首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Retroviral vectors are valuable tools for gene transfer. Particularly convenient are IRES-containing retroviral vectors expressing both the protein of interest and a marker protein from a single bicistronic mRNA. This coupled expression increases the relevance of tracking and/or selection of transduced cells based on the detection of a marker protein. pAP2 is a retroviral vector containing eGFP downstream of a modified IRES element of EMCV origin, and a CMV enhancer-promoter instead of the U3 region of the 5'LTR, which increases its efficiency in transient transfection. However, pAP2 contains a limited multicloning site (MCS) and shows weak eGFP expression, which previously led us to engineer an improved version, termed pPRIG, harboring: i) the wild-type ECMV IRES sequence, thereby restoring its full activity; ii) an optimized MCS flanked by T7 and SP6 sequences; and iii) a HA tag encoding sequence 5' of the MCS (pPRIG HAa/b/c).  相似文献   

2.
A series of adenosine deaminase (ADA) retroviral vectors were designed and constructed with the goal of improved performance over the PA317/LASN vector currently used in clinical trials. First, the bacterial selectable-marker neomycin phosphotransferase (neo) gene was removed to create a “simplified” vector. Second, the Moloney murine leukemia virus long terminal repeat (LTR) promoter used for ADA expression was replaced with either the myeloproliferative sarcoma virus (MPSV) or SL3-3 LTR. Supernatant from each ADA vector was used to transduce ADA-deficient (ADA) B- and T-cell lines as well as primary peripheral blood mononuclear cells (PBMC) from an ADA severe combined immunodeficiency patient. Total ADA enzyme activity and ADA activity per integrant in the transduced cells demonstrated that the MPSV LTR splicing vector design provided the highest level of ADA expression per cell. This ADA(MPSV) vector was then tested in packaging cell lines containing either the gibbon ape leukemia virus envelope (PG13 cells), the murine amphotropic envelope (FLYA13 cells), or the feline endogenous virus RD114 envelope (FLYRD18 cells). The results indicate that FLYRD18/ADA(MPSV), a simplified ADA retroviral vector with the MPSV LTR, provides a 17-fold-higher level of ADA expression in human lymphohematopoietic cells than the PA317/LASN vector currently in use.Retroviral vectors have been the most common gene transfer vehicles in clinical gene therapy trials (15). These vectors can integrate into the host genome to provide permanent transgene expression in the targeted cells (20). The first generation of retroviral vectors have been useful in demonstrating the feasibility of gene therapy approaches, but vectors capable of higher levels of gene transfer and transgene expression would be beneficial. For example, gene transfer levels achieved by first-generation retroviral vectors in large mammals (28) and in human gene therapy trials (7, 13) have been disappointing. There are at least two avenues for improving retroviral vectors. First, molecular changes can be made in the retroviral vector sequence. Second, different packaging cell lines could be tested to modify the host range, increase transduction in a given cell type, and/or render the virions resistant to inactivation by human complement.A clinically useful model for improving retroviral vector design is the vector LASN packaged in the amphotropic line PA317. PA317/LASN was the first therapeutic vector used in a gene therapy clinical trial (1). This vector has yielded gene transfer levels of generally less than 10% in peripheral blood T cells of adenosine deaminase-deficient (ADA) severe combined immunodeficiency (SCID) patients. Two possibilities to improve this vector include eliminating the dominant selectable marker gene and changing the long terminal repeat (LTR) promoter to optimize expression. LASN, like many of the retroviral vectors used in clinical trials to date, contains two genes: the therapeutic gene (the ADA gene) and a dominant selectable marker gene (the bacterial neomycin phosphotransferase II gene; neo). Dominant selectable marker genes have historically been included to facilitate the generation, isolation, and titration of retroviral producer cell clones and to permit the evaluation and selection of successfully targeted cells. neo is the most commonly used selectable marker gene, although other genes have been used, including a mutant dihydrofolate reductase gene (dhfr) (19), the multidrug resistance gene (mdr) (10), and genes for cell surface markers such as cd24 (24) and the human nerve growth factor receptor (2). Vectors carrying dominant selectable marker genes, particularly those of nonhuman origin, have two theoretical disadvantages. First, careful analysis of some patients has revealed an immune response directed against the dominant selectable marker protein expressed from the retroviral integrant (20a, 25). Second, the more complex retroviral genomes required to express two separate genes may result in lower titers or suboptimal expression of the therapeutic gene product due to promoter interference (8, 29). On the other hand, cloning and determining the titers of useful retroviral vectors without selectable markers have been laborious. Using a recently developed rapid-screening procedure, we have been able to identify a number of “simple” ADA retroviral vectors which lack dominant selectable markers (23).Different packaging cell lines may also improve gene transfer of retroviral vectors into specific target cells. Retroviral vectors are limited by the host range specified by the envelope protein on the surface of the retrovirus. Most gene therapy trials have used retroviruses with a murine amphotropic (4070A) host range. However, packaging cell lines with the gibbon ape leukemia virus (GALV) envelope (PG13 cells) (18) and the cat endogenous virus RD114 envelope (FLYRD18 cells) (5) have become available; these may improve transduction frequencies into various target cell populations. For example, there is evidence that GALV-pseudotyped retroviral vectors may facilitate gene transfer into human peripheral blood T cells with greater efficiency than vectors with an amphotropic envelope (3). Packaging cell lines derived from murine cells have the additional disadvantage that they produce retroviruses which are inactivated by complement in human sera. Packaging cell lines of human origin (FLYA13 and FLYRD18) (5) produce vectors which are complement resistant. Testing both new simple retroviral vector designs and new packaging cells may therefore improve retrovirus-mediated gene transfer.We report the construction and characterization of three simplified ADA vectors by using either the Moloney murine leukemia virus (MLV) LTR, the myeloproliferative sarcoma virus (MPSV) LTR, or the SL3-3 LTR. We tested these vectors to determine which LTR provided the highest level of ADA expression in our target cells of interest: human ADA lymphohematopoietic cells. The ADA retroviral vector with the highest level of transduction/expression was then evaluated in different packaging cell lines including PG13, FLYA13, and FLYRD18.  相似文献   

