首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pectin methyl esterase from soybean cell walls has been isolated and purified to homogeneity. It is a protein with a relative molecular mass close to 33 000. The enzyme is maximally active at a pH close to 8 and its pH dependence may be explained by a classical Dixon model, where the two interconvertible enzyme ionization states coexist. The outflux of protons from cell walls, upon raising the ionic strength, may be taken as an indirect estimate of the fixed charge density. If the cell-wall fragments are pre-incubated at pH values between 5 and 9, the outflux of protons rises with the pH of pre-incubation. This implies, as postulated from the theory developed in the preceding paper, that alkaline pH favours the activity of pectin methyl esterase and that this enzyme effectively generates the fixed negative charges of the cell wall. Therefore the pectin methyl esterase reaction builds up the Donnan potential, delta psi, at the cell surface. The cell-wall charge density, estimated from the proton outflux, as well as from the titration of methyl groups on the cell wall, reaches a maximum between the third and the fourth day of growth. While the cell-wall volume increases and reaches a plateau, the fixed charge density increases at first and then declines. This is understandable if one assumes that the building up of a high charge density is a co-operative phenomenon and that the local pH inside the wall rises during cell growth. When both the cell-wall volume and the charge density increase together, this suggests that the local pH inside the wall lies within the critical pH range associated with the steep response of the system. When the cell-wall volume increases together with a decrease of the fixed charge density, the local pH should have dropped below this critical pH range. Under these conditions the pectin methyl esterase remains inactive, or poorly active. As the number of fixed negative charges increases, calcium becomes tightly bound to cell walls. This binding is so tight that the net charge density is minimum when the calcium concentration is maximum. The experimental results, presented above, offer experimental support to two important ideas discussed in the preceding paper, namely that pectin methyl esterase reaction builds up the Donnan potential at the cell surface, and that this response may be co-operative with respect to pH.  相似文献   

2.
Soybean cell walls display a process of autolysis which results in the release of reducing sugars from the walls. Loosening and autolysis of cell wall are involved in the cell-wall growth process, for autolysis is maximum during both cell extension and cell-wall synthesis. Autolysis goes to completion within about 50 h and is an enzymatic process that results from the activity of cell wall exo- and endo-glycosyltransferases. The optimum pH of autolysis is about 5. Increasing the ionic strength of the bulk phase where cell-wall fragments are suspended, results in a shift of the pH profile towards low pH. This is consistent with the view that at 'low' ionic strength, the local pH in the cell wall is lower than in the bulk phase. One of the main ideas of the model proposed in a preceding paper, is that pectin methyl esterase reaction, by building up a high fixed charge density, results in proton attraction in the wall. Low pH must then activate the wall loosening enzymes involved in autolysis and cell growth. This view may be directly confirmed experimentally. The pH of a cell-wall suspension, initially equal to 5, was brought to 8 for 20 min, then back to 5. Under these conditions, the rate of cell-wall autolysis was enhanced with respect to the rate of autolysis obtained with cell-wall fragments kept at pH 5. The pH response of the multienzyme plant cell-wall system basically relies on opposite pH sensitivities of the two types of enzymes involved in the growth process. Pectin methyl esterase, which generates the cell-wall Donnan potential, is inhibited by protons, whereas the wall-loosening enzymes involved in cell growth are activated by protons.  相似文献   

3.
The production of extracellular pectic isoenzymes by seven strains of soft rot bacteria, Erwinia carotovora subsp. carotovora, E.c. atroseptica and E. chrysanthemi , when grown in media containing four different pectic substances with different degrees of methylation or with potato tuber cell-wall extract was examined by isoelectric focusing activity staining. In addition to the isoenzymes of pectate lyase, polygalacturonase and pectin methyl esterase produced constitutively or following induction by polygalacturonic acid (PGA) and coded by known genes, between two and seven novel isoenzymes of the three enzymes with a wider pI range were apparently induced by the pectins and cell-wall extract. Pectin lyase, which is induced in vitro by DNA-damaging agents, was not produced in the absence of mitomycin C in a medium containing PGA but up to two isoenzymes were found with pectin or cell-wall extract. In contrast, cellulase isoenzyme production was not affected by pectin or cell-wall extract. A greater number of novel isoenzymes of all pectic enzymes except pectin lyase tended to be produced in media containing Link pectin, which is PGA methylated to 98%, than the other pectic substances and cell-wall extract. Pectate lyase and polygalacturonase were induced by pectin lyase-degraded products of highly methylated pectin but not by PGA in an E. chrysanthemi strain with all its known pei and peh genes mutated. The results suggest that the production of novel pectic isoenzymes could be related to the presence of CH+3 groups and that their induction differs from that for isomers induced by PGA-degraded products and DNA-damaging agents or produced constitutively.  相似文献   

