首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The functional and conformational activation of cell surface glycoproteins IIb-IIIa (GPIIb-IIIa) was probed in platelets stimulated to secrete by complement proteins C5b-9. Gel-filtered human platelets exposed to the purified human C5b-9 proteins exhibited non-lytic secretory release of both alpha- and dense granule storage pools with only a small increase in total binding of 125I-fibrinogen (less than 3000 molecules/cell) to the cell surface. By contrast to ADP- or thrombin-activated platelets, increased 125I-fibrinogen bound to C5b-9 platelets was not inhibited by Arg-Gly-Asp-containing peptides, suggesting that the high affinity membrane receptor for fibrinogen is not expressed under these conditions. C5b-9-stimulated platelets also failed to bind 125I-von Willebrand factor (less than 1 ng/10(8) platelets), confirming that the adhesive protein receptor function of cell surface GPIIb-IIIa is not expressed in these cells. Although specific binding of 125I-fibrinogen or 125I-von Willebrand factor did not significantly increase after C5b-9 assembly, these proteins elicited de novo expression of the GPIIb-IIIa activation-associated epitope recognized by monoclonal antibody PAC-1, and binding of this antibody to C5b-9 platelets was fully competed by Arg-Gly-Asp-containing peptides. These data suggest that the metabolic events which trigger granule secretion after C5b-9 insertion into the plasma membrane cause cell surface GPIIb-IIIa to be expressed in an activation-associated but functionally incompetent conformation.  相似文献   

2.
Recent evidence suggests that the cytoplasmic domains of platelet glycoprotein (GP) IIb-IIIa are involved in the agonist-initiated transformation of this integrin into a receptor for fibrinogen. To identify intracellular reactions that regulate the receptor function of GP IIb-IIIa, membrane-impermeable agonists and antagonists were introduced into the platelet by permeabilizing the plasma membrane with the pore-forming complement proteins C5b-9. Platelet responses were then analyzed by flow cytometry. Non-lytic concentrations of C5b-9 caused permeabilization of the platelet plasma membrane, as determined by uptake of a water-soluble fluorescent tracer dye. The complement pores were large enough to permit the entry of fluorescein isothiocyanate (FITC)-labeled oligopeptides in a size-dependent manner. Under conditions of low external Ca2+, C5b-9 treatment per se did not activate GP IIb-IIIa, as measured by binding of the activation-dependent antibody FITC-PAC1. However, FITC-PAC1 binding to C5b-9-permeabilized platelets was stimulated by a thrombin receptor agonist acting at the cell surface and by guanosine 5'-O-(thiotriphosphate), a membrane-impermeable activator of G proteins. Permeabilization also permitted the entry of cyclic AMP and the peptide, RFARKGALRQKNV, a pseudo-substrate inhibitor of protein kinase C. Each of these inhibited agonist-induced FITC-PAC1 binding to permeabilized platelets but not to intact platelets. Agonist-induced GP IIb-IIIa activation in permeabilized platelets was also inhibited by tyrphostin-23, a protein tyrosine kinase inhibitor. Thus, C5b-9 can be used to permeabilize the plasma membrane to permit the selective entry of small peptides and other bioactive compounds into permeabilized platelets. Results obtained with these platelets indicate that GP IIb-IIIa receptor function is regulated by a network of signaling reactions involving G proteins, serine/threonine kinases, and tyrosine kinases.  相似文献   

