首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of decomposition, while mineralization may produce increases in concentrations during later stages of decomposition. The simulations also showed that initial nutrient content of the leaves can affect the stream nutrient concentration dynamics and determine whether nitrogen or phosphorus is the limiting nutrient. Finally, the simulations suggest a net retention (uptake > mineralization) of nutrients in headwater streams, which is balanced by export of particulate organic nutrients to downstream reaches. Published studies support the conclusion that uptake can substantially change stream nutrient concentrations. On the other hand, there is little published evidence that mineralization also affects nutrient concentrations. Also, there is little information on direct microbial utilization of nutrients contained in the decaying leaves themselves. Our results suggest several directions for research that will improve our understanding of the complex relationship between leaf decay and nutrient dynamics in streams. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient‐poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N‐ and P‐excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year‐round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic‐terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.  相似文献   

3.
Our study aimed to analyze the effects of chronic nutrient loading on the capacity of headwater streams to retain phosphorus and ammonium pulses of different duration. For this purpose, we selected nine headwater streams located across a gradient of increasing agricultural land use and eutrophication. In each stream, we performed sequential plateau additions with increasing nutrient concentrations in summer 2015 and instantaneous slug additions in summer 2016 under similar hydrological conditions. We modelled kinetic uptake curves from the slug additions via the Tracer Additions for Spiraling Curve Characterization method and calculated ambient uptake parameters. Ambient uptake rates generally increased (1.4–20.8 µg m?2 s?1 for NH4–N and 0.3–10.3 µg m?2 s?1 for SRP, respectively), while ambient uptake velocities decreased from oligotrophic to polytrophic streams (1.8–14.0 mm min?1 for NH4–N and 1.6–9.9 mm min?1 for SRP, respectively). However, correlations between ambient uptake parameters and background concentrations were weak. Concentration-dependent uptake rates followed either a linear or a Michaelis–Menten saturation model, regardless of the degree of nutrient loading. Uptake rate curves showed counter-clockwise hysteresis in oligotrophic streams and clockwise hysteresis in streams of higher trophic states, indicating a reduced significance of hyporheic uptake with increasing nutrient loading. Comparisons of slug and plateau additions revealed that oligotrophic streams were most efficient in uptake during short nutrient pulses, while eutrophic streams profited from longer pulse duration. The results indicate that nutrient uptake is increasingly transport-controlled in polluted streams where increased biofilm thickness and clogging of sediments restrict nutrient transport to reactive sites.  相似文献   

4.
Experimental studies evaluating the simultaneous effects of consumers, nutrients, and other biotic/abiotic factors on intact, natural food webs are rare, particularly among ecosystems of varying trophic conditions. We conducted a series of in situ studies that used nutrient-diffusing substrata with nitrogen (N) and phosphorus (P) concentrations in a full factorial design in three temperate, limestone streams in Pennsylvania across a trophic gradient (mesotrophic, eutrophic, and hypereutrophic streams). We assessed differences in algal and macroinvertebrate biomass, taxonomic composition, and functional groups relative to amended nutrients across the trophic gradient; as such, these results facilitated predictions about regulators of food web structure. All factors varied significantly among the streams (e.g., algal biomass P = 0.005, macroinvertebrate biomass P < 0.001, algal diversity P = 0.006, macroinvertebrate diversity P < 0.001, algal group P < 0.001, macroinvertebrate guilds P < 0.001); the streams, however, did not exhibit simple responses to nutrient amendment. Algal and macroinvertebrate biomass and diversity responded greatest in the mesotrophic stream while grazing seemed to be a strong factor preventing algal nutrient response in the eutrophic and hypereutrophic streams. Brillouin’s Evenness Index was most influenced by nutrient amendment (nutrient effect on algae and macroinvertebrates P = 0.021). As such, we concluded that biomass and diversity were mediated by complexity within intermediate trophic levels.  相似文献   

