucose occurred at a high rate, at the same time as lactate consumption, demonstrating that lactate recycling between renal cortex and medulla can occur in the intact kidney. Lactate production from glucose correlated with glomerular filtration rate (P less than 0.001), urine flow rate (P less than 0.01) and sodium reabsorption (P less than 0.05). There was significant basal lactate production at zero glomerular filtration rate. Lactate consumption was not correlated with any renal function. When Na+ reabsorption was inhibited with the diuretic frusemide, or when filtration was entirely prevented (the 'non'-filtering kidney'), lactate production was decreased by 39% and 50% respectively. Basal lactate production determined in this way was the same as that calculated above by linear regression. Prevention of filtration, but not the addition of frusemide, significantly inhibited lactate consumption. It is concluded that glycolysis is required for medullary Na+ transport, and that some different transport function(s) require lactate oxidation.  相似文献   

6.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

7.
Tumor necrosis factor α (TNFα) is a cytokine involved in many metabolic responses in both normal and pathological states. Considering that the effects of TNFα on hepatic gluconeogenesis are inconclusive, we investigated the influence of this cytokine in gluconeogenesis from various glucose precursors. TNFα (10 μg/kg) was intravenously injected in rats; 6 h later, gluconeogenesis from alanine, lactate, glutamine, glycerol, and several related metabolic parameters were evaluated in situ perfused liver. TNFα reduced the hepatic glucose production (p < 0.001), increased the pyruvate production (p < 0.01), and had no effect on the lactate and urea production from alanine. TNFα also reduced the glucose production (p < 0.01), but had no effect on the pyruvate production from lactate. In addition, TNFα did not alter the hepatic glucose production from glutamine nor from glycerol. It can be concluded that the TNFα inhibited hepatic gluconeogenesis from alanine and lactate, which enter in gluconeogenic pathway before the pyruvate carboxylase step, but not from glutamine and glycerol, which enter in this pathway after the pyruvate carboxylase step, suggesting an important role of this metabolic step in the changes mediated by TNFα.  相似文献   

8.
Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.  相似文献   

9.
The metabolic effects of pent-4-enoate were studied in isolated rat hepatocytes; 1 mM-pent-4-enoate did not significantly inhibit gluconeogenesis from lactate, alanine and glycerol, but significantly decreased glucose synthesis from pyruvate. The addition of 1 mM-NH4Cl led to a drastic inhibition of glucose synthesis from all these substrates. In hepatocytes incubated with 10 mM-alanine and 1 mM-oleate, pent-4-enoate at 0.05-1 mM slightly inhibited glucose synthesis and ketogenesis. The addition of ammonia resulted in a dramatic potentiation of the metabolic effects of pent-4-enoate. Half-maximum effect of ammonia was observed at 0.2 mM concentration. Concomitant cellular concentrations of ATP and acetyl-CoA were also decreased by the addition of ammonia, as were lactate/pyruvate ratio and beta-hydroxybutyrate/acetoacetate ratio. These data suggest that ammonia seriously interferes with the cellular metabolism of pent-4-enoate and leads to a dramatic potentiation of its effects.  相似文献   

10.
Metabolic inhibitors were used in vitro in an attempt to elucidate the biochemical pathways by which lactate is converted to fatty acids by bovine adipose tissue. Subcutaneous adipose tissue samples were obtained by biopsy techniques from steers fed a high-energy ration. Kynurenate (α-2-diamino-γ-oxabenzenebutanoic acid) (5–10 mm), an inhibitor of acetyl-CoA carboxylase, and cerulenin (2,3-epoxy-4-oxo-7,10-dodecadienamide) (20–100 μg/ml), an inhibitor of the fatty acid synthetase enzyme complex, inhibited fatty acid synthesis from both acetate and lactate. The hydrogen acceptor, N-methylphenazonium methosulfate (10 μm) inhibited acetate but not lactate incorporation into fatty acids. α-Cyanohydroxycinnamate (5 mm) and phenylpyruvate (10 mm), which inhibit pyruvate entry into the mitochondria and pyruvate carboxylase, respectively, decreased lipogenesis from both acetate and lactate. The effects of phenylpyruvate on lipogenesis from acetate were greater in the presence of glucose plus insulin. Agaric acid (2-hydroxy-1,2,3-nonadecanetricarboxylic acid) (0.2 and 1.0 mm), which inhibits citrate efflux from the mitochondria also decreased lipogenesis from both acetate and lactate. Fluoroacetate (2.5 mm), an inhibitor of aconitate hydratase, had no effect on lipogenesis from acetate; but, in the presence of glucose or pyruvate, decreased lactate incorporation into fatty acids. n-Butylmalonate (5 mm), which blocks malate transport across the mitochondrial membrane, decreased lipogenesis from lactate but not acetate. Malate transport during lipogenesis is not associated with an operative malate:asparate shuttle in bovine adipose tissue, as indicated by the lack of effect of either 0.2 or 1.0 mm aminooxyacetate, a transaminase inhibitor, on lipogenesis from acetate or lactate. The results suggest a functional ATP-citrate lyase:NADP-malate dehydrogenase pathway in bovine subcutaneous adipose tissue and that this pathway may be involved in lipogenesis from acetate as well as lactate.  相似文献   

