首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular signaling interactions in the plant apoplast are important for defense and developmental responses. We examined the soybean proteome of the apoplastic conduit of root-to-shoot communication, the xylem stream, using gel electrophoresis combined with two types of tandem mass spectrometry. We examined soybeans for the presence of a Bradyrhizobium japonicum-induced, long distance developmental signal that controls autoregulation of nodulation (AON) to determine if xylem proteins (XPs) were involved directly or indirectly in AON. The xylem and apoplast fluids collected in hypocotyl, epicotyl, and stem tissue contained a highly similar set of secreted proteins. The XPs were different from those secreted from imbibing seed implying they play important basic roles in xylem function. The XPs of wild-type and nts1007 plants were indistinguishable irrespective of plant age, inoculation status, or time after inoculation suggesting that none was directly involved in AON. XPs were continuously loaded into the xylem stream, as they were present even 28 h after shoot decapitation. These results were consistent with semiquantitative RT-PCR studies that examined the expression of genes corresponding to the XPs under inoculated or uninoculated conditions. Monitoring the expression of XP genes by RT-PCR showed that four possessed root biased expression. This suggested that the corresponding protein products could be produced in roots and travel long distances to shoots. Of these, a species of lipid transfer protein is a candidate for a water-soluble, long-distance signal-carrier due to the presence of hydrophobic clefts that bind known plant signals in vitro. Two soybean XPs identified in this study, lipid transfer protein and Kunitz trypsin inhibitor (KTI), have known roles in plant signaling.  相似文献   

2.
The xylem in plants has mainly been described as a conduit for water and minerals, but emerging evidence also indicates that the xylem contains protein. To study the proteins in xylem sap, we characterized the identity and composition of the maize xylem sap proteome. The composition of the xylem sap proteome in maize revealed proteins related to different phases of xylem differentiation including cell wall metabolism, secondary cell wall synthesis, and programmed cell death. Many proteins were found to be present as multiple isoforms and some of these isoforms are glycosylated. Proteins involved in defense mechanisms were also present in xylem sap and the sap proteins were shown to have antifungal activity in bioassays.  相似文献   

3.
XSP10 is an abundant 10 kDa protein found in the xylem sap of tomato. The protein displays structural similarity to plant lipid transfer proteins (LTPs). LTPs are involved in various physiological processes, including disease resistance, and some are able to bind and transfer diverse lipid molecules. XSP10 abundance in xylem sap declines upon infection with Fusarium oxysporum f. sp. lycopersici (Fol), implying involvement of XSP10 in the plant-pathogen interaction. Here, the biochemical characterization of XSP10 with respect to fatty acid-binding properties is reported; a weak but significant binding to saturated fatty acids was found. Furthermore, XSP10-silenced tomato plants were engineered and it was found that these plants exhibited reduced disease symptom development upon infection with a virulent strain of Fol. Interestingly, the reduced symptoms observed did not correlate with an altered expression profile for known reporter genes of plant defence (PR-1 and WIPI). This work demonstrates that XSP10 has lipid-binding properties and is required for full susceptibility of tomato to Fusarium wilt.  相似文献   

4.
Free N-glycans (FNGs) are ubiquitous in growing plants. Further, acidic peptide:N-glycanase is believed to be involved in the production of plant complex-type FNGs (PCT-FNGs) during the degradation of dysfunctional glycoproteins. However, the distribution of PCT-FNGs in growing plants has not been analyzed. Here, we report the occurrence of PCT-FNGs in the xylem sap of the stem of the tomato plant.

Abbreviations: RP-HPLC: reversed-phase HPLC; SF-HPLC: size-fractionation HPLC; PA-: pyridylamino; PCT: plant complex type; Hex: hexose; HexNAc: N-acetylhexosamine; Pen: pentose; Deoxyhex: deoxyhexose; Man: D-mannose; GlcNAc: N-acetyl-D-glucosamine; Xyl: D-xylose; Fuc: L-fucose; Lea: Lewis a (Galβ1-3(Fucα1-4)GlcNAc); PCT: plant complex type; M3FX: Manα1-6(Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA; GN2M3FX: GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA; (Lea)1GN1M3FX: Galβ1-3(Fucα1-4)GlcNAc1-2 Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA or GlcNAc1-2Manα1-6(Galβ1-3(Fucα1-4)GlcNAc1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA.  相似文献   