5.
Clearfell, burn and sow (CBS) forestry can potentially alter stream environments by increasing available light and the input of woody debris. However, little is known about how CBS forestry affects in-stream processes such as nutrient uptake. We evaluate whether short-term (2–7 years) environmental changes (e.g. light availability and woody debris) associated with CBS forestry lead to differences in nutrient uptake metrics. To do this, we measured in-stream uptake of soluble reactive phosphorus (SRP) and ammonium (NH4) in three old growth (OG) and four CBS-affected headwater stream reaches. The abundance of fine woody debris and light availability were significantly greater in CBS-affected than in OG reaches. Uptake velocities varied from 0.0880 to 0.951 mm min?1 for NH4 and from 0.0383 to 1.06 mm min?1 for SRP across all sites. The mean uptake of SRP, but not NH4, was significantly greater (i.e. higher uptake velocities and lower uptake lengths) in CBS-affected than in OG reaches. These results suggest that CBS forestry altered the stream environment enabling greater SRP uptake relative to OG reaches. Our findings highlight the tight linkage between headwater streams and their surrounding terrestrial environment, which has direct implications for catchment-scale biogeochemical processes.  相似文献   

6.
A disturbance or natural event in forested streams that alter available light can have potential consequences for nutrient dynamics and primary producers in streams. In this study, we address how functional processes (primary production and nutrient uptake) in stream ecosystems respond to changes in forest canopy structure. We focus on differences in incoming irradiance, nutrient uptake (NO3, NH4, and PO4) and open-channel metabolism seasonally in 13 forested streams that drain forests with different canopy structures (10 to >300 years old) in the northeastern United States. Light irradiance was related to forest age in a U-shaped pattern, with light being the greatest in both young open forests (<50 years old) and older growth forests (>245 years old), whereas the darkest conditions were found in the secondary growth middle-aged forests (80–158 years old). Streams that had adjacent open or old-growth riparian forest had similar conditions with greater standing stock biofilm biomass (chl a), and elevated ER in October compared to streams with middle-aged riparian forests. Compared to all sites, streams with old-growth riparian forest had the greatest in-stream primary production rates (GPP) and elevated background nutrient concentrations, and to a lesser degree, increased nutrient retention and uptake (V f). Streams draining older forests tended to be more productive and retentive than middle-aged forests, likely due to increased light availability and the age and structure of surrounding forest canopies. Middle-aged forests had the least variation in response variables compared to streams in young and old-growth riparian forests, likely a result of uniform canopy conditions. As the structure of widespread middle-aged forests in NE US is altered by loss of specific tree species, climate change, and/or human activity, it will impact in-stream production and nutrient dynamics and may ultimately alter nutrient loading in downstream catchments.  相似文献   

7.
Organisms can modify their surrounding environment, but whether these changes are large enough to feed back and alter their evolutionary trajectories is not well understood, particularly in wild populations. Here we show that nutrient pulses from decomposing Atlantic salmon (Salmo salar) parents alter selection pressures on their offspring with important consequences for their phenotypic and genetic diversity. We found a strong survival advantage to larger eggs and faster juvenile metabolic rates in streams lacking carcasses but not in streams containing this parental nutrient input. Differences in selection intensities led to significant phenotypic divergence in these two traits among stream types. Stronger selection in streams with low parental nutrient input also decreased the number of surviving families compared to streams with high parental nutrient levels. Observed effects of parent‐derived nutrients on selection pressures provide experimental evidence for key components of eco‐evolutionary feedbacks in wild populations.  相似文献   

8.
1. Nutrient spiralling provides a conceptual framework and a whole‐system approach to investigate ecosystem responses to environmental changes. We use spiralling metrics to examine how the coupling of nitrogen and phosphorus uptake varies between streams dominated by either heterotrophic (i.e. bacteria‐dominated) or autotrophic (algal‐dominated) microbial communities. 2. Algae generally exhibit greater capacity to store nutrients than bacteria because of differences in cellular structures. These differences led us to hypothesise that the uptake of N and P in heterotrophic ecosystems should have reduced stoichiometric variation in response to changes in supply N : P compared to autotrophic ecosystems when assimilation dominates nutrient uptake. 3. To test this hypothesis, we used an array of serial nutrient additions in several streams in the South Fork Eel River watershed in Northern California. In one set of experiments, N and P were added alone and simultaneously in separate experiments to two small, heterotrophic streams to assess uptake rates and interactions between nutrient cycles. In a second set of experiments, N and P were added simultaneously at a range of N : P in one heterotrophic and one autotrophic stream to assess differences in uptake responses to changes in supply N : P. 4. Results of these experiments suggest two important conclusions. First, increased N supply significantly shortened P uptake lengths, while P addition had little impact on N uptake in both streams, indicating that uptake of non‐limiting nutrients is tightly coupled to the availability of the limiting element. Second, changes in P uptake and uptake ratios (UN : UP) with increased supply N : P supported our hypothesis that heterotrophic streams are more homeostatic in their responses to changes in nutrient supply than autotrophic streams, suggesting that physiological controls on nutrient use scale up to influence ecosystem‐scale patterns in nutrient cycling.  相似文献   

