首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymatic complete hydrolysis of casein was investigated by using immobilized endopeptidase and exopepti dase packed in the jacketed column reactors. The mass transfer efficiency of proteins was improved by using sliced shrimp chitin hull as enzyme support, which formed a network structure inside the column reactor that prevented the formation of protein precipitate and increased the line flow rate of protein solution. The specificity of the protease was of crucial importance for both the hydrolysis degree and the free amino acid content of the hydrolysates. Of the enzymes tested, the immobilized A. oryzae protease was the most effective enzyme in breaking down the casein molecules and releasing the free amino acid from casein hydrolysates. The immobilized pancreatic and kidney exopeptidase could lead to a 20% increase of free amino acids. The free amino acid content of casein hydrolysates was 34.81% after processing and could reach to 64% if the column length was doubled, but 100% hydrolysis was impossible as the reverse reaction was also taking place. The casein hydrolysates was characterized by its high degree of hydrolysis and high content of free amino acids. It can be applied in infant formula, element diet, and as a protein ingredient for food industry.  相似文献   

2.
Long lived proteins undergo age-related postsynthetic modifications that destabilize them by altering their conformation, charge, and helicity, thereby enhancing their resistance toward proteolysis and propensity to aggregate. The unexpected finding of substantial amounts of ornithine, the nonprotein amino acid, and decarbamidation product of arginine in acid hydrolysates of lens crystallins and skin collagen led us to investigate its source and mechanism of formation. In order to exclude ornithine formation as an artifact of acid hydrolysis, proteins were reductively alkylated with formaldehyde to convert ornithine to dimethyl-ornithine. The proteins were assayed for carboxymethyl-ornithine and glycated ornithine ("furornithine") by liquid chromatography coupled to electrospray ionization mass spectrometry. Ornithine in acid hydrolysates of human lens and skin proteins increased from 1 to 15 nmol/mg protein from ages 10 to 90 years, whereas dimethyl-ornithine increased from 0.5 to 15 and from 0 to 5 nmol/mg protein, respectively. Carboxymethyl-ornithine and furornithine increased with age in lens and skin from approximately 0 to 60 and 0 to 180 pmol/mg protein, respectively. In collagen, ornithine was elevated above levels of nondiabetic controls only when both diabetes and end stage renal disease were present. The age-related increase of these modifications provides evidence for substantial in vivo formation of ornithine in aging human tissue proteins. The mechanism of ornithine formation is not known, but data suggest that arginine-derived advanced glycation end products might serve as precursors for the in vivo conversion of ornithine from arginine.  相似文献   

3.
Functional properties and antioxidant activities of protein hydrolysates from tuna (Thunnus thynnus) heads (THPHs), with different degrees of hydrolysis, obtained by treatment with Bacillus mojavensis A21 alkaline proteases and Alcalase, were investigated. Protein content of all freeze-dried THPHs ranged from 73.74 ± 0.5 to 78.56 ± 1.2%. The THPHs had excellent solubility, compared to untreated tuna head proteins and possessed interfacial properties, which were governed by their concentrations. Similarly, at a degree of hydrolysis (DH) of 12 and 15%, > 90% nitrogen solubility was observed at all experimental pH values tested. The emulsifying activity index (EAI) and emulsion stability index (ESI) of both hydrolysates at different DHs decreased (p < 0.05) with increasing DH. At low DH (5%), hydrolysates exhibited strong emulsifying properties. All THPHs produced by the A21 proteases generally showed higher antioxidative activity than that of the Alcalase protein hydrolysates. The highest DPPH radical-scavenging activity (78 ± 2.1% at 3 mg/mL) was obtained with a DH of 15%. The IC50 value for the β-carotene bleaching assay was 0.5 ± 0.03 mg/mL. Alcalase (DH = 12%) and A21 (DH = 15%) protein hydrolysates contained glutamic acid/glutamine and arginine as the major amino acids, followed by lysine, aspartic acid/ asparagine, histidine, valine, phenylalanine, and leucine. In addition, the THPHs had a high percentage of essential amino acids, which made up 50.52 and 50.47%, of the protein hydrolysates obtained by the Alcalase and A21 proteases, respectively. Therefore, THPHs can be used as a promising source of functional peptides with antioxidant properties.  相似文献   

