首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylinositol 4,5-biphosphate has been implicated in a variety of membrane-trafficking processes, including exocytosis of neurotransmitters. However, there are contradictory findings concerned ability of phenylarsine oxide (PAO), an inhibitor of phosphatidylinositol 4-kinase, to affect exocytotic release of different types of neurotransmitters. We bent our efforts to a detailed analysis of action of PAO on Ca(2+)-dependent and Ca(2+)-independent [3H]GABA release produced by exposure of rat brain synaptosomes to different concentrations of alpha-latrotoxin. We also compared PAO action on alpha-latrotoxin- and 4-aminopyridine (4-AP)-evoked [3H]GABA release. The experiments have shown that release of [3H]GABA evoked by the depolarization with 4-AP was decreased by 80% as a result of action of 3 microM PAO and the complete inhibition of release was observed with 10 microM PAO. When alpha-latrotoxin as a stimulant was applied, release of [3H]GABA was increased as toxin concentration used was elevated from 0.5 to 3.0 nM, however, concomitantly, the response of the toxin-induced [3H]GABA release to PAO became attenuated: 10 microM PAO led to almost complete inhibition of the effect of 0.5 nM alpha-latrotoxin and only partly decreased (by 40%) the response to 3.0 nM alpha-latrotoxin. To test whether the efficacy of PAO depended on the toxin-induced outflow of cytosolic [3H]GABA, synaptosomes with depleted cytosolic [3H]GABA pool were also exploited. Depletion was performed by means of heteroexchange of cytosolic [3H]GABA with nipecotic acid. The experiments have shown that treatment of loaded synaptosomes with nipecotic acid resulted in some increase of [3H]GABA release evoked by 0.5 nM alpha-latrotoxin, but in the two-fold decrease of the response to 3.0 nM alpha-latrotoxin. PAO essentially inhibited [3H]GABA release from depleted synaptosomes irrespective of alpha-latrotoxin concentration used. Therefore, the amount of [3H]GABA released from cytosolic pool determined, in considerable degree, the insensitivity of alpha-latrotoxin action to PAO. Thus, our data show that subnanomolar concentrations of alpha-latrotoxin may be used for stimulation of exocytotic release of [3H]GABA. Exposure of synaptosomes with nanomolar toxin concentrations leads not only to stimulation of exocytosis, but also to leakage of [3H]GABA from cytosolic pool. PAO potently inhibits exocytotic release of [3H]GABA and its inhibitory effectiveness is diminished as far as the outflow of [3H]GABA is elevated.  相似文献   

2.
alpha-Latrotoxin, a presynaptic neurotoxin from the venom of Latrodectus mactans tredecimguttatus, induces massive [3H]GABA release from rat brain synaptosomes as a result of interaction with either Ca(2+)-dependent (neurexin 1 alpha or Ca(2+)-independent (latrophilin) membrane receptor. The main aim of the study was to elucidate whether the binding of alpha-latrotoxin to different types of receptors led to [3H]GABA secretion from one pool or in each case the source of neurotransmitter differs: in the presence of Ca2+ exocytosis is induced, while in the absence of Ca(2+)--outflow by mobile membrane GABA transporter from cytoplasm. We examined the effect of the depletion of cytosolic [3H]GABA pool by competitive inhibitors of the GABA transporter (nipecotic acid and 2,4-diaminobutyric acid) on the alpha-latrotoxin-stimulated neurotransmitter release. We also compared the influence of these agents on neurosecretion, evoked by depolarization with that evoked by alpha-latrotoxin. Depolarization was stimulated by 4-aminopyridine in the Ca(2+)-containing saline and high KCl in Ca(2+)-free medium. In synaptosomes treated with nipecotic acid unstimulated [3H]GABA release was significantly augmented and high KCl-evoked Ca(2+)-independent [3H]GABA release was essentially inhibited. But under the same conditions neurosecretion stimulated by alpha-latrotoxin greatly raised with respect to the control response. The similar results were obtained with the synaptosomes treated with 2,4-diaminobutyric acid. Another way to determine which of GABA pool is the target of alpha-latrotoxin action lay in analysis of the toxin effects on the preliminary depolarized synaptosomes. alpha-Latrotoxin influence was diminished by the preceding depolarization by 4-aminopyridine in Ca2+ presence. But after the high KCl stimulation effect of alpha-latrotoxin didn't change. These data suggest that alpha-latrotoxin triggers neurotransmitter release from synaptic vesicles via exocytosis. We suppose that the type of membrane receptor does not determine the mechanism of GABA release evoked by the toxin.  相似文献   