9.
1. Agriculture is a major contributor of non‐point source pollution to surface waters in the midwestern United States, resulting in eutrophication of freshwater aquatic ecosystems and development of hypoxia in the Gulf of Mexico. Agriculturally influenced streams are diverse in morphology and have variable nutrient concentrations. Understanding how nutrients are transformed and retained within agricultural streams may aid in mitigating increased nutrient export to downstream ecosystems. 2. We studied six agriculturally influenced streams in Indiana and Michigan to develop a more comprehensive understanding of the factors controlling nutrient retention and export in agricultural streams using nutrient addition and isotopic tracer studies. 3. Metrics of nutrient uptake indicated that nitrate uptake was saturated in these streams whereas ammonium and phosphorus uptake increased with higher concentrations. Phosphorus uptake was likely approaching saturation as evidenced by decreasing uptake velocities with concentration; ammonium uptake velocity also declined with concentration, though not significantly. 4. Higher whole‐stream uptake rates of phosphorus and ammonium were associated with the observed presence of stream autotrophs (e.g. algae and macrophytes). However, there was no significant relationship between measures of nutrient uptake and stream metabolism. Water‐column nutrient concentrations were positively correlated with gross primary production but not community respiration. 5. Overall, nutrient uptake and metabolism were affected by nutrient concentrations in these agriculturally influenced streams. Biological uptake of ammonium and phosphorus was not saturated, although nitrate uptake did appear to be saturated in these ecosystems. Biological activity in agriculturally influenced streams is higher relative to more pristine streams and this increased biological activity likely influences nutrient retention and transport to downstream ecosystems.  相似文献   

10.
Studies of nutrient cycling in streams have typically focused on patterns and mechanisms of retention because retention can result in temporary or permanent removal of biologically important nutrients. Biogeochemical studies of nitrate in stream ecosystems have focused primarily on biotic uptake and sequestration, while little is known about abiotic mechanisms of nitrogen retention. Evaporation is one abiotic mechanism that can contribute to nutrient retention with nutrients stored as precipitated solutes in sandbars. The objective of this study was to assess the significance of evaporation-driven nitrate retention in sandbars to reach-scale nutrient budgets at Sycamore Creek, Arizona. The vertical profile of chloride and nitrate evaporties were used as a tool to evaluate abiotic retention. I found that salts accumulated in surface layers (0–2 cm) of exposed sandbar sediments. Calculated evaporative retention rate was 0.7–5.4% of average rate of uptake by biota in the surface stream. However, the area of influence of these two mechanisms varies greatly. Taking into account this spatial and seasonal variation in areal extent of the surface stream versus exposed sandbar surfaces, evaporite formation accounted for 14.8% of retention in the study reach and up to 46.0% of annual retention compared to instream biotic uptake. Nitrate retention via evaporation is important because of the temporary disconnection of nutrients stored in sandbars to the surface stream delaying further biological processing until hydrological reconnection occurs. Handling editor: D. Ryder  相似文献   

11.
Nutrient recycling is an essential ecosystem process provided by animals. In many aquatic systems, fish have been identified as important in ecosystem nutrient recycling; however, this importance can vary widely between systems. The factors controlling intersystem variation in animal‐mediated nutrient cycling have rarely been examined and as such it remains unclear what impact human landscape changes will have upon these processes. Here we examined rates of nutrient recycling for temperate stream fish assemblages along a gradient of agricultural land use (proportion cropland in the watershed: 1–59%). We quantified nutrient excretion rates of both ammonium–N (NH4+–N) and phosphate (as soluble reactive phosphate: SRP) for fish assemblages at eight streams in southern Ontario, Canada with species‐specific excretion measurements and quantitative assemblage sampling. For both nutrients, total assemblage excretion exhibited a strong positive relationship with riparian cropland. The distance required for fish assemblages to turn over ambient nutrient pools was shorter for cropland systems, indicating that the relative importance of excreted nutrients was higher in these systems. Based on measured uptake rates of NH4+–N in two streams (one higher cropland and one low cropland) and on modeled uptake rates for all streams, the proportion of ecosystem demand that can be satisfied by excretion is generally higher in the more agricultural streams. These patterns appear to be driven largely by disproportionate increases in fish assemblage biomass with increasing stream nutrient concentrations.  相似文献   