4.
The amino acid gamma-carboxyglutamate is the product of post-translational vitamin K-dependent carboxylation of peptide bound glutamic acid residues. Activity of the microsomal vitamin K-dependent carboxylase which catalyzes gamma-carboxyglutamate formation has been studied in numerous tissues, including liver and lung. Catabolism of gamma-carboxyglutamate containing proteins leads to gamma-carboxyglutamate excretion into the urine, thus quantitation of urinary gamma-carboxyglutamate can be used to assess vitamin K status, as well as the turnover of gamma-carboxyglutamate containing proteins. Since fetal urine is a major component of amniotic fluid, samples were obtained during late gestation in the rat (days 18-20) and analyzed for gamma-carboxyglutamate by reversed phase liquid chromatography to better define gestational changes in fetal vitamin K-dependent carboxylation. Relative to gestational age 18 days, amniotic fluid gamma-carboxyglutamate concentrations increased by 25% at 19 days (P less than 0.02) and by 105% at 20 days (P less than 0.001). When expressed per unit creatinine to correct for change in body mass and/or amniotic fluid volume, these differences are 15% (NS) at 19 days and 70% (P less than 0.02) at 20 days. These increases are prevented by maternal treatment with sodium warfarin. Amniotic fluid gamma-carboxyglutamate concentrations are 7-12 times greater than those in adult rat urine. During the same developmental interval (18-20 days), both lung and liver carboxylase activities increase by more than two-fold. These studies suggest that gestational age associated increases in carboxylase activity measured in vitro are associated with increased turnover of gamma-carboxyglutamate containing proteins in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The nature of the organic nitrogen of soils   总被引:3,自引:0,他引:3  
Summary Examination of the 6N HC1 hydrolysates from 14 different proteins indicated that a considerable proportion of the total protein nitrogen in the hydrolysates, as determined by the micro-Kjeldahl method, was not accounted for by the NH4-N and the α amino nitrogen found in the hydrolysates. It seems clear that this hydrolysable unidentified nitrogen (HUN) originates mainly from non-amino nitrogen atoms present in arginine, tryptophan, lysine and proline. These nitrogen atoms do not satisfy the conditions necessary for reaction with ninhydrin. The amounts of each amino acid in a particular protein determine the HUN value which will be obtained for 6N HC1 hydrolysates of that protein. There is good agreement between the HUN values for a wide range of proteins when calculated from the amino acid composition of the protein and when determined experimentally. It is concluded that these findings indicate a considerably higher content of amino acid nitrogen in the organic nitrogen of soils and leaf litter than was previously considered to be the case. It is suggested that the findings support the contention that the organic nitrogen of soils contains leaf protein complexes.  相似文献   

6.
A mouse monoclonal antibody raised against rat osteosarcoma alkaline phosphatase (AP) was covalently coupled to protein A-Sepharose and used to purify this enzyme from preparations of rat osteosarcoma, calvaria, kidney, and placenta in a single-step procedure. The tissue-specific isoenzymes purified in this manner showed identity in the immunodiffusion reaction with a polyclonal anti-AP antibody, but differed in apparent molecular weight and degree of polydispersity on sodium dodecyl sulfate-polyacrylamide gels. Treatment with N-glycanase abolished these differences, yielding proteins with an apparent molecular weight of 52,000 Da and identical V8 protease digestion patterns. Alkaline phosphatase from these tissues showed no significant difference in amino acid composition and identity in the first 20 N-terminal amino acids. These findings provide structural evidence which supports the hypothesis that the tissue-specific alkaline phosphatase isoenzymes share a common protein sequence subject to different glycosylation pattern.  相似文献   

7.
A method is presented for analysis of gamma-carboxyglutamic acid based on its derivatization with phenylisothiocyanate and reverse phase HPLC analysis of the resulting phenylthiocarbamyl derivative. Proteins were hydrolyzed with sodium hydroxide and the hydrolysates were desalted on Dowex 50 eluted with ammonium hydroxide. The resulting amino acid mixtures were derivatized with phenylisothiocyanate and the phenylthiocarbamyl derivatives were separated under isocratic conditions on either C18 or C8 reverse phase columns using 0.14 M Tris, 0.05% triethylamine, titrated to pH 7.5 with glacial acetic acid, plus 2% acetonitrile, and detected by absorbance at 254 nm. The method is linear over the range from 10 to 1000 pmol of gamma-carboxyglutamic acid and the limit of detection is near 2 pmol. The utility of the method was verified for analysis of purified prothrombin yielding a value of 10.3 mol of gamma-carboxyglutamic acid per mole in agreement with sequence data. No gamma-carboxyglutamate was detectable for acid-hydrolyzed samples of prothrombin, nor in acid- or base-hydrolyzed samples of bovine serum albumin. Application of this method failed to corroborate the reported presence of gamma-carboxyglutamate in a putative mitochondrial gamma-carboxyglutamate-containing calcium-binding protein. The method was also tested for determination of beta-carboxyaspartate, beta-hydroxyaspartate, phosphoserine, phosphothreonine, and phosphotyrosine in an attempt to identify an unknown material which appeared in preparations of the mitochondrial protein.  相似文献   