3.
Glycine and GABA are likely co-transmitters in the spinal cord. Their possible interactions in presynaptic terminals have, however, not been investigated. We studied the effects of glycine on GABA release using superfused mouse spinal cord synaptosomes. Glycine concentration dependently elicited [(3)H]GABA release which was insensitive to strychnine or 5,7-dichlorokynurenic acid, but was Na(+) dependent and sensitive to the glycine uptake blocker glycyldodecylamide. The glycine effect was external Ca(2+) independent, but was reduced when intraterminal Ca(2+) was chelated with 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetracetic acid or depleted with thapsigargin, or when vesicular storage was impaired with bafilomycin. Glycine-induced [(3)H]GABA release was prevented, in part, by blocking GABA transport. The glycine effect was halved by sarcosine, a GLYT1 substrate/inhibitor, or by amoxapine, a GLYT2 blocker, and abolished by a mixture of the two. The sensitivity to sarcosine, used as a transporter inhibitor or substrate, persisted in synaptosomes prelabelled with [(3)H]GABA in the presence of beta-alanine, excluding major gliasome involvement. To conclude, in mice spinal cord, transporters for glycine (both GLYT1 and GLYT2) and for GABA coexist on the same axon terminals. Activation of the glycine transporters elicits GABA release, partly by internal Ca(2+)-dependent exocytosis and partly by transporter reversal.  相似文献   

4.
Presynaptic neurotoxin alpha-latrotoxin, from the venom of Latrodectus mactans tredecimguttatus, causes massive [(3)H]GABA release from rat brain synaptosomes, irrespective of calcium presence in the extracellular medium. Whether the binding of alpha-latrotoxin to Ca(2+)-dependent (neurexin 1 alpha) or to Ca(2+)-independent (latrophilin) receptor triggers [(3)H]GABA release by the same mechanisms or different ones, inducing either exocytotic process or outflow by mobile membrane GABA transporter, is unknown. We examined alpha-latrotoxin-evoked [(3)H]GABA release from synaptosomes which cytosolic [(3)H]GABA pool was depleted either by applying competitive inhibitors of the GABA transporter, nipecotic acid and 2,4-diaminobutyric acid, or by permeation with digitonin. We also compared the effect of the GABA transporter inhibitors on depolarisation-evoked and alpha-latrotoxin-evoked [(3)H]GABA release using as depolarising agents 4-aminopyridine and high KCl in the Ca(2+)-containing and in Ca(2+)-free medium, respectively. Incubation of synaptosomes with nipecotic acid induced the essential acceleration of unstimulated [(3)H]GABA release and deep inhibition of high KCl-evoked Ca(2+)-independent [(3)H]GABA release. In contrast, at the similar conditions the effect of alpha-latrotoxin was greatly augmented with respect to the control response. Another way to assay what GABA pool was involved in alpha-latrotoxin-induced release lays in an analysis of the effects of depolarisation and alpha-latrotoxin in consecutive order. The preliminary 4-aminopyridine-stimulated [(3)H]GABA release attenuated the toxin effect. But when depolarisation occurred in Ca(2+)-free medium, no influence on alpha-latrotoxin effect was revealed. Employing digitonin-permeated synaptosomes, we have shown that alpha-latrotoxin could stimulate [3H]GABA release in the medium with 1mM EGTA, this effect of the toxin was blocked by concanavalin A and was ATP-dependent. The latter suggests that alpha-latrotoxin-released neurotransmitter has the vesicular nature. We assume that the type of the toxin membrane receptor does not determine the mechanisms of [(3)H]GABA release evoked by alpha-latrotoxin.  相似文献   