11.
Although the pathway for glucose synthesis from lactate in avian liver is not thought to involve transamination steps, inhibitors of transamination (aminooxyacetate and L-2-amino-4-methoxy-trans-3-butenoic acid) block lactate gluconeogenesis by isolated chicken hepatocytes. Inhibition of glucose synthesis from lactate by aminooxyacetate is accompanied by a large increase in the lactate-to-pyruvate ratio. Oleate largely relieves inhibition by aminooxyacetate and lowers the lactate-to-pyruvate ratio. In parallel studies with rat hepatocytes, oleate did not overcome aminooxyacetate inhibition of glucose synthesis. The ratios of lactate used to glucose formed were greater than 2 with both rat and chicken hepatocytes, were increased by aminooxyacetate, and were restored toward 2 by oleate. Thus, in the absence of oleate, lactate is oxidized to provide the energy needed to meet the metabolic demand of chicken hepatocytes. Excess cytosolic reducing equivalents generated by the oxidation of lactate to pyruvate are transferred from the cytosol to the mitosol by the malate-aspartate shuttle. Aminooxyacetate inhibits the shuttle and, consequently, glucose synthesis for want of pyruvate.  相似文献   

12.
Studies of metabolism of round spermatids: glucose as unfavorable substrate   总被引:2,自引:0,他引:2  
The exposure of spermatids to glucose in the absence of pyruvate and lactate resulted in an extremely low energy charge. The adenosine 5'-triphosphate (ATP) level rapidly declined and the fructose 1,6-bisphosphate (FBP) and triose levels increased. These changes were prevented by the addition of pyruvate or lactate. The levels of ATP and FBP were inversely correlated. In cells exposed to glucose, FBP did not flow appreciably through the step of glyceraldehyde 3-phosphate dehydrogenase (GA3PDH). The lactate level did not change. However, when pyruvate or lactate was administered to cells exposed to glucose, the FBP level declined rapidly. This drop was accompanied by a commensurate increase in lactate. In these cells, pyruvate transport was suppressed, and the pyruvate taken up by these cells was mostly oxidized in the tricarboxylic acid (TCA) cycle without its being reduced to lactate. In this case, the ATP level increased, but to a level still lower than existed before exposure to glucose. Furthermore, when kinetic studies on the activity of 6-phosphofructokinase (PFK) were carried out, PFK appeared to be fully activated at intracellular levels of fructose 6-phosphate, ATP and adenosine 5'-monophosphate (AMP). These results indicate that the rate of glucose metabolism in glycolysis depends heavily on the energy charge. In cells exposed to glucose, the sugar does not flow appreciably through the glycolytic pathway due to inhibition of GA3PDH. Moreover, the ATP level cannot be recovered fully from the lowest level by the addition of pyruvate or lactate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The use of n-butylmalonate as an inhibitor of malate transport from mitochondria and of aminooxyacetate as an inhibitor of glutamate-aspartate transaminase indicated that rat liver hepatocytes employ the aspartate shuttle for gluconeogenesis from lactate which supplies reducing equivalents to the cytosolic NAD system. In contrast, malate is transported from mitochondria to cytosol for gluconeogenesis from pyruvate. This conclusion is corroborated by the finding that the addition of ammonium ions enhances gluconeogenesis from lactate but inhibits glucose formation from pyruvate. In hepatocytes, glucagon and epinephrine have relatively little effect on glucose synthesis from lactate. Ammonium ions permit both of these hormones to exert their usual stimulation of gluconeogenesis from lactate.Calcium ions (1.3 mm) enhance gluconeogenesis from lactate and from lactatepyruvate mixtures (10:1). The stimulatory effects of Ca2+ and NH4+ are additive and, when lactate is the substrate, the rates of gluconeogenesis achieved are so high as to preclude further stimulation by glucagon.  相似文献   