4.
Exopolygalacturonate lyase and pectinesterase from Clostridium multifermentans were assayed simultaneously in the same reaction mixture which contained a highly esterified pectin, polymethyl polygalacturonic acid methyl glycoside. Lyase is specific for unesterified galacturonide residues and cannot degrade this substrate in the absence of the esterase. The rate for esterase was twice the rate for lyase throughout the entire course of the combined reaction. Thus, the molar ratio of the two enzyme activities was the same since the product of the lyase is an unsaturated digalacturonic acid containing two free carboxyl groups. Since clostridial exopolygalacturonate lyase is known to degrade polygalacturonate in a linear manner beginning from the reducing ends of polygalacturonate chains, it was apparent that clostridial pectinesterase must hydrolyze methyl groups in highly esterified pectins with an action pattern similar to that of the lyase. Otherwise it would be impossible for the two enzyme rates to have corresponded on the basis of a 2:1 ratio.  相似文献   

5.
L Y Wing 《Life sciences》1992,50(21):1607-1614
Polyamines have been shown to relax several types of smooth muscle including vasculature. In the estrogen-treated uterus, uterine blood flow and polyamine levels in the uterus are increased. The relaxant effect of polyamines on blood vessels suggest that polyamines may act on uterine vasculature to cause uterine hyperemia. In this study, we examined the roles of polyamines in regulating uterine blood flow. Ovariectomized rats were administered with polyamines or estrogen. The uterine blood flow was then measured by employing radioactive microspheres. The direct injection of polyamines into systemic circulation caused a 3-fold increase in uterine blood flow within 30 seconds. The polyamine-induced uterine hyperemia was counteracted by increasing extracellular calcium concentration. When rats were treated with estradiol, uterine blood flow increased. However, the treatment with alpha-difluromethylornithine, a polyamine synthesis inhibitor, did not attenuate the estrogen-induced uterine blood flow. Our results suggest that polyamines may affect uterine blood flow via antagonizing the entry of extracellular calcium. However, the detailed mechanisms via which polyamines involved in estrogenic stimulation of uterine hyperemia may require further studies.  相似文献   

6.
Polyamine metabolism is intimately linked to the physiological state of the cell. Low polyamines levels promote growth cessation, while increased concentrations are often associated with rapid proliferation or cancer. Delicately balanced biosynthesis, catabolism, uptake and excretion are very important for maintaining the intracellular polyamine homeostasis, and deregulated polyamine metabolism is associated with imbalanced metabolic red/ox state. Although many cellular targets of polyamines have been described, the precise molecular mechanisms in these interactions are largely unknown. Polyamines are readily interconvertible which complicate studies on the functions of the individual polyamines. Thus, non-metabolizable polyamine analogues, like carbon-methylated analogues, are needed to circumvent that problem. This review focuses on methylated putrescine, spermidine and spermine analogues in which at least one hydrogen atom attached to polyamine carbon backbone has been replaced by a methyl group. These analogues allow the regulation of both metabolic and catabolic fates of the parent molecule. Substituting the natural polyamines with methylated analogue(s) offers means to study either the functions of an individual polyamine or the effects of altered polyamine metabolism on cell physiology. In general, gem-dimethylated analogues are considered to be non-metabolizable by polyamine catabolizing enzymes spermidine/spermine-N 1-acetyltransferase and acetylpolyamine oxidase and they support short-term cellular proliferation in many experimental models. Monomethylation renders the analogues chiral, offering some advantage over gem-dimethylated analogues in the specific regulation of polyamine metabolism. Thus, methylated polyamine analogues are practical tools to meet existing biological challenges in solving the physiological functions of polyamines.  相似文献   