5.
Transpiration inhibition by stored xylem sap from well-watered maize plants   总被引:3,自引:0,他引:3  
There is increasing evidence that a chemical signal exists in xylem sap of plants subjected to water deficits which influences physiological responses in plant shoots. An important method of studying this signal is the transpiration response of excised leaves exposed to xylem sap collected from plants. However, Munns et al [Plant, Cell & Environment 16, 867–877] cautioned that transpiration inhibition is observed when xylem sap collected from wheat and barley is stored before determining physiological activity. The objective of the study reported here was to determine if transpiration inhibition develops in maize sap collected from well-watered plants when the sap is stored under various conditions. It was found that storage of maize sap collected from well-watered plants for only 1 d at -20°C resulted in the development of substantial transpiration inhibition in bioassay leaves. Storage of sap at 4°C resulted in the development of the effect after 2 weeks, while storage at ?86°C showed only small transpiration inhibition after 3 weeks. The major source of the transpiration inhibition was the development of a substance in the stored sap that resulted in physical blockage of the transpiration stream in bioassay leaves. However, a small signal component may also have developed in the stored sap. Because of the possibility of ionic activity under freezing conditions at ?20°C, calcium was studied for its potential involvement in the transpiration inhibition. However, the calcium concentrations found to inhibit transpiration were nearly an order of magnitude larger than the calcium concentrations observed in xylem sap.  相似文献   

6.
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml−1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.  相似文献   

7.
We investigated if concentrations of abscisic acid (ABA) andother solutes measured in the first few droplets of xylem sapfrom detopped root systems, are good estimates of those in thetranspiration stream as it enters the shoot-base of whole plants.Xylem sap from root systems of pot-grown tomato plants (Lycopersiconesculentum Mill., cv. Ailsa Craig), at the seven-leaf stage,was obtained by placing root systems in chambers pressurizedto 0.3 MPa with air. The first sample was taken from the cut-surfaceof the hypo-cotyl stump within 30 s of removing the shoot. ABA,sucrose and other osmolytes were more concentrated in the initial100–200 mm3 of xylem sap than in subsequent samples. Thissuggested the sap was contaminated and not unchanged transpirationfluid. The effect was reproduced on the same plant, severaltimes, by recutting the hypocotyl prior to reassembling thesap collecting set-up and repressurizing. Similar results werefound with castor-oil plants (Ricinus communis L., cv. Gibsonii).However, neither release of ABA from the cut surface of thehypocotyl stump, nor the effects of pressure to the roots causedthe contamination. Instead, small radial pressures exerted bya rubber sleeve attached to the hypocotyl stump, for collectingthe sap, were responsible. The effect was reproduced by lightlysqueezing the hypocotyl by hand. The possibility was examined that reliable estimates of ABAconcentrations in transpiration stream fluid may be obtainedfrom sap samples taken immediately after rejecting the initial,contaminated 200 mm3. However, ABA concentrations in these latersamples were also unsatisfactory since they changed with rateof sap flow. The problem may be overcome by analysing sap inducedto flow through detached root systems at rates close to thoseof whole-plant transpiration. Key words: Tomato, Lycopersicon esculentum Mill., Castor-oil plant, Ricinus communis L., roots, root to shoot communication, xylem sap, abscisic acid, sucrose, transpiration stream  相似文献   

8.
The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during compatible or incompatible interactions. A new member of the PR-5 family was identified that accumulated early in both types of interaction. Other pathogenesis-related proteins appeared in compatible interactions only, concomitantly with disease development. This study demonstrates the feasibility of using proteomics for the identification of known and novel proteins in xylem sap, and provides insights into plant-pathogen interactions in vascular wilt diseases.  相似文献   

9.
Abscisic-acid content of xylem sap   总被引:2,自引:0,他引:2  
R. M. Davison  H. Young 《Planta》1973,109(1):95-98
Summary Abscisic acid (ABA) has been identified by gas chromatography in xylem sap of the woody species apple, peach, willow, sugar maple, Tecomaria capensis and Actinidia chinensis. The amounts of ABA present in each species are markedly different, varying from 9 to over 1000 ng/100 ml of sap.  相似文献   

10.
Xylem plays a major role in plant development and is considered part of the apoplast. Here, we studied the proteome of Brassica oleracea cv Bartolo and compared it to the plant cell wall proteome of another Brassicaceae, the model plant Arabidopsis thaliana. B. oleracea was chosen because it is technically difficult to harvest enough A. thaliana xylem sap for proteomic analysis. We studied the whole proteome and an N-glycoproteome obtained after Concanavalin A affinity chromatography. Altogether, 189 proteins were identified by LC-MS/MS using Brassica EST and cDNA sequences. A predicted signal peptide was found in 164 proteins suggesting that most proteins of the xylem sap are secreted. Eighty-one proteins were identified in the N-glycoproteome, with 25 of them specific of this fraction, suggesting that they were concentrated during the chromatography step. All the protein families identified in this study were found in the cell wall proteomes. However, proteases and oxido-reductases were more numerous in the xylem sap proteome, whereas enzyme inhibitors were rare. The origin of xylem sap proteins is discussed. All the experimental data including the MS/MS data were made available in the WallProtDB cell wall proteomic database.  相似文献   