12.
Concentration reduction theory is the leading theory regarding the mechanism of competition for nutrients in soils among plants, yet it has not been rigorously tested. Here we used a spatially explicit, fine-scale grid-based model that simulated diffusion and plant uptake of nutrients by plants in soil to test whether concentration reduction theory was appropriate for terrestrial plant competition for nutrients. In the absence of competition, increasing the rate of diffusion allows a plant to maintain positive growth rates below the lowest average concentration to which it can reduce nutrients in soil solution (R*). As such, differences among plants in the reduction of soil moisture, which here primarily affects nutrient diffusion, can cause R* to predict competitive success incorrectly. The stronger competitor for nutrients captures the largest proportion of the nutrient supply by ensuring nutrients contact its roots before those of a competitor. Although the metric derived from concentration reduction theory, R*, might have predictive power for competitive outcomes in terrestrial ecosystems, this evidence suggests that plants outcompete other plants for nutrients by pre-empting the supply, not reducing the average concentration.  相似文献   

13.
Ecosystem metabolism and nutrient uptake in an urban,piped headwater stream   总被引:1,自引:0,他引:1  
Piped streams, or streams that run underground, are often associated with urbanization. Despite the fact that they are ubiquitous in many urban watersheds, there is little empirical evidence regarding the ecological structure and function of piped stream reaches. This study measured ecosystem metabolism, nutrient uptake, and related characteristics of Pettee Brook—an urban stream that flows through several piped sections in Durham, New Hampshire, USA. Pettee Brook had high chloride and nutrient concentrations, low benthic biomass, and low rates of gross primary productivity (GPP), ecosystem respiration (ER), and nutrient uptake along its entire length during summer. Spring was a period of elevated biological activity, as increased light availability in the un-piped sections of the stream led to substantially higher GPP, ER, NH4 uptake, and PO4 uptake in these open reaches. Piped reaches of Pettee Brook were similar to open reaches in terms of water quality, dissolved O2 concentration, temperature, and discharge. Piped reaches did, however, have significantly less light, shallower sediments, and no debris dams. The absence of light inhibited autotrophic activity in piped reaches, resulting in the complete loss of GPP as well as a significant reduction in benthic AFDM and chlorophyll a biomass. Heterotrophic activity in piped reaches was not impaired to the same extent as autotrophic activity. Reduced ER was observed in piped reaches during the summer, but we failed to find significantly lower DOC or nutrient uptake rates in piped reaches than in open reaches. Carbon consumption in piped reaches, which do not have significant autochthonous or allochthonous carbon replenishment, must rely primarily on upstream inputs of organic matter. These results suggest that although ecological conditions in piped streams may be degraded beyond the extent of other urban stream reaches, piped reaches may still sustain some measurable ecosystem function.  相似文献   

14.
Pacific salmon (Oncorhynchus spp.) perform important ecological roles in stream ecosystems by provisioning nutrients as resource subsidies and modifying their physical habitat as ecosystem engineers. These contrasting roles result in concurrent nutrient enrichment and benthic disturbance, where local environmental characteristics potentially determine which effect predominates. Whole-stream metabolism quantifies the functional response to salmon and may identify patterns in enrichment and disturbance not apparent from structural measurements alone. We measured ecosystem respiration (ER) and gross primary production (GPP), along with chemical and physical characteristics, in seven Southeast Alaska streams and two Michigan streams, before and during the salmon run. These streams in the native and introduced ranges of salmon differed in environmental characteristics, from geomorphology at the reach scale to climate at the biome scale. Salmon consistently increased ER across streams and biomes, from an average (±SE) of 1.92 ± 0.23 g O2 m?2 d?1 before salmon to 6.30 ± 1.08 g O2 m?2 d?1 during the run. In the cobble-bottom streams of Southeast Alaska, GPP doubled from 0.29 ± 0.05 g O2 m?2 d?1 before salmon to 0.66 ± 0.16 g O2 m?2 d?1 during the run. In contrast, GPP responded inconsistently to salmon in the sand-bottom Michigan streams, increasing in one and decreasing in the other. Patterns in ER and GPP among streams and time periods were predicted by stream water nutrients (for example, ammonium, soluble reactive phosphorus) rather than by physical characteristics (for example, light, sediment size, and so on). This study demonstrates that salmon can periodically override physical controls on ER and GPP and enhance whole-stream metabolism via their dual ecological roles as both resource subsidies and ecosystem engineers.  相似文献   