7.
Transglutaminase 2 (TG2) has been reported to be involved in cell growth through the formation of epsilon-(gamma-glutamyl) lysine (Gln-Lys) or N-(gamma-glutamyl) polyamine (Gln-polyamine). We have recently reported that the inhibition of Gln-Lys cross-linking by the formation of Gln-spermidine led to the increase of DNA synthesis in regenerating rat liver. TG2 may catalyze the replacement reaction between Lys residues in protein and polyamines. In the present study, we attempted to develop an experimental model for ascertaining this replacement reaction. We examined whether or not TG2 exhibited the association and dissociation reaction of Gln-polyamine bond in protein, using N,N-dimethylcasein (DC). The dissociated polyamines were identified by autoradiography. The dissociation of [(14)C] polyamines from DC bond [(14)C] polyamines complex by TG2 could occur in the presence of non-radioactive polyamines as second amine donor, whereas in the absence, could not almost occur. Moreover, it was indicated that this release of old [(14)C] polyamine bonded to DC was due to binding of added new [(14)C] polyamine to Gln residues in DC. These results demonstrate that TG2 catalyzes the replacement reaction between added [(14)C] polyamine and DC bond [(14)C] polyamine. The dissociation and association reaction may both occur together, the new DC-polyamine complex being formed at the same time as the dissociation of old DC-polyamine complex, since readying a second amine donor is necessary to dissociate DC-polyamine complex. These results indicate that this experimental model is successful in the study of TG2-catalyzed dissociation and association reaction of Gln-polyamine bond in protein.  相似文献   

8.
Polyamine content and arginine decarboxylase activity of apical buds were measured to determine whether polyamines are required to prevent apical senescence in pea. Polyamines were assayed as dansyl derivatives which were separated by reverse phase high performance liquid chromatography and detected by fluorescence spectrophotometry. High polyamine concentrations were found in the vigorous apices of plants grown under a short day photoperiod during which senescence is delayed. As the apex senesced in long days, the amounts of polyamines per organ declined in parallel with decreases in the size of the apical bud. However, a decrease in polyamine concentration, due mainly to a change in spermidine, occurred at the time of marked reduction in bud size and growth rate, but not before the onset of the early symptoms of senescence. No correlation was found with arginine decarboxylase. The results suggest polyamines may be required to support bud growth, but the photoperiodic mechanism which governs apical senescence of G2 peas does not exert control through polyamine metabolism.  相似文献   

9.
Pectin was de-esterified with purified recombinant Aspergillus aculeatus pectin methyl esterase (PME) during isothermal-isobaric treatments. By measuring the release of methanol as a function of treatment time, the rate of enzymatic pectin conversion was determined. Elevated temperature and pressure were found to stimulate PME activity. The highest rate of PME-catalyzed pectin de-esterification was obtained when combining pressures in the range 200-300 MPa with temperatures in the range 50-55 degrees C. The mode of pectin de-esterification was investigated by characterizing the pectin reaction products by enzymatic fingerprinting. No significant effect of increasing pressure (300 MPa) and/or temperature (50 degrees C) on the mode of pectin conversion was detected.  相似文献   

10.
11.
Functions of polyamine acetylation   总被引:6,自引:0,他引:6  
Acetylation is a means to decrease the net positive charge of the polyamines and thus liberate polyamines from anionic binding sites. The acetyl derivatives can be removed from the cells by transport and catabolism. Intracellular polyamine metabolism can be formulated as a cyclic process, which explains the transformation of one polyamine into another. As a net result, this pathway metabolizes (in an energy-requiring manner) methionine to 5'-deoxy-5'-methylthioadenosine and beta-alanine, and thus appears to be futile. It is suggested that the cyclic process is necessary for the precise control of cellular polyamine concentrations, as it allows relatively rapid spermine and spermidine concentration changes, in spite of a slow basal turnover rate. For the regulation of cellular polyamine metabolism, two decarboxylases, L-ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase; the cytosolic acetyl-CoA:spermidine/spermine N1-acetyltransferase; and a polyamine transport system are required. The activity of the nuclear acetyltransferase is assumed to be the rate-limiting enzyme of nuclear polyamine turnover. The complexity and high level of sophistication of polyamine regulation is strong evidence for the important functional significance of the natural polyamines.  相似文献   