3.
Recombinant retroviral vectors producing multicistronic mRNAs were constructed. Picornavirus putative internal ribosome entry sites (IRES) were used to confer cap-independent translation of an internal cistron. Internal cistrons were engineered by ligation of various lengths of the IRES of encephalomyocarditis (EMC) virus or polio virus to the E. coli chloramphenicol acetyltransferase (CAT) gene. The IRES/CAT fusions were introduced into retroviral vectors 3' to the translation stop codon of the neomycin phosphotransferase (NEO) gene, and the molecular constructs transfected into retroviral vector packaging lines. Retroviral vector producer cells efficiently express the internal CAT gene product only when the full length IRES is used. Both the EMC/CAT and polio/CAT retroviral vectors produced high titer vector supernatant capable of productive transduction of target cells. To test the generality of this gene transfer system, a retroviral vector containing an IRES fusion to the human adenosine deaminase (ADA) gene was constructed. Producer cell supernatant was used to transduce NIH/3T3 cells, and transduced cells were shown to express NEO, and ADA. Novel three-gene-containing retroviral vectors were constructed by introducing the EMC/ADA fusion into either an existing internal-promoter-containing vector, or a polio/CAT bicistronic vector. Producer cell clones of the three-gene vectors synthesize all three gene products, were of high titer, and could productively transduce NIH/3T3 cells. By utilizing cap-independent translation units, IRES vectors can produce polycistronic mRNAs which enhance the ability of retroviral-mediated gene transfer to engineer cells to produce multiple foreign proteins.  相似文献   

4.
5.

Background

Mouse mammary tumor virus (MMTV) encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and human endogenous retrovirus type K (HERV-K). In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE).

Results

MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export.

Conclusion

These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.  相似文献   

6.
Retroviral-mediated gene transfer into mammalian cells   总被引:2,自引:0,他引:2  
Retroviruses may be used as genetic vectors to transfer genes into mammalian cells with high efficiency. We have shown that the N2 vector will transfer a functional bacterial gene for neomycin resistance (NeoR) into more than 80% of mouse spleen foci. A derivative of the N2 vector was constructed to study transfer and expression of the human gene for adenosine deaminase (ADA) in mammalian lymphoid and hematopoietic stem cells. This vector, termed SAX, contains the human ADA cDNA with an SV40 promoter in addition to the NeoR gene. The SAX vector was found to efficiently transfer and express the ADA gene in an ADA-deficient human T-cell line. Gene transfer by SAX using an autologous nonhuman primate bone marrow transplant model resulted in expression of the human ADA gene in peripheral blood cells of treated animals. Human bone marrow treated with SAX produced 1%-2% of colonies in vitro that were expressing the vector genes. Transfer of genes into circulating hematopoietic stem cells of fetal sheep in utero was most efficient; vector gene expression was evident in 20%-40% of hematopoietic colonies. Therefore, retroviral vectors are capable of transferring functional genes into a wide variety of mammalian lymphoid and hematopoietic cells. Such vectors may be useful for clinical trials of gene therapy, that is, the correction of genetic diseases by insertion of a normal gene into a patient's defective cells.  相似文献   