3.
We have investigated the composition and function of membrane microparticles released from platelets exposed to the C5b-9 proteins of the complement system. Gel-filtered human platelets were incubated with sub-lytic amounts of the purified C5b-9 proteins and the distribution of surface antigens was analyzed using monoclonal antibodies and flow cytometry. C5b-9 assembly caused secretory fusion of the alpha-granule membrane with the plasma membrane and the release of membrane vesicles (approximately 0.1-micron diameter) that contained the plasma membrane glycoproteins (GP) GP Ib and GP IIb-IIIa as well as the alpha-granule membrane protein GMP-140. These microparticles were highly enriched in the C9 neoantigen of the C5b-9 complex. The apparent surface density of C5b-9 on the microparticles was approximately 10(3)-fold higher than on the platelet itself, suggesting that the vesicles were selectively shed from the plasma membrane at the site of C5b-9 insertion. C5b-9 induced the expression of an activation-dependent epitope (recognized by monoclonal antibody, PAC1) in GP IIb-IIIa on the platelet surface but not in GP IIb-IIIa on the microparticles. The surface of the microparticles was also highly enriched in alpha-granule-derived coagulation factor V (or Va), accounting for nearly half of all the membrane-bound factor V detected. The number of potential membrane binding sites for factor Va was probed by adding saturating concentrations of factor Va light chain. Under these conditions, the density of factor Va binding sites on the microparticle surface exceeded that on the C5b-9-treated platelet by three to four orders of magnitude. Moreover, the microparticles provided most of the membrane surface for conversion of prothrombin to thrombin by VaXa. These studies demonstrate that the microparticles shed by C5b-9-treated platelets (and not the platelets themselves) provide the principal binding sites for coagulation factor Va and the principal catalytic surface for the prothrombinase complex. Platelet-derived microparticles formed during complement activation in vivo could provide a membrane surface that facilitates the assembly and dissemination of procoagulant enzyme complexes.  相似文献   

4.
Antibody against a membrane inhibitor of the C5b-9 complex has been used to investigate regulatory control of the terminal complement proteins on blood platelets. Monospecific rabbit antibody (alpha-P18) was raised against the purified 18-kDa erythrocyte membrane inhibitor of C5b-9 (Sugita, Y., Nakano, Y., and Tomita, M. (1988) J. Biochem. (Tokyo) 104, 633-637). In addition to its interaction with erythrocytes, this antibody (and its Fab) bound specifically to platelet membranes. In immunoblots of cell membrane proteins prepared under non-reducing conditions, alpha-P18 bound specifically to an 18-kDa erythrocyte membrane protein and to a 37-kDa platelet membrane protein. Absorption of this antibody by platelet membranes competed its binding to the purified 18-kDa erythrocyte protein, suggesting that epitopes expressed by the erythrocyte 18-kDa C5b-9 inhibitor are common to the platelet. When bound to the platelet surface, the Fab of alpha-P18 increased C9 activation by membrane C5b-8, monitored by exposure of a complex-dependent C9 neo-epitope. Although alpha-P18 caused little increase in the cytolysis of platelets treated with C5b-9 (total release of lactate dehydrogenase less than 5%), it markedly increased the cell stimulatory responses induced by these complement proteins, including, secretion from platelet alpha- and dense granules, conformational activation of cell surface GP IIb-IIIa, release of membrane microparticles from the platelet surface, and exposure of new membrane binding sites for components of the prothrombinase enzyme complex. Prior incubation of C5b67 platelets with 100 micrograms/ml alpha-P18 (Fab) lowered by approximately 10-fold the half-maximal concentration of C8 required to elicit each of these responses (in the presence of excess C9). Incubation with alpha-P18 (Fab) alone did not activate platelets, nor did incubation with this antibody potentiate the stimulatory responses of platelets exposed to other agonists. These data indicate that a membrane inhibitor of the C5b-9 complex normally serves to attenuate the procoagulant responses of blood platelets exposed to activated complement proteins, and suggest the mechanism by which a deletion or inactivation of this cell surface component would increase the risk of vascular thrombosis.  相似文献   