12.
Polyamines and cancer: Minireview article   总被引:4,自引:0,他引:4  
Bachrach U 《Amino acids》2004,26(4):307-309
Summary. The naturally occurring polyamines, spermine, spermidine and the diamine putrescine are widespread in nature. They have been implicated in growth and differentiation processes. Polyamines accumulate in cancerous tissues and their concentration is elevated in body fluids of cancer patients. Assays of urinary and blood polyamines have been used to detect cancer and to determine the success of therapy. Drugs which inhibit the synthesis of polyamines can prevent cancer and may also be used for therapeutic purposes. Ornithine decarboxylase, which catalyzes the rate limiting step in polyamine synthesis, can serve as a marker of proliferation. Recently, a new in vitro chemosensitivity test, based on the disappearance of ornithine decarboxylase in drug-treated cancer cells has been developed. The increasing interest in polyamines and their physiological functions may lead to a more extensive application of these compounds or their derivatives in cancer diagnosis and treatment.  相似文献   

13.
14.
Determination of polyamine pools is still a step impossible to circumvent in studies aimed at determining the pathophysiological role of natural polyamines. In addition, polyamine measurement in biological fluids and tissues may have clinical relevance, especially in cancer patients. Among the wide panel of analytical methods developed for the quantification of polyamines, high-performance liquid chromatographic (HPLC) separation of polyamines after derivatization with dansyl chloride remains the most commonly used method. In this work, we show that atmospheric pressure chemical ionization-mass spectrometry (MS) can be used to detect and quantify biologically relevant polyamines after dansylation, without chromatographic separation. Positive-ion mass spectra for each dansylated polyamine were generated after optimization by flow injection analysis (FIA). FIA coupled with MS detection by selected ion monitoring greatly increased the sensitivity of the polyamine detection. The method is linear over a wide range of polyamine concentrations and allows detection of quantities as low as 5 fmol. The FIA/MS method is about 50-fold more sensitive than the conventional HPLC/fluorimetry procedure. A good correlation (r>0.98) between these two methods was observed. The FIA/MS method notably reduces the time of analysis per sample to 1.5 min and turns out to be rapid, efficient, cost saving, reproducible, and sufficiently simple to allow its routine application.  相似文献   

15.
The relationship between polyamines and the rate of protein synthesis was investigated in non-proliferating cells: primary cultures of adult rat hepatocytes maintained in serum-free media, and treated with dexamethasone or dexamethasone + insulin. During the second day of culture, polyamine biosynthesis became induced along with the rate of protein synthesis. While the activity of ornithine decarboxylase and the intracellular concentration of putrescine increased only transiently and that of spermine declined, the rise of the protein synthetic rate was paralleled by that of the intracellular spermidine concentration. The polyamine analogue diamino-propanol specifically decreased spermidine content and the protein synthetic rate. The intracellular concentration of spermidine was found subject to tight homeostatic regulation, e.g. not being altered by the addition of up to 1 mM of this polyamine to the culture medium. In contrast, addition of putrescine or spermine led to an increase in their respective intracellular concentrations. These findings indicate that spermidine specifically of the polyamines is involved in protein synthesis in the intact hepatocyte. Moreover, spermidine may mediate part of the trophic action of dexamethasone and insulin upon cultured hepatocytes.  相似文献   

16.
Studies were made on the effects of very low concentrations of the polyamine, spermine, on rat liver mitochondrial metabolism associated with β-hydroxybutyrate. The respiratory control ratio and the rate of respiration during ADP-ATP conversion are significantly altered with shifts in spermine concentrations of as little as 15.7 nMoles/ml within the physiological Mg++ concentration range. These spermine concentration changes are small compared to the estimated hepatic intracellular levels of spermine which have been reported to be between 200 and 1200 nMoles/gm wet weight under normal conditions. There is now evidence that exposure of an animal to certain environmental conditions induces changes of 164 nMoles/gm wet weight in intracellular levels of liver spermine in a few hours. Also there is evidence that the concentration of intracellular polyamines is influenced by endocrines since the levels of the enzymes responsible for their synthesis are markedly affected by hormonal changes. Therefore, alterations of polyamine levels may play a role in mitochondrial metabolic regulation in vivo.  相似文献   