5.
One of the pathways implicated in a fine-tuning control of neurosecretory process is the activation of presynaptic receptors. The present study was focused on the role of presynaptic glutamate receptor activation in the regulation of inhibitory synaptic transmission in the rat hippocampus and cortex. We aimed to clarify what types of ionotropic glutamate receptors are involved in the modulation of GABA secretion, and what mechanism underlies this modulation. We have revealed that specific agonists of kainate and NMDA receptors, kainate and NMDA, like glutamate, induced the release of [3H]GABA from hippocampal and cortical nerve terminals suggesting the involvement of both types in the regulation of GABAergic transmission. Our results indicate preferential involvement of vesicular, but not cytosolic, pool in response to glutamate receptor activation. This is based on the finding that NO-711 (a specific inhibitor of plasma membrane GABA transporters), fails to attenuate [3H]GABA release. We have concluded that presynaptic glutamate receptor-induced modulation of the strength of synaptic response is due to increasing the release probability of synaptic vesicles.  相似文献   

6.
The ability of gamma-aminobutyric acid (GABA) and glycine (Gly) to modulate each other's release was studied in synaptosomes from rat spinal cord, cerebellum, cerebral cortex, or hippocampus, prelabeled with [3H]GABA or [3H]Gly and exposed in superfusion to Gly or to GABA, respectively. GABA increased the spontaneous outflow of [3H]Gly (EC50, 20.8 microM) from spinal cord synaptosomes. Neither muscimol nor (-)-baclofen, up to 300 microM, mimicked the effect of GABA, which was not antagonized by either bicuculline or picrotoxin. However, the effect of GABA was counteracted by the GABA uptake inhibitors nipecotic acid and N-(4,4-diphenyl-3-butenyl)nipecotic acid. Moreover, the GABA-induced [3H]Gly release was Na+ dependent and disappeared when the medium contained 23 mM Na+. The effect of GABA was Ca2+ independent and tetrodotoxin insensitive. Conversely, Gly enhanced the outflow of [3H]GABA from rat spinal cord synaptosomes (EC50, 100.9 microM). This effect was insensitive to both strychnine and 7-chlorokynurenic acid, antagonists at Gly receptors, but it was strongly Na+ dependent. Also, the Gly-evoked [3H]GABA release was Ca2+ independent and tetrodotoxin insensitive. GABA increased the outflow of [3H]Gly (EC50, 11.1 microM) from cerebellar synaptosomes; the effect was not mimicked by either muscimol or (-)-baclofen nor was it prevented by bicuculline or picrotoxin. The GABA effect was, however, blocked by GABA uptake inhibitors and was Na+ dependent. Gly increased [3H]GABA release from cerebellar synaptosomes (EC50, 110.7 microM) in a strychnine- and 7-chlorokynurenic acid-insensitive manner. This effect was Na+ dependent. The effects of GABA on [3H]Gly release seen in spinal cord and cerebellum could be reproduced also with cerebrocortical synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Ca(2+)-independent [(3)H]GABA release induced by alpha-latrotoxin was found to consist of two sequential processes: a fast initial release realized via exocytosis and more delayed outflow through the plasma membrane GABA transporters [Linetska, M.V., Storchak, L.G., Tarasenko, A.S., Himmelreich, N.H., 2004. Involvement of membrane GABA transporters in alpha-latrotoxin-stimulated [(3)H]GABA release. Neurochem. Int. 44, 303-312]. To characterize the toxin-stimulated events attributable to the transporter-mediated [(3)H]GABA release from rat brain synaptosomes we studied the effect of alpha-latrotoxin on membrane potentials and generation of the synaptic vesicles proton gradient, using fluorescent dyes: potential-sensitive rhodamine 6G and pH-sensitive acridine orange. We revealed that alpha-latrotoxin induced a progressive dose-dependent depolarization of mitochondrial membrane potential and an irreversible run-down of the synaptic vesicle proton gradient. Both processes were insensitive to the presence of cadmium, a potent blocker of toxin-formed transmembrane pores, indicating that alpha-latrotoxin-induced disturbance of the plasma membrane permeability was not responsible to these effects. A gradual dissipation of the synaptic vesicle proton gradient closely coupled with lowering the vesicular GABA transporter activity results in a leakage of the neurotransmitter from synaptic vesicles to cytoplasm. As a consequence, there is an essential increase in GABA concentration in a soluble cytosolic pool that appears to be critical parameter for altering the mode of the plasma membrane GABA transporter operation from inward to outward. Thus, our data allow clarifying what cell processes underlain a recruitment of the plasma membrane transporter-mediated pathway in alpha-LTX-stimulated secretion.  相似文献   