7.
8.
9.
Kowolik CM  Hu J  Yee JK 《Journal of virology》2001,75(10):4641-4648
Vectors derived from murine leukemia virus (MLV) have been used in many human gene therapy clinical trials. However, insertion of the locus control regions (LCRs) derived from the beta-globin gene locus or the CD2 gene into MLV vectors frequently led to vector rearrangement. Since the human immunodeficiency virus (HIV) sequence diverges significantly from the MLV sequence, we tested whether the LCR sequence is more stable in the context of an HIV vector. Clones derived from human fibrosarcoma line HT1080 cells transduced with an HIV vector containing the T-cell-specific CD2 LCR exhibit the same wide range of transgene expression as clones lacking the LCR. In contrast, Jurkat and primary T-cell clones derived from the transduction of the LCR-containing vector show, on average, a three- to fourfold increase in transgene expression relative to that of the control vector. This is consistent with previous observations that the CD2 LCR contains a T-cell-specific enhancer. In addition, the clones derived from the LCR-containing vector have a much lower clonal variation in transgene expression than those derived from the control vector. We also demonstrate that the level of transgene expression is proportional to the vector copy number. These results suggest that the human CD2 LCR sequence is compatible with HIV vector sequences and confers enhanced integration site-independent and copy number-dependent expression of the transgene. Thus, HIV vectors may represent the ideal vehicle to deliver genes controlled by various cis-acting elements such as LCRs.  相似文献   

10.
11.
To assess alternative methods for introducing expressing transgenes into the germ line of zebrafish, transgenic fish that express a nuclear-targeted, enhanced, green fluorescent protein (eGFP) gene were produced using both pseudotyped retroviral vector infection and DNA microinjection of embryos. Germ-line transgenic founders were identified and the embryonic progeny of these founders were evaluated for the extent and pattern of eGFP expression. To compare the two modes of transgenesis, both vectors used the Xenopus translational elongation factor 1-alpha enhancer/promoter regulatory cassette. Several transgenic founder fish which transferred eGFP expression to their progeny were identified. The gene expression patterns are described and compared for the two modes of gene transfer. Transient expression of eGFP was detected 1 day after introducing the transgenes via either DNA microinjection or retroviral vector infection. In both cases of gene transfer, transgenic females produced eGFP-positive progeny even before the zygotic genome was turned on. Therefore, GFP was being provided by the oocyte before fertilization. A transgenic female revealed eGFP expression in her ovarian follicles. The qualitative patterns of gene expression in the transgenic progeny embryos after zygotic induction of gene expression were similar and independent of the mode of transgenesis. The appearance of newly synthesized GFP is detectable within 5-7 h after fertilization. The variability of the extent of eGFP expression from transgenic founder to transgenic founder was wider for the DNA-injection transgenics than for the retroviral vector-produced transgenics. The ability to provide expressing germ-line transgenic progeny via retroviral vector infection provides both an alternative mode of transgenesis for zebrafish work and a possible means of easily assessing the insertional mutagenesis frequency of retroviral vector infection of zebrafish embryos. However, because of the transfer of GFP from oocyte to embryo, the stability of GFP may create problems of analysis in embryos which develop as quickly as those of zebrafish.  相似文献   

12.
13.
14.
Q vectors, bicistronic retroviral vectors for gene transfer   总被引:3,自引:0,他引:3  
We have developed a retroviral vector that incorporates unique features of some previously described vectors. This vector includes: 3' long terminal repeats (LTRs) of the self-inactivating class; a 5' LTR that is a hybrid of the cytomegalovirus (CMV) enhancer and the mouse sarcoma virus promoter; an internal CMV immediate early region promoter to drive expression of the transduced gene and the neomycin phosphotransferase selectable marker; an expanded multiple cloning site and an internal ribosome entry site. An SV40 ori was introduced into the vector backbone to promote high copy number replication in packaging cell lines that express the SV40 large T antigen. We demonstrate that these retroviral constructs, designated Q vectors, can be used in applications where high viral titers and high level stable or transient gene expression are desirable.  相似文献   