15.
Migratory animals can alter ecosystem function via the provision of nutrient subsidies. These subsidies are heterogeneous in space and time, which may create hot spots or hot moments in biogeochemical transformations, in turn altering the ecosystem effect of the subsidy by changing the form of the nutrients. Annual migrations of Pacific salmon (Oncorhynchus spp.) transport nutrients from the marine environment to their natal freshwater ecosystems. Salmon subsidies provide high quality nutrients (e.g., nitrogen, phosphorus, carbon) that may also be large in quantity where salmon migrations are near historic levels. We hypothesized that the nutrient subsidy provided via the excretion of ammonium (NH4 +) by live salmon would stimulate microbially mediated nitrification rates in stream sediments and increase streamwater nitrate (NO3 ?) concentrations. We quantified sediment nitrification in seven streams in Southeast Alaska before and during the salmon run in 2007 and 2008. Nitrification rates increased 3-fold from before to during the salmon run (mean ± SE = 0.07 ± 0.01 to 0.24 ± 0.02 mgN gAFDM?1 d?1, respectively). The variation in nitrification was explained by both streamwater and exchangeable NH4 + concentrations (R 2 = 0.50 and 0.71, respectively), which were low before salmon and increased relative to the size of the salmon run. To experimentally test the effect of salmon subsidies on nitrification rates, we staked senesced salmon carcasses on stream sediments for 3 weeks during the salmon run and then measured nitrification rates directly under the carcasses. Sediment nitrification was 2–5 times higher under the carcasses compared to nearby sediments without the direct carcass influence. Our results confirm that biogeochemical transformations alter the form of salmon-derived nitrogen, representing an overlooked aspect in the dynamics of this subsidy. Therefore, animal-derived nutrient subsidies are not passively retained or exported in recipient ecosystems, but also transformed, thereby influencing the form and incorporation of these nutrient subsidies.  相似文献   

16.
We used red shiner (Cyprinella lutrensis) as a model to examine ecosystem effects of water column stream minnows (Cyprinidae) in experimental streams. Benthic primary productivity, benthic invertebrate abundance, water column nutrient concentrations, size distribution of benthic particulate organic matter (BPOM), and sedimentation rates were measured across a range of fish densities (0–26.6 fish m–2) over a 35-day period. In addition, effects of fish density on algal standing crop and benthic invertebrates in experimental streams were examined over a longer time span (156 and 203 days). After 35 days, benthic primary productivity was positively associated with fish density, with an approximate three-fold increase in productivity between experimental streams stocked with no fish and those with 26.6 fish m–2. No effects on other ecosystem properties were detected after 35 days. Additionally, there was no effect on algal standing crop after 156 or 203 days and no effect on benthic invertebrates after 203 days. Because red shiners fed primarily on terrestrial insects, this experiment suggests that water column minnows can affect primary productivity in streams by transporting nutrients from terrestrial sources to the benthic compartment of the ecosystem. However, this effect may only be important in streams or during periods when nutrients are limiting.  相似文献   