8.
We studied intracellular processes in nerve terminals of neurons of the rat brain in response to application of exogenous glutamate. Using a рН-sensitive fluorescence probe, acridine orange (AO), and labeled gammaaminobutyric acid ([3Н]GABA), we estimated the effect of application of glutamate on the level of acidification of synaptic vesicles and also on the release of GABA from nerve terminals (synaptosomes) obtained from hippocampal tissue. Our experiments showed that glutamate in a dose-dependent manner stimulated the [3Н]GABA release from nerve terminals, and then we observed re-uptake of this neurotransmitter. A selective blocker of GABA transporters, NO-711, completely blocked the uptake of neurotransmitter but did not influence its release; this observation indicates that the glutamate-induced GABA release was from the vesicular, not cytosolic, pool. We confirmed that glutamate stimulates the process of exocytosis in experiments using AO, where we obtained data indicating that this process is two-phase. The first phase, which reflects probably calcium-induced exocytosis, looked like a “burst” of fluorescent signal typical of the response of synaptosomes to the action of KCl applied in depolarization concentration. Both phases of the response were completely blocked or significantly suppressed in calcium-free medium or in the presence of 25 μM Cd2+. The second (slow) phase of the response developed after a certain lag period and was characterized by a gradual increase in the intensity of fluorescent signal. This phase was completely dependent on the presence of sodium in the extracellular medium and completely blocked when sodium was replaced by choline or N-methyl-D-glucamine. We hypothesize that the second phase of the response can reflect either spontaneous unstimulated exocytosis or dissipation of the proton gradient in synaptic vesicles induced by the entry of Na+ into the nerve terminal.  相似文献   

9.
The impact of syntaxin and SNAP-25 cleavage on [3H]noradrenaline ([3H]NA) and [3H]dopamine ([3H]DA) exocytotic release evoked by different stimuli was studied in superfused rat synaptosomes. The external Ca2+-dependent K+-induced [3H]catecholamine overflows were almost totally abolished by botulinum toxin C1 (BoNT/C1), which hydrolyses syntaxin and SNAP-25, or by botulinum toxin E (BoNT/E), selective for SNAP-25. BoNT/C1 cleaved 25% of total syntaxin and 40% of SNAP-25; BoNT/E cleaved 40% of SNAP-25 but left syntaxin intact. The GABA uptake-induced releases of [3H]NA and [3H]DA were differentially affected: both toxins blocked the former, dependent on external Ca2+, but not the latter, internal Ca2+-dependent. BoNT/C1 or BoNT/E only slightly reduced the ionomycin-evoked [3H]catecholamine release. More precisely, [3H]NA exocytosis induced by ionomycin was sensitive to toxins in the early phase of release but not later. The Ca2+-independent [3H]NA exocytosis evoked by hypertonic sucrose, thought to release from the readily releasable pool (RRP) of vesicles, was significantly reduced by BoNT/C1. Pre-treating synaptosomes with phorbol-12-myristate-13-acetate, to increase the RRP, enhanced the sensitivity to BoNT/C1 of [3H]NA release elicited by sucrose or ionomycin. Accordingly, cleavage of syntaxin was augmented by the phorbol-ester. To conclude, our results suggest that clostridial toxins selectively target exocytosis involving vesicles set into the RRP.  相似文献   

