首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration characterized by a wide range of clinical manifestations. An unstable CAG trinucleotide repeat expansion in MJD gene on long arm of chromosome 14 has been identified as the pathologic mutation of MJD and apoptosis was previously shown to be responsible for the neuronal cell death of the disease. In this study, we utilized human neuronal SK-N-SH cells stably transfected with HA-tagged full-length MJD with 78 polyglutamine repeats to examine the effects of polyglutamine expansion on neuronal cell survival in the early stage of disease. Various pro-apoptotic agents were used to assess the tolerance of the mutant cells and to compare the differences between cells with and without mutant ataxin-3. Concentration- and time-dependent experiments showed that the increase in staurosporine-induced cell death was more pronounced and accelerated in cells containing expanded ataxin-3 via MTS assays. Interestingly, under basal conditions, Western blot and immunocytochemical analyses showed a significant decrease of Bcl-2 protein expression and an increase of cytochrome c in cells containing expanded ataxin-3 when compared with those of the parental cells. The same reduction of Bcl-2 was further confirmed in fibroblast cells with mutant ataxin-3. In addition, exogenous expression of Bcl-2 desensitized SK-N-SH-MJD78 cells to poly-Q toxicity. These results indicated that mitochondrial-mediated cell death plays a role in the pathogenesis of MJD. In our cellular model, full-length expanded ataxin-3 that leads to neurodegenerative disorders significantly impaired the expression of Bcl-2 protein, which may be, at least in part, responsible for the weak tolerance to polyglutamine toxicity at the early stage of disease and ultimately resulted in an increase of stress-induced cell death upon apoptotic stress.  相似文献   

2.
A missense mutation (N1411) in Presenilin-2 (PS-2) gene is associated with early-onset familial Alzheimer's disease. In this study, SK-N-SH human neuroblastoma cells were transfected with wild-type and mutant PS-2 gene to examine presenilin-2 effects on apoptosis. Serum deprivation resulted in enhanced apoptosis in mutant PS-2 comparing with wild-type PS-2. Similarly, mutant PS-2 induced lactate dehydrogenase release to greater extent than wild-type PS-2. Time course experiment demonstrated that the increase in caspase-3-like activity was more pronounced and accelerated in mutant PS-2, compared to wild-type PS-2. While a significant decrease in bcl-2, an anti-apoptotic molecule, occurred in the cells overexpressing mutant PS-2, no significant change was observed in bax, a pro-apoptotic molecule, as compared with the cells overexpressing wild-type PS-2. Our study demonstrated that mutant PS-2 induces apoptosis accompanied by increased caspase-3-like activity and decreased bcl-2 expression in neuronal cells after serum-deprivation.  相似文献   

3.
This study delineates the molecular mechanism underlying psychosine-induced oligodendroglial cell death. An immortalized human oligodendroglial cell line, MO3.13, was treated with exogenous psychosine (beta-galactosylsphingosine), a toxic metabolite that accumulates in the tissues of patients with Krabbe's disease. The mode of cell death induced by psychosine was found to be apoptotic, as revealed by different apoptotic markers viz., TUNEL, DNA fragmentation and caspase cleavage/activation. The action of psychosine was redox sensitive, as measured by changes in mitochondrial membrane potential (psidelta), and this effect of psychosine could be reversed by pre-treatment with the antioxidant molecules N-acetyl-l-cysteine or pro-cysteine. Psychosine directly affects the mitochondria as revealed by the activation of caspase 9 but not caspase 8. Up-regulation of the c-jun/c-jun N-terminal kinase pathway by psychosine leads to the induction of AP-1 and, at the same time, psychosine also down-regulates the lipopolysaccharide-induced NF-kappaB transactivation. These observations indicate that the mechanism of action of psychosine is, through the up-regulation of AP-1, a pro-apoptotic pathway as well as, through the down-regulation of the NF-kappaB pathway, an antiapoptotic pathway.  相似文献   