8.
A new method has been devised for the complete hydrolysis of proteins with an extremely low level of racemization of amino acids. Proteins are incubated in 10 M HCl at a low temperature to obtain partial hydrolysis. They are then incubated with pronase and finally with leucine aminopeptidase and peptidyl-D-amino-acid hydrolase from Loligo vulgaris. The proposed method ensures the total hydrolysis of either purified proteins or proteins contained in a crude homogenate of animal or vegetable tissue. In both cases, the racemization of amino acids (expressed as rate of D form/D + L form X 100) was lower than 0.015% for aspartic acid and lower than 0.01% for other amino acids. D-Amino acids released from peptides or proteins were estimated with enzymatic methods based on the use of octopus D-aspartate oxidase or hog kidney D-amino acid oxidase; with these enzymes, 0.05 nmol of a D-amino acid was determined in the presence of up to 20 mumols of a mixture of L-amino acids (ratio %D/D + L = 0.00025). The method allows the determination of D-amino acids either in tissues in which they are present in high concentrations (as human cataract lenses, tooth enamel, etc.) or in those with low enantiomer content (as brain, erythrocytes, etc.). Using the method described, we hydrolyzed several synthetic peptides consisting of D- and L-amino acids and determined the amount of D-amino acids. In addition, we totally hydrolyzed all the nuclear proteins of human cataractous lenses. The amount of D-aspartic acid was 0.026 mumols/mg in lenses of women aged between 71 and 76 years and 0.0256 mumols/mg in lenses of men aged between 55 and 72 years. The D-aspartic acid measured corresponds to about 12% with respect to total aspartic acid.  相似文献   

9.
Total cytochrome P-450 levels rise in diabetic rats. Two specific forms of cytochrome P-450 that are elevated have been isolated from liver microsomes of streptozotocin-induced idabetic male rats. One enzyme, termed RLM6, metabolizes aniline and acetol, but not testosterone, in a reconstituted system with NADPH-cytochrome P-450 reductase. RLM6 is isolated as a high spin cytochrome with a minimum molecular weight of 53,500. It has a unique amino-terminal amino acid sequence lacking methionine at the amino-terminal position. Polyclonal antibodies to RLM6 recognized most other forms of cytochrome P-450 in Western blots, but could be made monospecific by adsorption to cross-reacting proteins coupled to Sepharose 4B. Using the monospecific antibodies, RLM6 was estimated to be present in microsomes of untreated male rats at 0.04 nmol/mg protein (5% of total P-450). In chronically diabetic rats this level rose to 0.35 nmol/mg protein and 24% of the P-450 content. Immunoreactive protein of molecular weight identical to RLM6 was elevated in microsomes of non-diabetic rats treated with ethanol, acetone, or isoniazid as well as in rats starved for 48 h. Insulin treatment of diabetic rats for 1 week lowered the immunologically detectable levels of RLM6 to levels found in the untreated rat. The other form of cytochrome P-450, RLM5b, does not metabolize aniline and only poorly metabolizes acetol and testosterone. This 52.5-kDa protein is isolated as a predominantly (60%) high spin enzyme. It has a unique NH2-terminal amino acid sequence with methionine as the terminal residue, and is present in untreated male rat liver microsomes at 0.16 nmol/mg protein. It is elevated in diabetes, like RLM6, but treatment with insulin for 1 week does not completely restore the microsomal content to that of the non-diabetic rat.  相似文献   