10.
In this study, GABA efflux transport from brain to blood was estimated by using the brain efflux index (BEI) method. [3H]GABA microinjected into parietal cortex area 2 (Par2) of the rat brain was eliminated from the brain with an apparent elimination half-life of 16.9 min. The blood-brain barrier (BBB) efflux clearance of [3H]GABA was at least 0.153 mL/min/g brain, which was calculated from the elimination rate constant (7.14 x 10(-2) x min(-1)) and the distribution volume in the brain (2.14 mL/g brain). Direct comparison of the apparent BBB influx clearance [3H]GABA (9.29 microL/min/g brain) and the apparent efflux clearance (153 microL/min/g brain) indicated that the efflux clearance was at least 16-fold greater than the influx clearance. In order to reduce the effect of metabolism in the neuronal cells following intracerebral microinjection, we determined the apparent efflux of [3H]GABA in the presence of nipecotic acid, a GABA transport inhibitor in parenchymal cells, using the BEI method. Under such conditions, the elimination of [3H]GABA across the BBB showed saturation and inhibition by probenecid in the presence of nipecotic acid. Furthermore, the uptake of [3H]GABA by MBEC4 cells was inhibited by GABA, taurine, beta-alanine and nipecotic acid in a concentration-dependent manner. It is likely that GABA inhibits the first step in the abluminal membrane uptake by brain endothelial cells, and that probenecid selectively inhibits the luminal membrane efflux transport process from the brain capillary endothelial cells based on the in vivo and in vitro evidence. The BBB acts as the efflux pump for GABA to reduce the brain interstitial fluid concentration.  相似文献   

11.
It has been proposed that the major portion of [3H]GABA released from rat cortical slices upon exposure to high K+ comes from a neuronal pool. Using carrier mediated exchange diffusion of DABA or β-alanine in the superfusion medium for GABA in the slice as a technique for manipulating neuronal and glial pools of GABA, it was found that DABA but not β-alanine substantially reduced the K+ stimulated release of [3H]GABA. The present study using synaptosomes as an in vitro model of the nerve ending was undertaken to ascertain whether this neuronal pool of releasable [3H]GABA was associated with a specific transmitter pool in nerve endings. A continuous superfusion system employing a Ca2+ pulse to produce a calcium coupled release (Levy et al, 1973) was used to study the effect of two concentrations (20 μm , 1 mm ) of DABA and β-alanine on the release of [3H]GABA from synaptosomes. In contrast to the results in slices, DABA at both concentrations had no effect on the release of [3H]GABA from synaptosomes in spite of evidence that exchange diffusion was occurring. With protoveratrine as the releasing agent there was no effect of DABA on the release of [3H]GABA from either slices or synaptosomes. The results suggest that the major portion of [3H]GABA released from cortical slices by high K+ comes from a non-transmitter pool in the neuron. Use of K+ stimulated release of amino acids from cortical slices as a criterion for neurotransmitter function must be viewed with caution.  相似文献   

12.
Rat brain synaptosomes were used to investigate the effect of okadaic acid, an inhibitor of protein phosphatase 1 and 2A, and cyclosporin A, an inhibitor of protein phosphatase 2B (calcineurin), on [(3)H]GABA release. Release of [(3)H]GABA was evoked by 4-aminopyridine in the presence of calcium and by alpha-latrotoxin in the presence and absence of calcium. Pretreatment of synaptosomes with 1 microM okadaic acid reduced [(3)H]GABA release evoked by 4-aminopyridine by about 40%. The effect of alpha-latrotoxin on [(3)H]GABA release was stimulated by okadaic acid. This stimulation was equal in both media. The stimulating effect of 4-aminopyridine and alpha-latrotoxin on [(3)H]GABA release was activated when synaptosomes were pretreated with cyclosporin A. Activation of 4-aminopyridine-evoked [(3)H]GABA release was observed at 1 microM cyclosporin A, but the toxin effect was enhanced only when concentration of cyclosporin A was increased to 10 microM. The level of cyclosporin A activation depended on alpha-latrotoxin concentrations used - a higher stimulating effect of cyclosporin A was observed with lower toxin concentration. These results suggest that in calcium medium 4-aminopyridine- and alpha-latrotoxin-evoked [(3)H]GABA release was realized by different mechanisms.  相似文献   