17.
DL-alpha-difluoromethylornithine and DL-alpha-monofluoromethyldehydroornithine methyl ester, inhibitors of ornithine decarboxylase, blocked exoerythrocytic schizogony of Plasmodium berghei in mice and in cultured human hepatoma cells. These effects were reversed by exogenous administration of the polyamine, spermidine. The antimalarial drug, primaquine, the side chain of which is structurally analogous to a natural polyamine, did not enhance the activity of alpha-difluoromethylornithine or alpha-monofluoromethyldehydroornithine methyl ester. These results extend previous observations that polyamines influence the malaria parasite's schizogony outside the red blood cell but not within it.  相似文献   

18.
Recent studies have reported that polyamines in the colonic lumen might affect animal health and these polyamines are thought to be produced by gut bacteria. In the present study, we measured the concentrations of three polyamines (putrescine, spermidine, and spermine) in cells and culture supernatants of 32 dominant human gut bacterial species in their growing and stationary phases. Combining polyamine concentration analysis in culture supernatant and cells with available genomic information showed that novel polyamine biosynthetic proteins and transporters were present in dominant human gut bacteria. Based on these findings, we suggested strategies for optimizing polyamine concentrations in the human colonic lumen via regulation of genes responsible for polyamine biosynthesis and transport in the dominant human gut bacteria.  相似文献   

19.
The polyamines (putrescine, spermidine, and spermine) are synthesized by almost all organisms and are universally required for normal growth. Ornithine decarboxylase (ODC), an initial enzyme of polyamine synthesis, is one of the most highly regulated enzymes of eucaryotic organisms. Unusual mechanisms have evolved to control ODC, including rapid, polyamine-mediated turnover of the enzyme and control of the synthetic rate of the protein without change of its mRNA level. The high amplitude of regulation and the rapid variation in the level of the protein led biochemists to infer that polyamines had special cellular roles and that cells maintained polyamine concentrations within narrow limits. This view was sustained in part because of our continuing uncertainty about the actual biochemical roles of polyamines. In this article, we challenge the view that ODC regulation is related to precise adjustment of polyamine levels. In no organism does ODC display allosteric feedback inhibition, and in three types of organism, bacteria, fungi, and mammals, the size of polyamine pools may vary radically without having a profound effect on growth. We suggest that the apparent stability of polyamine pools in unstressed cells is due to their being largely bound to cellular polyanions. We further speculate that allosteric feedback inhibition, if it existed, would be inappropriately responsive to changes in the small, freely diffusible polyamine pool. Instead, mechanisms that control the amount of the ODC protein have appeared in most organisms, and even these are triggered inappropriately by variation of the binding of polyamines to ionic binding sites. In fact, feedback inhibition of ODC might be maladaptive during hypoosmotic stress or at the onset of growth, when organisms appear to require rapid increases in the size of their cellular polyamine pools.  相似文献   

20.
We have recently demonstrated that HeLa cells that had been depleted of polyamines by treatment with inhibitors of polyamine biosynthesis were deficient in their ability to repair X-ray-induced DNA strand breaks. Since it had previously been demonstrated that hyperthermic shock also inhibited strand break repair following X irradiation and that hyperthermia resulted in a leakage of polyamines from cells, it seemed of interest to examine whether the inhibition of repair by hyperthermia was related to this loss of cellular polyamines. In the present paper it is demonstrated that both polyamine depletion and hyperthermia inhibit strand closure, and that a combined treatment further reduces the rate of repair. In cells not depleted of polyamines, repair is restored to normal levels if hyperthermia treatment is followed by a 4-h incubation at 37 degrees C before X irradiation. In polyamine-depleted cells, this 37 degrees C incubation does not result in a return of repair ability. Polyamine supplementation was not effective in reversing hyperthermia-dependent repair inhibition, and, in fact, restoration of repair in control cells following hyperthermic shock corresponded to a time at which polyamines show a maximum decrease in those cells. These results suggest that the inhibition of repair and the increased radiosensitivity observed in hyperthermically treated cells is not related to polyamine depletion. However, data further suggest that polyamine-depleted cells may have other alterations, perhaps in chromatin, which render them more sensitive to thermal inhibition of repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号