10.
《Gene》1996,179(2):279-286
A 4040-bp cDNA was cloned from a human placenta library by screening with a polymerase chain reaction-amplified fragment. The fragment was generated from the library using primers corresponding to conserved sequences encompassing the topa quinone (TPQ) cofactor sites of the copper-containing proteins, bovine serum amine oxidase (BSAO) and human kidney diamine oxidase (DAO). The cloned cDNA contains a coding sequence from positions 161 to 2449. Between bases 2901 and 2974, in a very long 1591-bp 3′-untranslated region, there is a G/A-rich region in the minus strand, which contains a (AGG)5 tandem repeat. The human placenta cDNA sequence and its translated amino acid sequence are 84% and 81% identical to the corresponding BSAO sequences, while the identities for the placenta sequences and those for human kidney DAO are 60% and 41%, respectively. The TPQ consensus nucleotide and protein sequences are identical for the placenta enzyme and BSAO, but the corresponding sequences for human kidney DAO are nonidentical. Three His residues that have been identified as Cu(II) ligands in other amine oxidases are conserved in the human placenta amine oxidase protein sequence. It was concluded that the placenta cDNA open-reading frame codes for a copper-containing, TPQ-containing monoamine oxidase. A putative 19-amino acid signal peptide was identified for human placenta amine oxidase. The resulting mature protein would be composed of 744 amino acids, and would have a Mr of 82 525. Comparison of the human placenta amine oxidase with DNA sequences found in GenBank suggests that the gene for this enzyme is located in the q21 region of human chromosome 17, near the BRCA1 gene.  相似文献   

11.
A method for urinary peptide(s) and protein hydrolysis, involving autoclaving at 15psi (121 degrees C) for 60min, is described. Using three candidate proteins (bovine serum albumin, casein and gelatin) and urine specimens, the effect of autoclaving with respect to the optimum time required for hydrolysis under both acidic (6N HCl) and alkaline (6N KOH) conditions was studied. Recoveries of total amino acids from proteins and urine hydrolysate(s) suggest that complete hydrolysis of proteins and urinary peptides could be achieved by autoclaving for 30-60min instead of 16h of incubation at 110 degrees C. Further, stability of some of the individual amino acids was also studied. The observed differential stability of amino acids under acidic and alkaline conditions, as demonstrated in this study by HPLC analysis, makes it imperative to choose the appropriate hydrolytic condition while studying the composition of any given amino acids in urinary peptide(s)/protein hydrolysates. Further, the finding that both Pro and Hyp were stable under alkaline conditions of hydrolysis by autoclaving renders this method suitable for assaying these two amino acids from urine hydrolysates, hence its utility in the study of urinary peptide derived Hyp and Pro in bone/cartilage disorders.  相似文献   

12.
Y. Nagata  K. Kubota 《Amino acids》1993,4(1-2):121-125
Summary Eleven neutral amino acids and two acidic amino acids in tissue proteins of mouse kidney, liver and brain were analyzed for the presence of D-enantiomers. The proteins were hydrolyzed with HCl for 6 h. Of the thirteen amino acids investigated, the presence of D-enantiomers of serine, alanine, proline, aspartate and glutamate (including asparagine and glutamine) was shown in the hydrolysates. However, the level of D-enantiomers were not significantly higher than that of 6-h hydrolysate of serum albumin examined as a control protein. Serum albumin was shown to contain no D-amino acid residues.  相似文献   

13.
To perform hydrolysis with the enzyme complex from the hepatopancreas of the Kamchatka crab, a protein mixture was isolated from soybean meal by extraction at alkaline pH values. Extractable low-molecular impurities were removed by ultrafiltration and precipitation of proteins with alcohol. The amino acid composition of the obtained protein extract turned out to be similar to the composition of the fish meal traditionally used in the production of fish feeds. Analysis of the products of fermentolysis by DDS-electrophoresis, HPLC, and mass spectrometry showed a high degree of hydrolysis of soybean proteins. Depending on the time of fermentolysis, the hydrolysates contained up to 60% (18 h of hydrolysis) of free amino acids (the fraction of the weight of the hydrolyzed protein mixture) and short peptides (2–20 amino acid residues).  相似文献   

14.
Alkaline phosphatase (EC 3.1.3.1) was assayed in a large number of cultured mouse tumor cell line using p-nitrophenylphosphate as the substrate. Of 19 lines of the B lymphoid lineage, including Abelson pre-B, B lymphoma, and plasma cell tumor lines, all but 1 had substantial activity averaging 407 nmol/min/mg protein (with a range from 5 to 900). Nine T lymphoid and 9 nonlymphoid hematopoietic lines examined had low activity of 0.7 to 4.2 nmol/min/mg protein. The enzyme was markedly enriched in plasma membrane preparations from the B lymphoid cells, but not in those from most T lymphoma cells. The activity of another plasma-membrane-bound enzyme, gamma-glutamyl transferase, did not vary systematically with the type of cell line but was exceptionally high in 1 T lymphoma line. Investigation of pH dependence and susceptibility to inhibition by L-phenylalanine and L-homoarginine indicated similarity of the alkaline phosphatase from B cell lines to the enzyme recoverable from normal mouse kidney, placenta, bone marrow, and lymphoid organs. The enzyme seems to provide a useful marker for tumor lines of the B lymphoid lineage and for their plasma membranes.  相似文献   