11.
Chitinase in cucumber xylem sap   总被引:2,自引:0,他引:2  
A chitinase activity was detected in fractions of xylem sap collected from the cut surface of cucumber stems. A 28-kDa acidic protein was purified from the active fractions and its N-terminal amino acid sequence was found to be identical to that of a chitinase gene. Cucumber roots produce and secrete an acidic chitinase, one of the PR proteins, into xylem sap and deliver it to aboveground organs.  相似文献   

12.
Klepper B  Kaufmann MR 《Plant physiology》1966,41(10):1743-1745,1747
Although root pressure and guttation presumably result from a high concentration of salt in the root xylem, the guttation fluid is very dilute. Measurements of the osmotic potential of the guttation liquid and of exudates at various levels in guttating plants indicate that salt is removed from the xylem in the upper part of plants, particularly in the leaves. The concentration of salt solutions forced through individual leaves by an artificial root pressure has no influence on the osmotic potential of the guttation fluid. This suggests that leaves play an important role in removing salt from the xylem of guttating plants.  相似文献   

13.
Freezing of xylem sap without cavitation   总被引:7,自引:2,他引:7       下载免费PDF全文
Freezing of stem sections and entire twigs of hemlock (Tsuga canadensis) has been demonstrated to occur without increasing the resistance to the movement of water through the frozen part after rewarming. This was interpreted to mean that freezing did not produce cavitation in the xylem sap even though A) the sap was unquestionably frozen; B) it contained dissolved gases; and C) it was under tension before freezing and after. Freezing stem sections of some other evergreen gymnosperms during the summer again produced no evidence for cavitation of the xylem sap. On the other hand, freezing stem sections of some angiosperms invariably increased the resistance to sap flow leading to wilting and death in a few hours when the sap tension was at normal daytime values at the time of freezing. These results were interpreted to mean that the bordered pits on the tracheids of gymnosperms function to isolate the freezing sap in each tracheid so that the expansion of water upon freezing not only eliminates any existing tension but also develops positive pressure in the sap. Dissolved gases frozen out of solution may then be redissolved under this positive pressure as melting occurs. As the bubbles are reduced in size by this ice pressure developed in an isolated tracheid, further pressure is applied by the surface tension of the water against air. If the bubbles are redissolved or are reduced to sufficient small size by the time the tension returns to the sap as the last ice crystals melt, then the internal pressure from surface tension in any existing small bubbles may exceed the hydrostatic tension of the melted sap and the bubbles cannot expand and will continue to dissolve.  相似文献   

14.
15.
Arabidopsis thaliana defective in induced resistance 1 (At-DIR1) has been characterized as a protein responsible for the generation or transmission of the still unknown signal involved in systemic acquired resistance. This acidic apoplastic protein is a member of the family of lipid transfer proteins and was detected in vascular fluids. To our knowledge, no DIR1-like protein has been described in other plant species. Hence, we have performed data mining to identify a putative ortholog of DIR1 in tomato. This strategy allowed the detection of a few gene products displaying sequence similarity to At-DIR1 whose structural features were further analysed in silico. The best match (unigene SGN-327306) encoded a protein with an acidic pI, a peculiar characteristic of DIR1 among lipid transfer proteins, and was hence selected as a putative tomato ortholog of At-DIR1. This sequence, named Le-DIR1, served for the design of a specific antigenic peptide and the generation of polyclonal antibodies. The antiserum anti-Le-DIR1 recognized a peptide of the expected size (7kDa) in phloem sap of tomato plants, hence confirming the existence of the predicted protein in vascular fluids. This result supports the notion of the existence of common systemic acquired resistance (SAR) signaling molecules in different species.  相似文献   