13.
Exogenous tritiated -aminobutiric acid ([3H]GABA) is retained in two compartments in sheep cortex synaptosomes, corresponding to cytoplasmic and vesicular spaces, assuming that freeze-thawing the synaptosomes loaded with [3H]GABA releases the cytoplasmic [3H]GABA (81±3.9%), and that subsequent solubilization of the synaptosomes with 1% sodium cholate releases the vesicular [3H]GABA (19±3.9%). Depolarization of synaptosomes with 40 mM K+ in a Na+-medium, in the absence of Ca2+, releases 20.3±2.7% of the [3H]GABA retained in the synaptosomes. The [3H]GABA released under these conditions comes predominantly from the cytoplasm. The presence of 1 mM Ca2+ during depolarization releases and additional 13% (a total of about 33.5±9.9%) of the releasable [3H]GABA, and the [3H]GABA release which is Ca2+-dependent also comes mostly from the cytoplasmic compartment. When choline replaces external Na+, the [3H]GABA release is absolutely Ca2+-dependent, and the [3H]GABA released also comes mostly from the cytoplasmic pool. Therefore, it appears that [3H]GABA taken up by synaptosomes is accumulated mostly in the cytoplasmic compartment from which it is released upon depolarization. The technique described permits distinguishing the effect of different factors on the two pools of accumulated [3H]GABA.  相似文献   

14.
One of the pathways implicated in a fine-tuning control of synaptic transmission is activation of the receptors located at the presynaptic terminal. Here we investigated the intracellular events in rat brain cortical and hippocampal nerve terminals occurring under the activation of presynaptic glutamate receptors by exogenous glutamate and specific agonists of ionotropic receptors, NMDA and kainate. Involvement of synaptic vesicles in exocytotic process was assessed using [3H]GABA and pH-sensitive fluorescent dye acridine orange (AO). Glutamate as well as NMDA and kainate were revealed to induce [3H]GABA release that was not blocked by NO-711, a selective blocker of GABA transporters. AO-loaded nerve terminals responded to glutamate application by the development of a two-phase process. The first phase, a fluorescence transient completed in ∼1 min, was similar to the response to high K+. It was highly sensitive to extracellular Ca2+ and was decreased in the presence of the NMDA receptor antagonist, MK-801. The second phase, a long-lasting process, was absolutely dependent on extracellular Na+ and attenuated in the presence of CNQX, the kainate receptor antagonist. NMDA as well as kainate per se caused a rapid and abrupt neurosecretory process confirming that both glutamate receptors, NMDA and kainate, are involved in the control of neurotransmitter release. It could be suggested that at least two types ionotropic receptor are attributed to glutamate-induced two-phase process, which appears to reflect a rapid synchronous and a more prolonged asynchronous vesicle fusion.  相似文献   

15.
The effects of gamma-aminobutyric acid (GABA) on the spontaneous efflux of [3H]norepinephrine ([3H]NE) were studied in synaptosomes prepared from rat hippocampus and prelabelled with [3H]NE. It had been observed previously that, when synaptosomes were exposed in superfusion to GABA, the basal release of the tritiated catecholamine was enhanced, apparently with no involvement of the known GABA receptors. The mechanisms underlying this effect have now been investigated. The potency of GABA as a releaser of [3H]NE was decreased by lowering the Na+ content of the superfusion medium, and its effect disappeared at 23 mM Na+. The GABA-induced [3H]NE release was counteracted by the GABA uptake inhibitor N-(4,4-diphenyl-3-butenyl)nipecotic acid (SKF 89976A), but it was unaffected by the NE uptake blockers desmethylimipramine and nisoxetine. The GABA-induced release of [3H]NE was Ca2+-dependent and tetrodotoxin-sensitive. The data support the hypothesis that GABA provoked [3H]NE release by a novel mechanism which involves penetration into the noradrenergic nerve terminals through a GABA carrier located on the NE terminals themselves. This uptake process might be electrogenic and provoke depolarization of the nerve terminals, causing an exocytotic release of [3H]NE.  相似文献   