4.
The human oncogene bcl-2 exerts protective functions in numerous models of apoptotic cell death and increased oxidative stress. We investigated the effects of inducible bcl-2 overexpression on cellular survival and redox status in dopaminergic rat pheochromocytoma PC 12 cells. Induction of high-level expression of bcl-2 in PC 12 cells resulted in generation of oxidative stress and cessation of growth by cell cycle arrest. Cell cycle arrest in bcl-2-overexpressing PC 12 cells was prevented by an inhibitor of extracellular signal-related kinase (ERK 1/2) activation. Protective effects of bcl-2 expression against L-DOPA neurotoxicity decreased with increasing amounts of bcl-2. Furthermore, high-level bcl-2 overexpression sensitized cells towards oxidative stress and glutathione depletion. Our data suggest that bcl-2 expression is beneficial only in a limited gene dosage range and that high-level expression of bcl-2 exerts potential deleterious effects.  相似文献   

5.
Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture.  相似文献   

6.
Lee SH  Park SW  Pyo CW  Yoo NK  Kim J  Choi SY 《Biochimie》2009,91(1):102-108
The cell proliferation of p53-deficient Jurkat T cells is controlled after prolonged exposure to human lactoferrin (Lf). However, the molecular mechanism by which Lf influences these cellular responses remains unclear. In this study, we demonstrate that Lf-induced apoptosis in Jurkat T cells occurs in a dose- and time-dependent manner via the regulation of c-Jun N-terminal kinase (JNK) activity. Jurkat cells exposed to Lf for 1 day, especially at concentrations in excess of 500 microg/ml, showed typical apoptosis, as indicated by decreased cell viability and increased Annexin V binding. Our results also showed that Lf induced the activation of caspase 9 and caspase 3 activation, as demonstrated by our detection of cleaved caspases and PARP. Lf-induced apoptosis did not influence Bcl-2 expression via an ERK1/2 phosphorylation pathway, but was rather associated with the level of Bcl-2 phosphorylation. The treatment of cells with the specific JNK inhibitor SP600125, but not the p38 MAPK inhibitor SB203580, revealed that the JNK-Bcl-2 signaling cascade is required for Lf-induced apoptosis. When JNK activation was abolished by SP600125, no Bcl-2 phosphorylation was detected, and the Lf-treated Jurkat cells did not undergo cell death. These findings indicate that Lf functions as a biological mediator of apoptosis in the human leukemia Jurkat T-cell line, via the JNK-associated Bcl-2 signaling pathway.  相似文献   

7.
An immortal human hepatic cell line HL-7702 and human hepatoma cell line SMMC-7721 were treated with 3–30 μM SeO2. SeO2 at 30 μM markedly inhibited cell proliferation and viability, and prompted apoptosis of both normal hepatic and hepatoma cells after 48 h treatment. SeO2 could also down-regulate the Bcl-2 level, greatly in HL-7702 and slightly in SMMC-7721 cells, but up-regulate wild type P53 level a little in HL-7702 and significantly in SMMC-7721 cells. The Bcl-2/P53 value was closely correlated with the apoptotic rate as well as SeO2 concentrations.  相似文献   

8.
Chronic excessive fluoride intake is known to be toxic and can lead to fluorosis and bone pathologies. However, the cellular mechanisms underlying NaF-induced cytotoxicity in osteoblasts are not well understood. The objectives of this study were to determine the effects of fluoride treatment on MC3T3-E1 osteoblastic cell viability, cell cycle analysis, apoptosis and the expression levels of bcl-2 family members: bcl-2 and bax. MC3T3-E1 cells were treated with 10−5; 5 × 10−5; 10−4; 5 × 10−4 and 10−3 M NaF for up to 48 h. NaF was found to reduce cell viability in a temporal and concentration dependent manner and promote apoptosis even at low concentrations (10−5 M). This increased apoptosis was due to alterations in the expression of both pro-apoptotic bax and anti-apoptotic bcl-2. The net result was a decrease in the bcl-2/bax ratio which was found at both the mRNA and protein levels. Furthermore, we also noted that NaF-induced S-phase arrest during the cell cycle of MC3T3-E1 cells. These data suggest that fluoride-induced osteoblast apoptosis is mediated by direct effects of fluoride on the expression of bcl-2 family members.  相似文献   