5.
J R Dankert  A F Esser 《Biochemistry》1986,25(5):1094-1100
The molecular mechanism of complement-mediated killing of Gram-negative bacteria has yet to be resolved, but it is generally accepted that assembly of the membrane attack complex (MAC) of complement on the outer bacterial membrane is a required step. We have now investigated the effect of the MAC and its precursor complex, C5b-8, on the membrane potential (delta Em) across the inner bacterial membrane. Delta Em of whole cells was measured directly by using a lipophilic cation (tetraphenylphosphonium) that equilibrates with the potential or indirectly by measuring transport of solutes (proline and galactoside), which is dependent on delta Em. Our results indicate that the C5b-8 complex caused a transient collapse of delta Em in the absence of cell killing. Addition of C9 to allow formation of the MAC dissipated delta Em irreversibly, and the cells were killed. Since delta Em is generated across the inner membrane in Gram-negative bacteria, inner membrane vesicles were prepared and membrane potentials were generated either by adding D-lactate to energize the electron-transport chain or by creating a K+ diffusion potential with valinomycin. C9 added in the absence of earlier acting complement proteins had no effect on delta Em of isolated, actively respiring vesicles or on K+ diffusion potentials. In contrast, its C-terminal thrombin fragment (C9b), which has been shown earlier to contain the membrane-active domain of C9, efficiently collapsed delta Em in such vesicles. C9b did not require a specific receptor since it was effective on "right-side-out" and "inside-out" vesicles. These results are interpreted to indicate that a C9-derived fragment deenergizes cells and may be the causative agent for cell death.  相似文献   

6.
To elucidate the mechanism of the receptor-stimulated Ca2+ entry into human platelets, the influence of Ca(2+)-mobilizing agonists on plasma membrane potential (Em) has been studied. Em changes were registered using potentiometric probe 3,3'-dipropyl-2,2'-thiadicarbocyanine iodide. The agonist effect on Em varied from hyperpolarization to slight and slow rise. On the contrary, after loading of platelets with intracellular Ca2+ indicator quin2, platelet-activating factor (PAF), thrombin, vasopressin, ADP and thromboxane-A2-mimetic U46619 cause substantial transient membrane depolarization. Similar effects were observed after platelet loading with other Ca2+ chelators fura-2 and indo-1. Agonist-induced depolarization considerably reduced if quin2-loaded platelets were suspended in isoosmotic choline-containing medium. Using Ba2+ as a substitute of Ca2+, we have demonstrated that in choline-containing medium PAF-induced Ba2+ entry into platelets results in membrane depolarization. Dependence on Ba2+ concentration and depolarization kinetics correlates with the dose dependence and kinetics of Ba2+ entry detected by quin2 fluorescence. The agonists also stimulate considerable Na+, Li+ and Cs+ inward currents into platelets. Na(+)-dependent depolarization is 2-5-fold suppressed by extracellular Ca2+ [median inhibitory concentration (IC50) approximately 0.3 mM]. Ni2+ and Cd2+ at similar concentrations block Ca2+ entry and agonist-induced Na2+ current (IC50 for both cations approximately 50 microM). Agonist-induced depolarization is blocked by the adenylate cyclase stimulator prostaglandin E1 and the protein kinase C stimulator phorbol ester. It is concluded that agonists stimulate Ca2+ entry into human platelets via receptor-operated channels which are not strictly selective toward divalent cations and are permeable to Na+, Li+ and Cs+.  相似文献   

7.
The role of calcium and intracellular calpains in the expression of platelet prothrombinase activity was investigated. Incubation of gel-filtered platelets with complement proteins C5b-9 resulted in alpha-granule and dense granule secretion and exposure of membrane binding sites for coagulation factors Va and Xa. This was accompanied by the release of microparticles from the cell surface that incorporated plasma membrane glycoproteins GP Ib, IIb, and IIIa and the alpha-granule membrane protein GMP-140. Generation of these membrane microparticles was dependent on the presence of extracellular calcium and was accompanied by proteolytic degradation of the cytoskeletal proteins, actin binding protein (ABP), talin, and myosin heavy chain. Microparticle formation was also detected when unstirred platelets were activated by thrombin plus collagen, although proteolysis of ABP, talin, or myosin was not observed. Preincorporation of the calpain inhibitor leupeptin into the platelet cytosol completely blocked C5b-9-induced proteolysis of ABP, talin, and myosin. However, inhibition of this calpain-mediated proteolysis had no effect on platelet secretion, the generation of microparticles, the exposure of membrane sites for factors Va and Xa, or the expression of prothrombinase activity. Furthermore, the microparticles that formed in the presence of leupeptin contained intact ABP, talin, and myosin heavy chain. Prior depletion of ATP with metabolic inhibitors eliminated all platelet responses to thrombin plus collagen, but did not affect C5b-9-induced microparticle formation or exposure of binding sites for factor Va on the microparticles. These data indicate that the formation of microparticles and the expression of platelet prothrombinase activity in response to C5b-9 are dependent upon an influx of calcium into the platelet cytosol, but do not require metabolic energy or calpain-mediated proteolysis of cytoskeletal proteins.  相似文献   