15.
The cytochrome P-450 enzyme which catalyses 25-hydroxylation of vitamin D3 (cytochrome P-450(25] from pig kidney microsomes [Postlind & Wikvall (1988) Biochem. J. 253, 549-552] has been further purified. The specific content of cytochrome P-450 was 15.0 nmol.mg of protein-1, and the protein showed a single spot with an apparent isoelectric point of 7.4 and an Mr of 50,500 upon two-dimensional isoelectric-focusing/SDS/PAGE. The 25-hydroxylase activity towards vitamin D3 was 124 pmol.min-1.nmol of cytochrome P-450-1 and towards 1 alpha-hydroxyvitamin D3 it was 1375 pmol.min-1.nmol-1. The preparation also catalysed the 25-hydroxylation of 5 beta-cholestane-3 alpha,7 alpha-diol at a rate of 1000 pmol.min-1.nmol of cytochrome P-450-1 and omega-1 hydroxylation of lauric acid at a rate of 200 pmol.min-1.nmol of cytochrome P-450-1. A monoclonal antibody raised against the 25-hydroxylating cytochrome P-450, designated mAb 25E5, was prepared. After coupling to Sepharose, the antibody was able to bind to cytochrome P-450(25) from kidney as well as from pig liver microsomes, and to immunoprecipitate the activity for 25-hydroxylation of vitamin D3 and 5 beta-cholestane-3 alpha,7 alpha-diol when assayed in a reconstituted system. The hydroxylase activity towards lauric acid was not inhibited by the antibody. By SDS/PAGE and immunoblotting with mAb 25E5, cytochrome P-450(25) was detected in both pig kidney and pig liver microsomes. These results indicate a similar or the same species of cytochrome P-450 in pig kidney and liver microsomes catalysing 25-hydroxylation of vitamin D3 and C27 steroids. The N-terminal amino acid sequence of the purified cytochrome P-450(25) from pig kidney microsomes differed from those of hitherto isolated mammalian cytochromes P-450.  相似文献   

16.
With recent advances in protein microchemistry, compatible methods for the preparation and quantitation of proteins and peptides are required. Fluorescamine, a reagent which reacts with primary amino groups has been used successfully to detect amino acids, peptides, and proteins in various micromethods. This article discusses these methods which include (1) amino acid analysis of protein and peptide hydrolysates with postcolumn fluorescamine derivatization; (2) purification and characterization of proteins and peptides by reversed-phase HPLC with postcolumn fluorescamine derivatization; (3) purification of peptides by two-dimensional chromatography and electrophoresis on thin-layer cellulose with fluorescamine staining; and (4) electroblotting of protein bands from SDS-PAGE to glass fiber filters and polyvinylidene difluoride (PVDF) membranes with fluorescamine staining. In addition, this article also compares a postcolumn fluorescamine detection system with a UV detection system in the applications of amino acid analysis and reversed-phase HPLC protein/peptide analysis.  相似文献   

17.
A protein which specifically complexes with adenosine deaminase (complexing protein) has been purified to homogeneity from human plasma. This protein was compared with complexing protein isolated from human kidney. The two proteins produce electrophoretically different forms of high molecular weight adenosine deaminase when combined with the Mr = 36,000 enzyme monomer from erythrocytes. This difference may, at least in part, be due to the greater sialic acid content of complexing protein from plasma. By other criteria, including amino acid composition, total carbohydrate content, and subunit structure, the two proteins are quite similar. In addition, plasma complexing protein shows complete cross-reactivity with anti-kidney complexing protein serum. These results suggest that plasma and kidney complexing proteins are products of the same gene.  相似文献   