9.
Hypoxic and chemical hypoxia (antimycin A) commits cultured rat fibroblasts (Rat-1) towards apoptosis, necrosis or an intermediate form of cell death (aponecrosis) depending on the degree of hypoxia. Aponecrosis also occurs in vivo. Here, we demonstrate that c-myc and bcl-2, two proto-oncogenes known to lower or to enhance, respectively, the apoptotic threshold, also affect the type of cell death: apoptosis shifts to aponecrosis and aponecrosis to necrosis, depending on c-myc or bcl-2 expression and the antimycin A concentration (100–400 M). In cells with basal gene expression, apoptosis shifts to aponecrosis/necrosis at 300 M antimycin A (middle hypoxia). Overexpression of c-myc markedly increases cumulative cell death in response to antimycin A and lowers the antimycin A concentration required to shift apoptosis to aponecrosis/necrosis from 300 M to 100 M (low hypoxia). Overexpression of bcl-2 elicits the opposite effect, decreasing cumulative cell death in response to antimycin A and raising the drug concentration required to shift apoptosis to aponecrosis/necrosis to 400 M (high hypoxia). The passage from one to the other form of cell death involves various aponecrotic features with observed intermediate aspects between apoptosis and necrosis, a progressive increase in necrotic features being correlated with an increase in antimycin A concentration. The mechanism underlying the various effects of c-myc and bcl-2 on cell-death type has been related to the ability of these genes to counteract, to various extents, the ATP decrease occurring in response to different degrees of chemical hypoxia.The first two authors contributed equally to this workThis work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC, Milano), CNR/MIUR (Grant Progetto Finalizzato Oncologia), Ente Cassa di Risparmio di Firenze and Ministero dellIstruzione, dellUniversità e della Ricerca (MIUR, Cofin 2003). Andrea Lapucci is supported by a fellowship from the Federazione Italiana per la Ricerca sul Cancro (FIRC, Milano)  相似文献   

10.
11.
12.
The distribution of the bcl-2, bax and caspase-3 proteins was investigated in the cells of developing human spinal ganglia. Paraffin sections of 10 human conceptuses between 5th and 9th gestational weeks were analysed morphologically, immunohistochemically and by TUNEL-method. Cells positive to caspase-3 had brown stained nuclei or nuclear fragmentations. At earliest stages, 6% of ganglion population were caspase-3 positive cells. Later on, a significant increase in number of caspase-3 positive cells appeared, particularly in the ventral part of ganglia (12%), and subsequently decreased to 6%. TUNEL-positive cells had the same distribution pattern as caspase-3 positive cells. Bax-positive cells followed the developmental pattern similar to caspase-3 cells, changing in range between 20% and 32%. There were 8% of bcl-2 positive cells at earliest stages. They increased significantly in dorsal part of the ganglion during the 7th week (28%), and than dropped to 15% by the end of the 8th week. These findings suggest a ventro-dorsal course of development in human spinal ganglia. Number of bcl-2, bax and caspase-3 positive cells changed in a temporally and spatially restricted manner, coincidently with ganglion differentiation. While apoptosis might control cell number, bcl-2 could act in suppression of apoptosis and enhancement of cell differentiation.  相似文献   

13.
Neuroblastoma is the most common extracranial solid tumor in infants and young children. Current treatments are not always effective and new therapies are needed. We examined efficacy of combination of the small molecule Bcl-2 inhibitor HA14-1 (HA) and the dietary isoflavonoid apigenin (APG) in human malignant neuroblastoma cells. Dose-response studies indicated that treatment with HA and APG for 24 h synergistically reduced cell viability in human malignant neuroblastoma SK-N-DZ, SH-SY5Y, and IMR32 cells. For further studies, we selected SK-N-DZ cells that showed the highest sensitivity following treatment with 2.5 μM HA, 100 μM APG, or combination (2.5 μM HA + 100 μM APG). Wright staining showed increase in morphological features of apoptosis. Cell cycle distribution and Annexin V assay showed that combination therapy caused more apoptosis than either treatment alone. Western blotting revealed that combination therapy downregulated angiogenic factors and also induced extrinsic pathway of apoptosis with activation of caspase-8 for Bid cleavage to tBid. Alterations in Bax and Bcl-2 levels resulted in an increase in Bax:Bcl-2 ratio to activate intrinsic pathway of apoptosis with mitochondrial release of cytochrome c into the cytosol and activation of proteases. Increases in calpain and caspase-3 activities generated 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Results showed that combination of HA and APG could be used for downregulation of angiogenic factors and activation of extrinsic and intrinsic pathways of apoptosis in malignant neuroblastoma cells.  相似文献   