8.
Activation of human platelets by complement proteins C5b-9 is accompanied by the release of small plasma membrane vesicles (microparticles) that are highly enriched in binding sites for coagulation factor Va and exhibit prothrombinase activity. We have now examined whether assembly of the prothrombinase enzyme complex (factors VaXa) is directly linked to the process of microparticle formation. Gel-filtered platelets were incubated without stirring with various agonists at 37 degrees C, and the functional expression of cell surface receptors on platelets and on shed microparticles was analyzed using specific monoclonal antibodies and fluorescence-gated flow cytometry. In addition to the C5b-9 proteins, thrombin, collagen, and the calcium ionophore A23187 were each found to induce formation of platelet microparticles that incorporated plasma membrane glycoproteins GP Ib, IIb, and IIIa. These microparticles were enriched in binding sites for factor Va, and their formation paralleled the expression of catalytic surface for the prothrombinase enzyme complex. Little or no microparticle release or prothrombinase activity were observed when platelets were stimulated with epinephrine and ADP, despite exposure of platelet fibrinogen receptors by these agonists. When platelets were exposed to thrombin plus collagen, the shed microparticles contained activated GP IIb-IIIa complexes that bound fibrinogen. By contrast, GP IIb-IIIa incorporated into C5b-9 induced microparticles did not express fibrinogen receptor function. Platelets from a patient with an isolated defect in inducible procoagulant activity (Scott syndrome) were found to be markedly impaired in their capacity to generate microparticles in response to all platelet activators, and this was accompanied by a comparable decrease in the number and function of inducible factor Va receptors. Taken together, these data indicate that the exposure of the platelet factor Va receptor is directly coupled to plasma membrane vesiculation and that this event can be dissociated from other activation-dependent platelet responses. Since a catalytic membrane surface is required for optimal thrombin generation, platelet microparticle formation may play a role in the normal hemostatic response to vascular injury.  相似文献   

9.
Transbilayer migration of membrane phospholipid arising from membrane insertion of the terminal human complement proteins has been investigated. Asymmetric vesicles containing pyrene-labeled phosphatidylcholine (pyrenePC) concentrated in the inner monolayer were prepared by outer monolayer exchange between pyrenePC-containing large unilamellar vesicles and excess (unlabeled) small unilamellar vesicles, using bovine liver phosphatidylcholine-specific exchange protein. After depletion of pyrenePC from the outer monolayer, the asymmetric large unilamellar vesicles were isolated by gel filtration and exposed to the purified C5b-9 proteins at 37 degrees C. Transbilayer exchange of phospholipid between inner and outer monolayers during C5b-9 assembly was monitored by changes in pyrene excimer and monomer fluorescence. Membrane deposition of the C5b67 complex (by incubation with C5b6 + C7) caused no change in pyrenePC fluorescence. Addition of C8 to the C5b67 vesicles resulted in a dose-dependent decrease in the excimer/monomer ratio. This change was observed both in the presence and absence of complement C9. No change in fluorescence was observed for control vesicles exposed to C8 (in the absence of membrane C5b67), or upon C5b-9 addition to vesicles containing pyrenePC symmetrically distributed between inner and outer monolayers. These data suggest that a transbilayer exchange of phospholipid between inner and outer monolayers is initiated upon C8 binding to C5b67. The fluorescence data were analyzed according to a "random walk" model for excimer formation developed for the case where pyrenePC is asymmetrically distributed between lipid bilayers. Based on this analysis, we estimate that a net transbilayer migration of approximately 1% of total membrane phospholipid is initiated upon C8 binding to C5b67. The potential significance of this transbilayer exchange of membrane phospholipid to the biological activity of the terminal complement proteins is considered.  相似文献   