14.
We have studied the rate of deactivation of the insulin-stimulated glucose transport system following the removal of insulin. Under all conditions, dissociation of insulin from its receptor proceeded much more rapidly than deactivation of the glucose transport system, indicating that deactivation was not simply a passive process reflecting a decline in receptor occupancy. The results demonstrate that deactivation of the glucose transport system is dependent upon ongoing cellular metabolism, and that this process occurs in a normal manner when a variety of substrates (glucose, fructose, or pyruvate) are available to the cells. When no substrate was present, then transport remained at or near the fully stimulated level. In an attempt to localize which metabolic sequence is involved in mediating glucose transport deactivation, studies were performed in the presence of a variety of substrates, inhibitors, and combinations of the two. NaF and citrate had marked effects to inhibit the normal rate of deactivation in the presence of glucose, whereas DNP had no effect on the rate of deactivation in the presence of added glucose. Pyruvate is a substrate which enters the glycolytic pathway distal to the site of action of NaF or citrate in the glycolytic pathway, and in the presence of pyruvate, the inhibiting effects of NaF and citrate on the rate of deactivation were abolished. These results demonstrate that deactivation of the insulin-stimulated glucose transport system is an active process dependent upon some aspect of cellular glucose metabolism. It is likely that the important metabolic step is distal to the point at which pyruvate enters the glycolytic pathway and possibly proximal to the step at which DNP inhibits mitochondrial oxidative phosphorylation.  相似文献   

15.
t-PA producing CHO cells have been shown to undergo a metabolic shift when the culture medium is supplemented with a mixture of glucose and galactose. This metabolic change is characterized by the reincorporation of lactate and its use as an additional carbon source. The aim of this work is to understand lactate metabolism. To do so, Chinese hamster ovary cells were grown in batch cultures in four different conditions consisting in different combinations of glucose and galactose. In experiments supplemented with glucose, only lactate production was observed. Cultures with glucose and galactose consumed glucose first and produced lactate at the same time, after glucose depletion galactose consumption began and lactate uptake was observed. Comparison of the metabolic state of cells with and without the shift by metabolic flux analysis show that the metabolic fluxes distribution changes mostly in the reactions involving pyruvate metabolism. When not enough pyruvate is being produced for cells to support their energy requirements, lactate dehydrogenase complex changes the direction of the reaction yielding pyruvate to feed the TCA cycle. The slow change from high fluxes during glucose consumption to low fluxes in galactose consumption generates intracellular conditions that allow the influx of lactate. Lactate consumption is possible in cell cultures supplemented with glucose and galactose due to the low rates at which galactose is consumed. Evidence suggests that an excessive production and accumulation of pyruvate during glucose consumption leads to lactate production and accumulation inside the cell. Other internal conditions such as a decrease in internal pH, forces the flow of lactate outside the cell. After metabolic shift the intracellular pool of pyruvate, lactate and H+ drops permitting the reversal of the monocarboxylate transporter direction, therefore leading to lactate uptake. Metabolic analysis comparing glucose and galactose consumption indicates that after metabolic shift not enough pyruvate is produced to supply energy metabolism and lactate is used for pyruvate synthesis. In addition, MFA indicates that most carbon consumed during low carbon flux is directed towards maintaining energy metabolism.  相似文献   

16.
Centrally acting cholinomimetic drugs like arecoline stimulate active ion transport processes in the synaptic region. Regarding the connection between cellular metabolism and active Na"-K+-transport the effect of arecoline on the cerebral metabolic status was proved. Arecoline decreased the level of high energic phosphates and glycogen (energy charge diminished from 0,57 to 0,48) and increased the glucose consumption and lactate production. Thus, the increased rate of CoA acetylation via oxidative breakdown of pyruvate seems to be prerequisite for the cholinergically stimulated ACh synthesis.  相似文献   

17.
The relative importance of the mitochondrial and cytosolic alanine aminotransferase isozymes for providing pyruvate from alanine for further metabolism in the mitochondrial compartment was examined in the isolated perfused rat liver. The experimental rationale employed depends upon the supposition that gluconeogenesis from alanine and the decarboxylation of infused [1-14C]alanine should be diminished by pyruvate transport inhibitors (e.g., alpha-cyanocinnamate) in proportion to the contribution of the cytosolic alanine aminotransferase for generating pyruvate. alpha-Cyanocinnamate inhibited the endogenous rate of glucose production in perfused livers derived from 24-h-fasted rats. The rate of [1-14C]alanine decarboxylation at low (1 mM) and high (10 mM) perfusate alanine concentrations was inhibited by 9.5 and 42%, respectively, in the presence of alpha-cyanocinnamate. In livers from fasted animals perfused with either 1 or 10 mM alanine, alpha-cyanocinnamate caused a substantial increase in the rates of both lactate and pyruvate production. Elevating the hepatic ketogenic rate during infusion of acetate in livers, perfused with alanine, stimulated both the rates of alanine decarboxylation and glucose production; the extent of stimulation of these two metabolic parameters was determined to be a function of the alanine concentration in the perfusate. The stimulation of the rate of alanine decarboxylation during acetate-induced ketogenesis was reversed by co-infusion of alpha-cyanocinnamate with simultaneous increases in the rates of lactate and pyruvate production. The results indicate that during rapid ketogenesis, cytosolic transamination of alanine contributes at least 19% (at 1 mM alanine) and 55% (at 10 mM alanine) of the pyruvate for gluconeogenesis.  相似文献   