15.
Retroviral cell lineage marking was used to investigate the role of cell lineage in fetal and neonatal rat muscle development. Clusters of infected cells, presumably myoblast clones, contribute cells to both slow primary and fast secondary fibres. Moreover, single clusters of marked cells contain both slow and fast primary fibres, suggesting that, at least during fetal life, single clones contribute nuclei to both fibres that are committed to remain slow and those that convert to a fast phenotype. The majority of fibres in individual fascicles of fetal muscle could be infected by a self-inactivating retroviral vector. Retroviral gene expression was markedly lower in non-muscle tissues, suggesting that fetal retroviral infection might target exogenous genes to mammalian muscle fibres during later life.  相似文献   

16.

Background

Rett Syndrome (RTT) is an Autism Spectrum Disorder and the leading cause of mental retardation in females. RTT is caused by mutations in the Methyl CpG-Binding Protein-2 (MECP2) gene and has no treatment. Our objective is to develop viral vectors for MECP2 gene transfer into Neural Stem Cells (NSC) and neurons suitable for gene therapy of Rett Syndrome.

Methodology/Principal Findings

We generated self-inactivating (SIN) retroviral vectors with the ubiquitous EF1α promoter avoiding known silencer elements to escape stem-cell-specific viral silencing. High efficiency NSC infection resulted in long-term EGFP expression in transduced NSC and after differentiation into neurons. Infection with Myc-tagged MECP2-isoform-specific (E1 and E2) vectors directed MeCP2 to heterochromatin of transduced NSC and neurons. In contrast, vectors with an internal mouse Mecp2 promoter (MeP) directed restricted expression only in neurons and glia and not NSC, recapitulating the endogenous expression pattern required to avoid detrimental consequences of MECP2 ectopic expression. In differentiated NSC from adult heterozygous Mecp2tm1.1Bird+/− female mice, 48% of neurons expressed endogenous MeCP2 due to random inactivation of the X-linked Mecp2 gene. Retroviral MECP2 transduction with EF1α and MeP vectors rescued expression in 95–100% of neurons resulting in increased dendrite branching function in vitro. Insulated MECP2 isoform-specific lentiviral vectors show long-term expression in NSC and their differentiated neuronal progeny, and directly infect dissociated murine cortical neurons with high efficiency.

Conclusions/Significance

MeP vectors recapitulate the endogenous expression pattern of MeCP2 in neurons and glia. They have utility to study MeCP2 isoform-specific functions in vitro, and are effective gene therapy vectors for rescuing dendritic maturation of neurons in an ex vivo model of RTT.  相似文献   

17.
The human cytomegalovirus and elongation factor 1?? promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evaluation using plasmid vectors integrated at a single site in the genome revealed that these various synthetic promoters were capable of expression levels spanning a 40-fold range. Retroviral vectors were equipped with the synthetic promoters and evaluated for their ability to reproduce the graded expression demonstrated by plasmid integration. A vector with a self-inactivating long terminal repeat could neither reproduce the full range of expression levels nor produce stable expression. Using a second vector design, the different synthetic promoters enabled stable expression over a broad range of expression levels in different cell lines.  相似文献   

18.
Pre-implantation embryos were infected with the retroviral vector MMCV-neo, which carries the neomycin resistance (neo) gene and the v-myc gene. Three transgenic substrains (M-TKneo 1-3) were derived which stably transmit a single intact copy of the vector. In all of the substrains, expression of the neo gene from the internal thymidine kinase (TK) promoter was detected, with two of the substrains expressing the gene in all tissues analysed. In the third substrain, the vector had integrated on the X chromosome and neo expression varied between different tissues. A second series of transgenic mice were obtained with the retroviral vector SAX, in which the human adenosine deaminase cDNA (ADA) is under the control of an internal SV40 promoter. Four substrains (M-SAX 1-4) were analysed; however, no expression of the ADA cDNA was detected. In all mice, no expression was found of the genes under the control of the viral 5' long terminal repeats (LTRs). In the M-TKneo substrains the vector was hypomethylated irrespective of its expression whereas in the M-SAX mice the vector was hypermethylated. These results demonstrate for the first time that the TK promoter can apparently express a gene in all tissues of adult mice and that retroviral vectors with internal promoters may provide an alternative to DNA injection for the efficient expression of genes in transgenic mice.  相似文献   

19.
Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5′- and 3′-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号