14.
The combination of 2'-deoxyadenosine and 2'-deoxycoformycin is toxic for the human colon carcinoma cell line LoVo. In this study we investigated the mode of action of the two compounds and have found that they promote apoptosis. The examination by fluorescence microscopy of the cells treated with the combination revealed the characteristic morphology associated with apoptosis, such as chromatin condensation and nuclear fragmentation. The occurrence of apoptosis was also confirmed by the release of cytochrome c and the proteolytic processing of procaspase-3 in cells subjected to the treatment. To exert its triggering action on the apoptotic process, 2'-deoxyadenosine enters the cells through an equilibrative nitrobenzyl-thioinosine-insensitive carrier, and must be phosphorylated by intracellular kinases. Indeed, in the present work we demonstrate by analysis of the intracellular metabolic derivatives of 2'-deoxyadenosine that, as suggested by our previous findings, in the incubation performed with 2'-deoxyadenosine and 2'-deoxycoformycin, an appreciable amount of dATP was formed. Conversely, when also an inhibitor of adenosine kinase was added to the incubation mixture, dATP was not formed, and the toxic and apoptotic effect of the combination was completely reverted.  相似文献   

15.
16.
A novel population-balance model was employed to evaluate the suppression of cell death in myeloma NS0 6A1 cells metabolically engineered to over-express the apoptotic suppressor Bcl-2. The model is robust in its ability to simulate cell population dynamics in batch suspension culture and in response to thymidine-induced growth inhibition: 89% of simulated cell concentrations are within two standard deviations of experimental data. Kinetic rate constants in model equations suggest that Bcl-2 over-expression extends culture longevity from 6 days to at least 15 days by suppressing the specific rate of early apoptotic cell formation by more than 6-fold and necrotic cell formation by at least 3-fold, despite nearly a 3-fold decrease in initial cell growth rate and no significant change in the specific rate of late apoptotic cell formation. This computational analysis supports a mechanism in which Bcl-2 is a common mediator of early apoptotic and necrotic events occurring at rates that are dependent on cellular factors accumulating over time. The model has current application to the rational design of cell cultures through metabolic engineering for the industrial production of biopharmaceuticals.  相似文献   

17.
The functions of the antiapoptotic proteins Bcl-2 and Bcl-xL were examined in glioblastoma cells. Expression of both Bcl-2 and Bcl-xL were found to be elevated in protein lysates from seven early passage cell lines derived from human glioblastoma tumors compared with non-neoplastic glial cells. Down-regulation of both bcl-2 and bcl-xL expression in glioblastoma cell lines U87 and NS008 with bcl-2/bcl-xL bispecific antisense oligonucleotide resulted in spontaneous cell death. The mechanism of cell death was partially caspase-dependent. Executioner caspase 6 and caspase 7, but not caspase 3, were involved in apoptosis induced by bcl-2/bcl-xL antisense treatment. Interestingly, western blots failed to demonstrate expression of caspase 3 in two of the seven glioblastoma cell lines examined. The data support the hypothesis that Bcl-2 and Bcl-xL are important in preventing cell death in glioblastoma cells. It also suggests that there are functional pathways capable of successful completion of caspase-dependent cell death in gliomas. These findings support a potential role of bcl-2/bcl-xL bispecifc antisense oligonucleotide therapy as a treatment strategy to enhance caspase-dependent cell death in patients with glioblastoma.  相似文献   