16.
To identify the chemical forms of aluminum (Al) transported from roots to shoots of tea plants (C. sinensis L.), 27Al-nuclear magnetic resonance and 19F NMR spectroscopy were used to analyze xylem sap.The concentration of Al in collected xylem sap was 0.29 mM, twice as high as that of F. Catechins were not detected in xylem sap. The concentration of malic acid in xylem sap was higher than that of citric acid, whereas the concentration of oxalic acid was negligible.There were two signals in the 27Al NMR spectra of xylem sap, a larger signal at 11 ppm and a smaller one at −1.5 ppm. The former signal was consistent with the peak for an Al-citrate model solution, suggesting that an Al-citrate complex was present in xylem sap. Although the latter signal at −1.5 ppm was thought to indicate the presence of an Al-F complex (at 1.7 ppm) in xylem sap, there was only one signal at −122 ppm in the 19F NMR spectrum of xylem sap, indicating that the main F complex in xylem sap was F.These results indicate that Al might be translocated as a complex with citrate, while Al-malate, Al-oxalate and Al-F complexes are not major Al complexes in xylem sap of tea plants.  相似文献   

17.
Root-to-shoot signalling via xylem sap is an important mechanism by which plants respond to stress. This signalling could be mediated by alteration in the concentrations of inorganic and/or organic molecules. The effect of salt stress on the contents of xylem sap in Brassica olarecea has been analysed by mass spectrometry in order to quantify these changes. Subcellular location of arabinogalactan proteins (AGPs) by immunogold labelling and peroxidase isozymes was also analysed by isoelectrofocusing. The xylem sap metabolome analysis demonstrated the presence of many organic compounds such as sugars, organic acids and amino acids. Of these, amino acid concentrations, particularly that of glutamine, the major amino acid in the sap, were substantially reduced by salt stress. The xylem sap proteome analysis demonstrated the accumulation of enzymes involved in xylem differentiation and lignification, such as cystein proteinases, acid peroxidases, and a putative hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase under salt stress. The peroxidase isozyme pattern showed that salt stress induced a high accumulation of an acid isoform. These results suggest that xylem differentiation and lignification is induced by salt stress. The combination of different methods to analyse the xylem sap composition provides new insights into mechanisms in plant development and signalling under salt stress.  相似文献   

18.
The role of nitrate-nitrogen (NO3-N) in relation to the development of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici R1 was studied. Plants receiving 284 μg/ml nitrogen in the nutrient solution exhibited the same severe wilt symptoms as the control plants in soil. Disease decreased with increasing nitrogen levels (420, 630 and 1050 μg/ml). Apparently, the plants were also less susceptible to the disease when the concentration of nitrogen was 70 μg/ml, i. e. below the optimal level (284 μg/ml). Protein content in tissues of plants grown with different amounts of nitrogen was also determined. High nitrogen levels, which decreased disease severity, increased the protein content in leaf tissues. Of 17 amino acids only proline content increased with increasing nitrogen supply. High doses of NO3–N decreased the phenol content and the activity of peroxidase in stem and leaf tissues of tomato plants. It is suggested that phenolic compounds and the activity of peroxidase are not significant in the resistance of tomato to Fusarlum wilt associated with high nitrogen supply.  相似文献   

19.
Xylem sap collected from Populus trichocarpa × Populus deltoides using root pressure was estimated to contain more than 100 proteins. Ninety-seven of these proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These proteins were classified into 10 functional categories including metabolism, signaling, stress response and cell wall functions. The majority of xylem sap proteins were metabolic enzymes involved in processes including translation, proteolysis, and glycolysis. Stress-related proteins were also prevalent. In contrast to xylem sap proteins collected from annual plants, the majority of poplar xylem sap proteins do not appear to be classically secreted since only 33 proteins were predicted to have an N-terminal signal peptide targeting them to the secretory pathway. Of the remaining 64 proteins, 27 were predicted to be secreted non-classically. While a number of proteins identified here have been previously reported in xylem sap proteomes of annual plants, many xylem sap proteins were identified in poplar which may reflect functions specific to perennial plants.  相似文献   

20.
Xylem sap contains organic and inorganic compounds that might be involved in root-to-shoot communication. To clarify the physiological functions of sugars in xylem sap, we characterized the sugar compounds of the xylem sap. The 80% ethanol-soluble fraction of xylem sap contained mainly myo-inositol and oligosaccharides. The 80% ethanol precipitate was solubilized with cyclohexanediamine tetraacetate and fractionated using anion exchange chromatography. The non-bound fraction from the anion-exchange column reacted with Yariv reagent and was rich in arabinogalactan, indicating the presence of arabinogalactan proteins (AGP). The bound fraction eluted with 50 mM ammonium formate buffer and separated using size exclusion chromatography producing the pectins rhamnogaracturonan (RG)-I and RG-II with apparent molecular masses of 15000 and 11000, respectively. These results indicate that the AGP, RG-I, borate cross-linked RG-II dimer and oligosaccharides produced by root tissues are transported to above-ground organs via xylem sap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号