16.
Linetska  M. V.  Storchak  L. G.  Himmelreich  N. G. 《Neurophysiology》2002,34(2-3):171-172
Phosphatidylinositol 4,5-biphosphate has been implicated in a variety of cellular processes, including neurotransmitter release. Here we present evidence for the strong influence of an inhibitor of phosphatidylinositol 4-kinase, phenylarsine oxide, on depolarization- and -latrotoxin-evoked exocytotic release of [3H]GABA from the rat brain synaptosomes. Our data also show that subnanomolar concentrations of the toxin stimulate the process of exocytosis per se, while nanomolar toxin concentrations in addition cause neurotransmitter outflow from the cytosolic pool.  相似文献   

17.
Effect of Taurine on Neurotransmitter Release from Insect Synaptosomes   总被引:1,自引:0,他引:1  
The effect of taurine on the release of [3H]acetylcholine ([3H]ACH) and [3H]gamma-aminobutyric acid ([3H]GABA) from preloaded locust synaptosomes has been studied. Veratridine (100 microM) and K+ (100 mM) both evoked [3H]ACh release and this was reduced in a concentration-dependent manner by taurine (5, 10, and 20 mM). In contrast to this, veratridine induced no observable release of [3H]GABA, and the response to K+ was slight. In the presence of taurine, however, a concentration-dependent enhancement of [3H]GABA release was observed. Since nipecotic acid (1 mM), an inhibitor of neuronal GABA uptake, also revealed [3H]GABA release induced by veratridine, it is suggested that both this effect and that of taurine are due to prevention of GABA reuptake. These results suggest that taurine may act as a neuromodulator in insects.  相似文献   

18.
Neuronal activity is tightly coupled with brain energy metabolism. Numerous studies have proved that glucose is not a sole energy substrate for neurons; metabolic monocarboxylate intermediates derived from glucose (pyruvate and lactate) released by astrocytes are shown to be taken up and oxidized by neurons, and, moreover, could serve as neuroprotective agents. Herein, we presented the data that extracellular pyruvate (4 mM) in the presence of glucose caused the increase in synaptosomal ATP content from 3.48+/-0.30 to 4.38+/-0.23 nmol/mg of protein. This correlates with the enhanced accumulation of fluorescent dye acridine orange in the available and the recycling synaptic vesicles within the synaptosomes reflecting the improved generation of proton gradient through the synaptic vesicle membrane. We have also demonstrated the effect of extracellular pyruvate on distribution of [3H]GABA between synaptic vesicles and cytoplasm in loaded synaptosomes. To estimate [3H]GABA accumulation into the synaptic vesicles, Ca 2+-dependent 4-aminopyridine-triggered exocytotic neurotransmitter release was studied. Evaluation of cytosolic 1H]GABA pool was performed by measuring the Ca2+-independent transporter-mediated neurotransmitter release evoked by nipecotic acid or high K+. The presence of pyruvate resulted in doubled exocytotic release of [3H]GABA, and significantly attenuated Ca2+-independent release of cytosolic [3H]GABA. Together, these observations provide insight into the important role of glucose metabolic intermediate, pyruvate, in sustaining activity of vesicular inhibitory amino acid transporter and so normal inhibitory transmission. We propose to use pyruvate for keeping up synaptosomal preparations in state of metabolic stability.  相似文献   