18.
Lipotropes, a methyl group containing nutrients, including choline, methionine, folic acid, and vitamin B(12), are essential nutrients for humans. They are important methyl donors that interact in the metabolism of one-carbon units and are essential for the synthesis and methylation of deoxyribonucleic acid. The purpose of this study was to examine the effects of excess lipotropes on the growth of a human breast cancer cell line, MCF-7, and normal mammary cells, MCF-10A, in culture. Both cell lines were grown in basal culture medium for 24 h and then switched to medium supplemented with 50 times the amount of each lipotrope as basal culture medium (control). Although there were no significant differences in growth between treatments in either cell line, gene array and Northern analysis revealed that expression of bcl-2 was decreased in lipotrope-treated MCF-7 cells. The ability to induce tumor cell death could have many uses in the prevention and treatment of cancer. Bcl-2 regulates apoptosis and has been shown to directly affect the sensitivity of cancer cells to chemotherapy agents, and it is suggested that strategies designed to block Bcl-2 might prove useful in sensitizing tumor cells to chemotherapy-induced apoptosis. This study shows that although excess lipotropes do not inhibit the growth of breast cancer cells, they can down-regulate the bcl-2 gene, suggesting that lipotropes may increase the susceptibility of breast cancer cells to anticancer drugs.  相似文献   

19.
Tumor necrosis factor-alpha (TNF-alpha) is a potent multifunctional cytokine that plays a central role in the pathogenesis of many inflammatory diseases. Interleukin-8 (IL-8) is a principle neutrophil chemoattractant and activator in humans. The alveolar macrophage-derived TNF-alpha initiates lung inflammation through its ability to stimulate IL-8 synthesis in airway epithelial cells. Since recent studies demonstrated that the stimulation of epidermal growth factor receptor (EGFR) could induce IL-8 secretion, the involvement of EGFR in TNF-alpha-induced IL-8 secretion in airway epithelium-like NCI-H292 cells was investigated in this study. TNF-alpha and epidermal growth factor (EGF) stimulated IL-8 secretion in a time- and concentration-dependent manner. Inhibition of the EGFR by either an anti-EGFR neutralizing antibody or by its specific inhibitor AG1478 (1 microM) blocked TNF-alpha-induced IL-8 secretion. In addition, TNF-alpha stimulated tyrosine phosphorylation of the EGFR within 5 min after stimulation. Further, TNF-alpha-induced IL-8 secretion was completely inhibited by the neutralizing antibody against amphiregulin (AR), an EGFR ligand, suggesting that TNF-alpha-induced IL-8 secretion was mediated by the AR-EGFR pathway. Furthermore, TNF-alpha stimulated the release of AR in a concentration-dependent manner. Finally, both AR and IL-8 release-induced by TNF-alpha were eliminated by pretreatment with either GM6001, a broad-spectrum inhibitor for metalloprotease, or TAPI-1, relatively selective inhibitor for TNF-alpha converting enzyme (TACE). These findings indicate that metalloprotease-mediated AR shedding and subsequent activation of EGFR play a critical role in TNF-alpha-induced IL-8 secretion from the human airway epithelium-like NCI-H292 cells, and that TACE is one of the most possible candidates for metalloprotease responsible for TNF-alpha-induced AR shedding.  相似文献   

20.
The antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL play important roles in inhibiting mitochondria-dependent extrinsic and intrinsic cell death pathways. It seems that these two proteins have distinct functions for inhibiting extrinsic and intrinsic cell death pathways. The overexpression of Bcl-2 is able to inhibit not only apoptotic cell death but also in part nonapoptotic cell death, which has the role of cell cycle arrest in the G1 phase, which may promote cellular senescence. The overexpression of Bcl-2 may also have the ability to enhance cell death in the interaction of Bcl-xL with other factors. The overexpression of Bcl-xL enhances autophagic cell death when apoptotic cell death is inhibited in Bax(-/-)/Bak(-/-) double knockout cells. This review discusses the previously unexplained aspects of Bcl-2 and Bcl-xL functions associated with cell death, for better understanding of their functions in the regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号