18.
We showed previously that chitin catabolism by the marine bacterium Vibrio furnissii involves at least three signal transduction systems and many genes, several of which were molecularly cloned, and the corresponding proteins were characterized. The predicted amino acid sequences of these proteins showed a high degree of identity to the corresponding proteins from Vibrio cholerae, whose complete genomic sequence has recently been determined. We have therefore initiated studies with V. cholerae. We report here a novel ATP-dependent glucosamine kinase of V. cholerae encoded by a gene designated gspK. The protein, GspK (31.6 kDa), was purified to apparent homogeneity from recombinant Escherichia coli. The product of the reaction was shown to be GlcN-6-P by matrix-assisted laser desorption/ionization-time of flight (MALDI mass spectrometry) and NMR. The K(m) values for GlcN, ATP, and MgCl(2) were 0.45, 2.4, and 2.2 mm, respectively, and the V(max) values were in the range 180-200 nmol/microg/min (approximately 6 nmol/pmol/min). Kinase activity was not observed with any other sugar, including: galactosamine, mannosamine, Glc, GlcNAc, GalNAc, mannose, 2-deoxyglucose, and oligosaccharides of chitosan. The enzyme is also ATP-specific. The kinase can be used to specifically determine micro quantities of GlcN in acid hydrolysates of glycoconjugates. The physiological function of this enzyme remains to be determined.  相似文献   

19.
Formation of lanthionine, a dehydroalanine crosslink, is associated with aging of the human lens and cataractogenesis. In this study we investigated whether modification of lens proteins by glutathione could proceed through an alternative pathway: that is, by the formation of a nonreducible thioether bond between protein and glutathione. Direct ELISA of the reduced water-soluble and water-insoluble lens proteins from human cataractous, aged and bovine lenses showed a concentration-dependent immunoreactivity toward human nonreducible glutathionyl-lens proteins only. The reduced water-insoluble cataractous lens proteins showed the highest immunoreactivity, while bovine lens protein exhibited no reaction. These data were confirmed by dot-blot analysis. The level of this modification ranged from 0.7 to 1.6 nmol/mg protein in water-insoluble proteins from aged and cataractous lenses. N-terminal amino acid determination in the reduced and alkylated lens proteins, performed by derivatization of these preparations with dansyl chloride followed by an exhaustive dialysis, acid hydrolysis and fluorescence detection of dansylated amino acids by RP-HPLC, showed that N-terminal glutamic acid was present in concentration of approximately 0.2 nmol/mg of lens protein. This evidence points out that at least some of the N-terminal amino groups of nonreducible glutathione in the reduced human lens proteins are not involved in a covalent bond formation. Since disulfides were not detected in the reduced and alkylated human lens proteins, GSH is most likely attached to lens proteins through thioether bonds. These results provide, for the first time, evidence that glutathiolation of human lens proteins can occur through the formation of nonreducible thioether bonds.  相似文献   

20.
Oxidative damage to proteins is known to occur via conversion of side chain amino groups to corresponding carbonyl derivatives. Such damage to enzymes and purified proteins has been quantified previously by reduction with sodium boro[3H]hydride and subsequent measurement of the incorporation of 3H into amino acid fractions. In this study, the NaB3H4 reduction assay was modified to permit the quantitation of free radical-mediated oxidative damage to proteins obtained from animals. Modifications included additional extractions of protein isolates with organic solvents to remove lipids and with nitric acid to remove metal ions. The modified assay has first been validated in vitro by measuring changes in levels of oxidative damage to bovine serum albumin exposed to xanthine plus xanthine oxidase (2-fold increase), to hydrogen peroxide and iron(II) sulfate (5-fold increase), or to gamma radiation (30-fold increase over controls, respectively). gamma radiation of isolated hamster kidney protein also raised the carbonyl content in a dose-dependent manner. The modified assay has then been validated in vivo by measuring the changes in oxidative damage to lung tissue in animals exposed to approximately 85% oxygen (2-fold increase) or to different doses of paraquat (5-fold increase with the high dose over controls, respectively). The assay was then used to examine free radical-mediated oxidation introduced by acute or chronic treatment of hamsters with estrogens, since both synthetic and natural estrogens induce kidney tumors in this species. Priming of hamsters for 3 days with 20 mg/kg/day diethylstilbestrol and treatment with 100 mg/kg of this drug on the 4th day resulted in a 160% increase in free radical modification of renal proteins. Oxidative damage to kidney proteins was also assayed in hamsters treated with estradiol implants for up to 7 months, a regimen known to induce kidney tumors. Significant increases in covalent oxidative modification to renal proteins over values in age-matched controls were detected after 1, 2, and 7 months of continuous estradiol exposure. It is concluded that the modification of the NaB3H4 reduction assay is a useful postlabeling method for monitoring free radical action in vivo. Furthermore, it is postulated that free radical damage in estrogen-treated hamster kidney plays a role in estrogen-induced carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号