17.
18.
Urbanization has resulted in the extensive burial and channelization of headwater streams, yet little is known about the impacts of stream burial on ecosystem functions critical for reducing downstream nitrogen (N) and carbon (C) exports. In order to characterize the biogeochemical effects of stream burial on N and C, we measured NO3 ? uptake (using 15N-NO3 ? isotope tracer releases) and gross primary productivity (GPP) and ecosystem respiration (ER) (using whole stream metabolism measurements). Experiments were carried out during four seasons, in three paired buried and open stream reaches, within the Baltimore Ecosystem Study Long-term Ecological Research site. Stream burial increased NO3 ? uptake lengths by a factor of 7.5 (p < 0.01) and decreased NO3 ? uptake velocity and areal NO3 ? uptake rate by factors of 8.2 (p < 0.05) and 9.6 (p < 0.001), respectively. Stream burial decreased GPP by a factor of 11.0 (p < 0.01) and decreased ER by a factor of 5.0 (p < 0.05). From fluorescence Excitation Emissions Matrices analysis, buried streams were found to have significantly altered C quality, showing less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage (TS) and water temperatures. Differences in NO3 ? uptake, GPP, and ER in buried streams, were primarily explained by decreased TS, light availability, and C quality, respectively. At the watershed scale, we estimate that stream burial decreases NO3 ? uptake by 39 % and C production by 194 %. Overall, our results suggest that stream burial significantly impacts NO3 ? uptake, stream metabolism, and the quality of organic C exported from watersheds. Given the large impacts of stream burial on stream ecosystem processes, daylighting or de-channelization of streams, through hydrologic floodplain reconnection, may have the potential to alter ecosystem functions in urban watersheds, when used appropriately.  相似文献   

19.
1. Spring‐fed streams, with temperatures ranging from 7.1 to 21.6 °C, in an alpine geothermal area in SW Iceland were chosen to test hypotheses on the effects of nutrients and temperature on stream primary producers. Ammonium nitrate was dripped into the lower reaches of eight streams, with higher reaches being used as controls, during the summers of 2006 and 2007. Dry mass of larger primary producers, epilithic chlorophyll a and biovolumes of epilithic algae were measured. 2. Bryophyte communities were dominated by Fontinalis antipyretica, and biomass was greatest in the warmest streams. Jungermannia exsertifolia, a liverwort, was found in low densities in few samples from cold streams but this species was absent from the warmest streams. 3. Nutrient enrichment increased the biomass of bryophytes significantly in warm streams. No effects of the nutrient addition were detected on vascular plants. The biomass of larger filamentous algae (mainly Cladophora spp.) was significantly increased by nutrient enrichment in cold streams but reduced by nutrients in warm streams. Thalloid cyanobacteria (Nostoc spp.) were not affected by nutrients in cold streams but decreased with nutrient addition in warm streams. Epilithic algal chlorophyll a was increased by nutrients in all streams and to a greater extent in 2007 than in 2006. Nutrient addition did not affect the epilithic chlorophyll a differently in streams of different temperatures. 4. There were small differential effects of nutrients, influenced by pH and conductivity, on different epilithic algal groups. 5. As global temperatures increase, animal husbandry and perhaps crop agriculture are likely to increase in Iceland. Temperature will directly influence the stream communities, but its secondary effects, manifested through agricultural eutrophication, are likely to be much greater.  相似文献   

20.
Riparian tree planting is widely recognised as a means to improve water quality and stream habitat. However, shading of riparian pasture grasses can lead to channel widening, and riparian shade may limit the growth of macrophytes and algae that assimilate dissolved nutrients from the water column. We investigated concerns that riparian management could lead to increased yields of nutrients and sediments through a conceptual modelling exercise. A simple model of the trade-off between interception of nutrients in runoff by forest buffers versus reduction of in-stream uptake due to shade, predicted that a buffer strip alongside a small headwater stream would reduce nutrient export, while a buffer strip instigated as an isolated patch alongside a larger stream (c. >2.5 km2 upstream catchment size) would increase nutrient export, as the relative amount of nutrients trapped by the buffer decreases as the nutrient load present in the stream water increases. However, in these larger streams with width exceeding approximately 6 m, sufficient light may reach the streambed for plant and algal growth, which in turn would promote instream nutrient processing. At the peak of streambank erosion after planting, predicted total sediment yield (hillslope plus bank sources) was appreciably higher than the hillslope pasture yield, but sediment yield stabilised c. 35–40 years after planting. When planting was extended over 40 years in the model, the sediment yield never exceeded that in pasture before planting. This conceptual modelling exercise shows that riparian tree planting programmes should commence in the headwaters and progress downstream to avoid nutrient yield increases. Significant sediment yield from bank stored sediment of small streams can be expected until the channel reaches the more stable, original forested width, but progressive planting may decrease the peak loads of sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号