10.
The effect of immune activation of the serum complement system on the secretory response of human endothelial cells was examined. Exposure of antibody sensitized cultured umbilical vein endothelial cells to human serum resulted in secretion of very high molecular weight multimers of von Willebrand factor which coincided with new surface expression of the intracellular granule membrane protein GMP-140. This response required complement activation through deposition of C5b-9 and was not observed with cells exposed to antibody plus C8-deficient serum or to membrane C5b-8 (in the absence of C9). This C5b-9-induced secretion was observed with minimal cell lysis, as assessed by the release of lactic dehydrogenase. Delayed addition of C8 and C9 to cells exposed to antibody plus C8-deficient serum revealed a rapid decay of membrane C8 binding sites accompanied by loss of the secretory response, suggesting a process of removal or inactivation of nascent C5b67 complexes deposited on the endothelial surface. Membrane assembly of C5b-9 complexes caused an increase in endothelial cytosolic [Ca2+], due to influx across the plasma membrane. This C5b-9-dependent increase in cytosolic [Ca2+] and concomitant von Willebrand factor secretion were both abolished by removal of external calcium. In addition to being linked to the level of external Ca2+, the C5b-9-induced secretory response was partially inhibited by the protein kinase inhibitor, sphingosine. The capacity of the C5b-9 proteins to stimulate endothelial cells to secrete a platelet adhesive protein provides one mechanism for increased platelet deposition at sites of inflammation, and suggests the potential for other functional changes in endothelium exposed to C5b-9 during intravascular complement activation.  相似文献   

11.
Platelet membrane potential as a modulator of aggregating mechanisms   总被引:1,自引:0,他引:1  
The membrane potential of platelets suspended in physiological medium and membrane potential changes induced by high potassium concentrations, ouabain and cooling have been measured using a cyanine fluorescent dye (3,3'-dipropylthiodicarbocyanine) [corrected]. The membrane potential of platelets suspended in physiological medium was -63.8 mV. High potassium concentrations, ouabain and cooling induced depolarization of platelet membrane. Depolarization using the above procedures enhanced platelet aggregation induced by ADP, adrenaline and collagen. These results suggest that the membrane potential could modulate platelet activity.  相似文献   

12.
Membrane assembly of the C5b-9 proteins on gel-filtered human platelets has been shown to initiate the nonlytic release of alpha-granule contents and expression of membrane prothrombinase sites, suggesting cellular activation by these ostensibly cytolytic plasma proteins (Wiedmer, T., Esmon, C. T., and Sims, P. J. (1986) J. Biol. Chem. 261, 14587-14592). We now examine the mechanism of the C5b-9-induced release reaction. The release of alpha-granule contents upon C5b-9 assembly is accompanied by expression of alpha-granule membrane glycoprotein 140 on the platelet surface, confirming that the complement-mediated release reaction occurs by secretory fusion of the alpha-granule with the plasma membrane. C5b-9 binding initiates the phosphorylation of both 40- and 20-kDa platelet proteins, indicative of activation of protein kinase C and myosin light chain kinase, respectively. Activation of cellular protein kinases under these conditions was not accompanied by the formation of inositol phosphates and was found to strictly depend upon extracellular Ca2+, suggesting that the platelet's secretory response to the C5b-9 proteins is triggered directly by the influx of Ca2+ across the plasma membrane. measurement of intracellular Ca2+ confirmed that elevation of this ion in the cytosol was strictly dependent upon increased plasma membrane permeability due to C5b-9 assembly and was not accompanied by mobilization of this ion from internal storage pools. The C5b-9-mediated secretory response was blocked by sphingosine, a potent inhibitor of protein kinase C, but was unaffected by the cyclooxygenase inhibitor indomethacin, suggesting that feedback (receptor-linked) by thromboxane is not required for platelet activation after C5b-9 insertion.  相似文献   