19.
Abstract— Several parameters of GABA Auxes across the synaptosomal membrane were studied using synaptosomes prepared from the brain of immature (8-day-old) rats. The following aspects of GABA carrier-mediated transport were similar in immature and mature synaptosomes: (1) magnitude of [3H]GABA accumulation; (2) GABA homoexchange in normal ionic conditions; (3) GABA homoexchange in the presence of cationic fluxes (Na+ and Ca2+ influx, K+ efflux) characteristic of physiological depolarization. As in adult synaptosomes (Levi & Raiteri , 1978), in these conditions the stoichiometry of GABA homoexchange was in the direction of net outward transport (efflux > influx). The essential differences between the behaviour of 8-day-old and adult synaptosomes were the following: (1) β-alanine (a glial uptake inhibitor) inhibited GABA uptake in immature synaptosomes (the inhibition being greater in crude than in purified preparations) and was without a significant effect in adult synaptosomes. DABA and ACHC (two neuronal uptake inhibitors) depressed GABA uptake more efficiently in purified than in crude immature synaptosomes, but were as effective in crude and purified nerve endings from adult animals. The data suggest a greater uptake of GABA in the‘gliosomes’contaminating the synaptosomal preparations from immature animals. (2) In immature synaptosomes prelabelled with [3H]GABA the specific radioactivity of the GABA released spontaneously or by heteroexchange (with 300 μm -OH-GABA) was the same as that present in synaptosomes, while in adult synaptosomes OH-GABA released GABA with increased specific radioactivity. The data suggest a homogeneous distribution of the [3H]GABA taken up within the endogenous GABA pool in immature, but not in mature synaptosomes. (3) In immature synaptosomes the release of GABA (radioactive and endogenous) induced by depolarization with high KC was not potentiated by Ca2+, unless the synaptosomes had been previously depleted of Na+ These data suggest that, although a Ca2+ sensitive pool of GABA may be present, this pool is not susceptible to being released in normal conditions, probably because the high intrasynaptosomal Na+ level prevents a sufficient depolarization. The possible significance of these findings in terms of functional activity of GABAergic neurotransmission in the immature brain is discussed.  相似文献   

20.
Storchak  L.  Tarasenko  A.  Linetska  M.  Pozdnyakova  N.  Himmelreich  N. 《Neurophysiology》2002,34(5):321-325
The main inhibitory neurotransmitter GABA in the mammalian brain is distributed in the nerve terminals between two pools, vesicular (synaptic vesicles) and cytosolic. GABA is released from these pools by different mechanisms; there are calcium-activated exocytotic release and calcium-independent sodium-dependent release from the cytosolic pool (resulting from the membrane GABA transporter reversal). We investigated the influence of temperature on [3H]GABA release from rat brain synaptosomes, which was induced by stimulation of both these processes. In addition, we used -latrotoxin as a stimulant of [3H]GABA release. Synaptosomes from the rat brain were used in the experiments. 4-Aminopyridine (4-AP) and high [KCl] were applied to stimulate calcium-activated and calcium-independent [3H]GABA release, respectively. 4-AP-evoked [3H]GABA release was of the same intensity at 37 and 25°C (10.1 ± 1.2 and 10.1 ± 0.8% of total [3H]GABA incorporated into the synaptosomes, respectively). The effect of 4-AP on the 45Ca2+ influx into synaptosomes was also temperature-independent: 0.775 ± 0.075 and 0.725 ± 0.100 nmol/min/mg of protein at 37 and 25°C, respectively. A drop in the effect of 4-AP was observed only at 15°C. When synaptosomes were depolarized with 50 mM KCl, a temperature decrease from 37°C to 25°C resulted in a twofold drop in the [3H]GABA release, from 20.5 ± 1.4 to 10.3 ± 0.7%; at 15°C [3H]GABA release dropped to less than one-third of the norm (6.0 ± 0.5%). -Latrotoxin-stimulated [3H]GABA release was diminished from 32.5 ± 2.5 at 37°C to 17.2 ± 1.3 at 25°C and 5.9 ± 0.4% at 15°C and was not affected by the presence or absence of calcium in the medium. It seems likely that the observed effect of temperature can be interpreted as based on the temperature dependence of the -latrotoxin insertion into the membrane. It is suggested that the pattern of the temperature sensitivity of GABA release from the synaptosomes can be used as a criterion for identification of the mode of neurotransmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号