18.
The renal cell line LLC-PK1 contransports Na and D -glucose from the apical to the basolateral side of the cell monolayer, and the short-circuit current (Isc) measures the net amount of Na transported. Under conditions of maximal cotransport, the addition of phlorizin or removal of Na rreversibly decreased oxygen consumption by one-hal. In the absence of glycolytic substrates, α-methyl-D -glucoside stimulated Isc and oxygen consumption, although the Isc came to a steady state 50% less than when glycolytic substrates were present. The addition of other aerobic substrates did not increase Isc; however, when non-contransported glycolytic substrates were introduced the Isc returned to a maximum with an associated fall in oxygen consumption and increased lactate production. Thus, in the absence of glycolytic substrates aerobic ATP formation may be rate-limiting for Na, D -glucose contansport. For this epithelium glycolysis makes an impotant contribution to the provision of energy or transport. Oxygen consumption does not correlate well with Isc and is not a good measured off the energy used in transport.  相似文献   

19.
The transport and metabolism of glucose was examined in monolayers of C-6 glioma cells. 1) Glucose transport appeared to have both a low (Km = 7.74 mM) and a high (Km = 1.16 mM) affinity site in C-6cells; whereas 2-deoxyglucose had only one (Km = 3.7 mM). 2) A large portion of the accumulated glucose was rapidly metabolized to the two glycolytic end products, lactate and pyruvate, and then extruded into the medium. The temperature-dependent efflux of lactate and pyruvate was linear up to 2 hrs with 6 to 10 times more lactate being extruded into the medium than pyruvate. 3) The efflux of lactate and pyruvate increased with increasing extracellular (medium) pH. The presence of 5 percent CO2 not only inhibited the acid efflux but also inhibited the short-term uptake of glucose. The CO2 effect was attributed to a lowering of the medium pH since bicarbonate alone either increased or did not inhibit efflux. 4) Valinomycin increased the levels of cellular lactate but not those of pyruvate by almost three-fold. Lactate efflux was stimulated while that of pyruvate was inhibited. The addition of 5 percent CO2 increased the cellular levels of both lactate and pyruvate, but unlike valinomycin decreased the acid efflux. Idoacetate inhibited the acid efflux by 50 percent suggesting that glycolysis is necessary for efflux.  相似文献   

20.
The metabolism of lactate, pyruvate and glucose was studied in epididymal adipose tissue of starved, normally fed and starved-re-fed rats. Lactate conversion into fatty acid occurred at an appreciable rate only in the adipocyte of starved-re-fed animals. NNN'N'-Tetramethyl-p-phenylenediamine, an agent that transports reducing power from the cytoplasm to the mitochondria, caused large increments of fatty acid synthesis from lactate and a smaller one from glucose but a decrease in that from pyruvate. Glucose (1.0mm) increased fatty acid synthesis from lactate 4.3-fold but only 1.67-fold from pyruvate in adipocytes from normally fed animals. 2-Deoxyglucose decreased fatty acid synthesis from lactate to a greater degree (threefold) compared to that from pyruvate in adipocytes from starved-re-fed animals. l-Glycerol 3-phosphate contents were approximately equal in epididymal fat-pads, incubated in the presence of lactate or pyruvate, from normally fed animals, whereas the addition of 1mm-glucose resulted in a tenfold increase in l-glycerol 3-phosphate content only in the presence of lactate. The l-glycerol 3-phosphate content was tenfold higher in adipose tissue from starved-re-fed animals incubated in the presence of lactate than in the presence of pyruvate. 2-Deoxyglucose caused these values to be slightly lowered in the presence of lactate. We suggest that lactate metabolism is limited by the rate of NADH removal from the cytoplasm. In the starved-re-fed state, this occurs by reduction of dihydroxyacetone phosphate formed from glycogen to produce l-glycerol 3-phosphate, thus permitting lactate conversion into fatty acid. When glucose is the substrate, and rates of transport are not limiting, the rate of removal of cytoplasmic NADH limits glucose conversion into fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号