13.
Assembly of the terminal complement proteins C5b-9 on human endothelial cells results in increased cytosolic calcium and nonlytic secretion of high molecular weight multimers of von Willebrand factor from intracellular storage granules. We now demonstrate that this C5b-9-induced secretory response is accompanied by vesiculation of membrane particles from the endothelial surface which express binding sites for factor Va and support prothrombinase activity. Exposure of factor Va binding sites after C5b-9 assembly was accompanied by greater than 2-fold increase in prothrombinase activity, which was not observed for cells exposed to C5b-8 (in the absence of C9). By contrast, only a 3-16% increase in prothrombinase activity was observed when these cells were maximally stimulated to secrete by either histamine, thrombin, or the Ca2+ ionophore A23187. Increased prothrombinase activity after C5b-9 was not accompanied by a change in thrombomodulin activity, and was unrelated to cell lysis, the complement-treated cells remaining greater than 99% viable. Endothelial prothrombinase activity was predominately associated with small membrane vesicles (less than 1 microns diameter) released from the cell monolayer. Analysis by fluorescence-gated flow cytometry revealed that these vesicles incorporate the C5b-9 proteins and express binding sites for factor Va. The capacity of the C5b-9 proteins to induce vesiculation of the endothelial plasma membrane and thereby expose catalytic surface for the prothrombinase enzyme complex may contribute to fibrin deposition associated with immune endothelial injury.  相似文献   

14.
C8 binding protein (C8bp) is a 65-kDa membrane glycoprotein that inhibits complement-mediated lysis by homologous C5b-9. C8bp was first identified on human erythrocytes, but could also be detected on peripheral blood cells, platelets, glomerular cells and synovial fibroblasts. Lack of C8bp as seen in patients with paroxysmal nocturnal hemoglobinuria type III results in enhanced susceptibility of the cells toward C5b-9. We studied C8bp expression on the promonocytic cell line U937. In addition to the membrane-bound C8bp, a cytoplasmic form of C8bp could also be identified by immunofluorescence, blotting, and precipitation. Stimulation of the cells with IL-1 beta, endotoxin, IFN-gamma, or phorbol ester increased C8bp surface expression. Because cycloheximide did not inhibit enhanced surface expression, it was most probably mobilized from cytoplasmic reservoirs. Thus, resistance of nuclear cells to complement attack seems to be based on two events: 1) the removal of the C5b-9 complex from the membrane; and 2) expression of regulatory surface proteins such as C8bp, which inhibit C5b-9-mediated lysis. We propose that the C8bp mobilization by cytokines might provide an additional protection against complement attack by its known interference with the C5b-9 assembly.  相似文献   

15.
Summary The fluorescent potentiometric indicator diS–C3-(5) has been used to investigate changes in membrane potential due to assembly of the C5b-9 membrane attack complex of the complement system. EAC1-7 human red blood cells and resealed erythrocyte ghosts—bearing membrane-assembled C5b67 complexes—were generated by immune activation in C8-deficient human serum. Studies performed with these cellular intermediates revealed that the membrane potential of EAC1-7 red cells and ghosts is unchanged from control red cells (–7 mV) and ghosts (0 mV), respectively. Addition of complement proteins C8 and C9 to EAC1-7 red cells results in a dose-dependent depolarization of membrane potential which precedes hemolysis. This prelytic depolarization of membrane potential—and the consequent onset of hemolysis—is accelerated by raising external [K+], suggesting that the diffusional equilibration of transmembrane cation gradients is rate limiting to the cytolytic event. In the case of EAC1-7 resealed ghosts suspended at either high external [K+] or [Na+], no change in membrane potential (from 0 mV) could be detected after C8/C9 additions. When the membrane potential of the EAC1-7 ghost was displaced from 0 mV by selectively increasing the K+ conductance with valinomycin, a dose-dependent depolarization of the membrane was observed upon addition of C8 and C9. In these experiments, lytic breakdown of the ghost membranes was <5%. Conclusions derived from this study include: (i) measured prelytic depolarization of the red cell Donnan potential directly confirms the colloid-osmotic theory of immune cytolysis. (ii) The diffusional transmenbrane equilibration of Na+ and K+ through the C5b-9 pore results in a dose-dependent depolarization of the membrane potential (E m ) which appears to be rate-limiting to cytolytic rupture of the target erythrocyte. (iii) Enhanced immune hemolysis observed in high K+ media cannot be attributed to cation-selective conductance across the C5b-9 pore, and is probably related to the nearequilibrium condition of potassium-containing red cells when suspended at high external K+. These experiments demonstrate that carbocyanine dye fluorescent indicators can be used to monitor electrochemical changes arising from immune damage to the plasma membrane under both cytolytic and noncytolytic conditions. Potential application of this method to the detection of sublytic pathophysiological changes in the plasma membrane of complement-damaged cells are discussed.  相似文献   

16.
The capacity of the human complement regulatory protein CD59 to interact with terminal complement proteins in a species-selective manner was examined. When incorporated into chicken E, CD59 (purified from human E membranes) inhibited the cytolytic activity of the C5b-9 complex in a manner dependent on the species of origin of C8 and C9. Inhibition of C5b-9-mediated hemolysis was maximal when C8 and C9 were derived from human (hu) or baboon serum. By contrast, CD59 showed reduced activity when C8 and C9 were derived from dog or sheep serum, and no activity when C8 and C9 were derived from either rabbit or guinea pig (gp) serum. Similar specificity on the basis of the species of origin of C8 and C9 was also observed for CD59 endogenous to the human E membrane, using functionally blocking antibody against this cell surface protein to selectively abrogate its C5b-9-inhibitory activity. When E bearing human CD59 were exposed to C5b-8hu, CD59 was found to inhibit C5b-9-mediated lysis, regardless of the species of origin of C9, suggesting that the inhibitory function of CD59 can be mediated through recognition of species-specific domains expressed by human C8. Consistent with this interpretation, CD59 was found to bind to C5b-8hu but not to C5b67hu or C5b67huC8gp. Although CD59 failed to inhibit hemolysis mediated by C5b67huC8gpC9gp, its inhibitory function was observed for C5b67huC8gpC9hu, suggesting that, in addition to its interaction with C5b-8hu, CD59 also interacts in a species-selective manner with C9hu incorporated into C5b-9. Consistent with this interpretation, CD59 was found to bind both C5b67huC8gpC9hu and C5b-8huC9gp, but not C5b67huC8gpC9gp. Taken together, these data suggest that the capacity of CD59 to restrict the hemolytic activity of human serum complement involves a species-selective interaction of CD59, which involves binding to both the C8 and C9 components of the membrane attack complex. Although CD59 expresses selectivity for C8 and C9 of human origin, this "homologous restriction" is not absolute, and this human complement regulatory protein retains functional activity toward C8 and C9 of some nonprimate species.  相似文献   

17.
Light-scattering intensity was shown to be a reliable, direct, and quantitative technique for monitoring the assembly of the membrane attack complex of complement (proteins C5b-6, C7, C8, and C9) on small unilamellar phosphatidylcholine vesicles. The assembly on vesicles occurred in a simple fashion; complexes of C5b-7 bound noncooperatively to the vesicles, and final assembly of C5b-9 did not induce vesicle aggregation or fragmentation. When C5b-6 and C7 were mixed in the presence of vesicles but at molar protein/vesicle ratios of less than 1, there was quantitative binding of C5b-7 to the vesicles with no concomitant aggregation of C5b-7. If C7 was added at a slower rate, quantitative binding was obtained at molar C5b-7/vesicle ratios of up to 5. The latter observations (a) were consistent with the proposal that C5b-7 aggregation and membrane binding were competitive events and (b) defined conditions under which light-scattering intensity measurements could monitor C5b-9 assembly on vesicles without contribution from the fluid-phase assembly. The C8/C5b-7 ratio in the phospholipid-C5b-8 complex was 0.97 +/- 0.12, and the maximum ratio of C9/C5b-8 in the final complex was 16.2 +/- 2.0. One C9 molecule associated rapidly with each phospholipid-C5b-8, followed by slower incorporation of the remaining C9 molecules. The initial velocity of the slow phase of C9 addition was easily saturated with C9 and gave an activation energy of 37 kcal/mol. This was identical with the value measured for the analogous process in the fluid-phase assembly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Thrombin causes a dose-dependent depolarization of the transmembrane potential of normal human platelets which can be continuously measured by the fluorescent probe, 3,3'-dipropylthiodicarbocyanine, whose distribution across the plasma membrane has been shown to be dependent upon the membrane potential. The dose-dependent depolarization of the platelet's negative membrane potential by thrombin is in large part due to a rapid uptake of sodium. Both the membrane potential change and the rapid sodium influx can be inhibited by a fast acting analog of amiloride, a sodium channel blocker, while valinomycin, a potassium ionophore, has no effect on the potential change nor on the sodium uptake, suggesting that the transmembrane potassium gradient is not important in the thrombin-induced depolarization. Neither the secretion of serotonin nor that of lysosomal enzymes nor the secondary release of the fluorescent probe which correlates with the lysosomal enzyme secretion occur if treatment with valinomycin precedes activation by thrombin. It is thus apparent that: 1) the change in the membrane potential induced by thrombin is directly dependent upon the transmembrane sodium gradient and is primarily due to a dose-dependent sodium uptake by the platelets; and 2) the thrombin-induced secretory processes are dependent upon maintenance of the transmembrane potassium gradients.  相似文献   

19.
P J Sims  T Wiedmer 《Biochemistry》1984,23(14):3260-3267
The fluorescence self-quenching by energy transfer of FITC-C9, a fluoresceinated derivative of human complement protein C9 [Sims, P.J. (1984) Biochemistry (preceding paper in this issue)], has been used to monitor the kinetics of C9 polymerization induced by the membrane-associated complex of complement proteins C5b-8. Time-based measurements of the fluorescence change observed during incubation of FITC-C9 with C5b-8-treated sheep red blood cell ghost membranes at various temperatures revealed that C9 polymerization induced by the C5b-8 proteins exhibits a temperature dependence similar to that previously reported for the complement-mediated hemolysis of these cells, with an Arrhenius activation energy for FITC-C9 polymerization of 13.3 +/- 3.2 kcal mol-1 (mean +/- 2 SD). Similar measurements obtained with C5b-8-treated unilamellar vesicles composed of either egg yolk phosphatidylcholine (egg PC), dipalmitoylphosphatidylcholine (DPPC), or dimyristoylphosphatidylcholine (DMPC) revealed activation energies of between 20 and 25 kcal mol-1 for FITC-C9 polymerization by C5b-8 bound to these membranes. Temperature-dependent rates of C9 polymerization were observed to be largely unaffected by the phase state of membrane lipid in the target C5b-8 vesicles. The significance of these observations of the mechanism of C9 activation of membrane insertion is considered.  相似文献   

20.
Summary The hemolytic activity of the terminal complement proteins (C5b-9) towards erythrocytes containing high potassium concentration has been reported to be dramatically increased when extracellular Na+ is substituted isotonically by K+ (Dalmasso, A.P., et al., 1975,J. Immunol. 115:63–68). This phenomenon was now further investigated using resealed human erythrocyte ghosts (ghosts), which can be maintained at a nonlytic osmotic steady state subsequent to C5b-9 binding: (1) The functional state of C5b-9-treated ghosts was studied from their ability to retain trapped [14C]-sucrose or [3H]-inulin when suspended either in the presence of Na+ or K+. A dramatic increase in the permeability of the ghost membrane to both nonelectrolytes-in the absence of significant hemoglobin release-was observed for C5b-9 assembly in the presence of external K+. (2) The physical binding of the individual125I-labeled terminal complement proteins to ghost membranes was directly measured as a function of intra- and extracellular K+ and Na+. The uptake of125I-C7,125I-C8, and125I-C9 into membrane C5b-9 was unaltered by substitution of Na+ by K+. (3) The binding of the terminal complement proteins to ghosts subjected to a transient membrane potential generated by the K+-ionophore valinomycin (in the presence of K+ concentration gradients) was measured. No significant change in membrane binding of any of the C5b-9 proteins was detected under the influence of both depolarizing and hyperpolarizing membrane potentials. It can be concluded that the differential effect of Na+ versus K+ upon the erythrocyte membrane isnot due to an effect upon the binding of the complement proteins to the membraneper se, but upon the functional properties of the assembled C5b-9 pore site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号