首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bacterial reaction centers the charge separation process across the photosynthetic membrane is predominantly driven by the excited state of the bacteriochlorophyll dimer (D). An X-ray structure analysis of the Phe M197-->Tyr mutant reaction center from Rhodobacter sphaeroides at 2.7 A resolution suggests the formation of a hydrogen bond as postulated by Wachtveitl et al. [Biochemistry 32, 12875-12886, 1993] between the Tyr M197 hydroxy group and one of the 2a-acetyl carbonyls of D. In combination with electrochemically induced FTIR difference spectra showing a split band of the pi-conjugated 9-keto carbonyl of D, there is clear evidence for the existence of such a hydrogen bond.  相似文献   

2.
Primary structure of the reaction center from Rhodopseudomonas sphaeroides   总被引:17,自引:0,他引:17  
The reaction center is a pigment-protein complex that mediates the initial photochemical steps of photosynthesis. The amino-terminal sequences of the L, M, and H subunits and the nucleotide and derived amino acid sequences of the L and M structural genes from Rhodopseudomonas sphaeroides have previously been determined. We report here the sequence of the H subunit, completing the primary structure determination of the reaction center from R. sphaeroides. The nucleotide sequence of the gene encoding the H subunit was determined by the dideoxy method after subcloning fragments into single-stranded M13 phage vectors. This information was used to derive the amino acid sequence of the corresponding polypeptide. The termini of the primary structure of the H subunit were established by means of the amino and carboxy terminal sequences of the polypeptide. The data showed that the H subunit is composed of 260 residues, corresponding to a molecular weight of 28,003. A molecular weight of 100,858 for the reaction center was calculated from the primary structures of the subunits and the cofactors. Examination of the genes encoding the reaction center shows that the codon usage is strongly biased towards codons ending in G and C. Hydropathy analysis of the H subunit sequence reveals one stretch of hydrophobic residues near the amino terminus; the L and M subunits contain five such stretches. From a comparison of the sequences of homologous proteins found in bacterial reaction centers and photosystem II of plants, an evolutionary tree was constructed. The analysis of evolutionary relationships showed that the L and M subunits of reaction centers and the D1 and D2 proteins of photosystem II are descended from a common ancestor, and that the rate of change in these proteins was much higher in the first billion years after the divergence of the reaction center and photosystem II than in the subsequent billion years represented by the divergence of the species containing these proteins.  相似文献   

3.
The structure of the photosynthetic reaction center (RC) from Rhodobacter sphaeroides was determined at 3.1-A resolution by the molecular replacement method, using the Rhodopseudomonas viridis RC as the search structure. Atomic coordinates were refined with the difference Fourier method and restrained least-squares refinement techniques to a current R factor of 22%. The tertiary structure of the RC complex is stabilized by hydrophobic interactions between the L and M chains, by interactions of the pigments with each other and with the L and M chains, by residues from the L and M chains that coordinate to the Fe2+, by salt bridges that are formed between the L and M chains and the H chain, and possibly by electrostatic forces between the ends of helices. The conserved residues at the N-termini of the L and M chains were identified as recognition sites for the H chain.  相似文献   

4.
The complete nucleotide sequence of two Chloroflexus aurantiacus reaction-center genes has been obtained. The amino acid sequence deduced from the first gene showed 40% similarity to the L subunit of the Rhodobacter sphaeroides reaction center. This L subunit was 310 amino acids long and had an approximate molecular mass of 35 kDa. The second gene began 17 bases downstream from the first gene. The amino acid sequence deduced from it (307 amino acids; 34950 Da) was 42% similar to the M subunit of the Rhodobacter sphaeroides reaction center. 20% of the deduced primary structure were confirmed through automated Edman degradation of cyanogen bromide peptide fragments or N-chlorosuccinimide peptide fragments isolated from the purified reaction-center complex or from the individual subunits. The peptides were isolated by preparative gel electrophoresis combined with molecular sieve chromatography in the presence of a mixture of formic acid, acetonitrile, 2-propanol and water. This method appeared to be applicable to the isolation of other hydrophobic proteins and their peptides.  相似文献   

5.
Kálmán L  Williams JC  Allen JP 《FEBS letters》2003,545(2-3):193-198
Markedly different light-induced protonational changes were measured in two reaction center mutants of Rhodobacter sphaeroides. A quadruple mutant containing alterations, at residues L131, M160, M197, and M210, that elevate the midpoint potential of the bacteriochlorophyll dimer was compared to the Y(M) mutant, which contains these alterations plus a tyrosine at M164 serving as a secondary electron donor [Kálmán et al., Nature 402 (1999) 696]. In the quadruple mutant, a proton uptake of 0.1-0.3 H(+)/reaction center between pH 6 and 10 resulted from formation of the oxidized bacteriochlorophyll donor and reduced primary quinone. In the Y(M) mutant, a maximal proton release of -0.5 H(+)/reaction center at pH 8 was attributed to formation of the tyrosyl radical and modeled using electrostatic and direct proton-releasing mechanisms.  相似文献   

6.
Binding of transition metal ions to the reaction center (RC) protein of the photosynthetic bacterium Rhodobacter sphaeroides has been previously shown to slow light-induced electron and proton transfer to the secondary quinone acceptor molecule, Q(B). On the basis of x-ray diffraction at 2.5 angstroms resolution a site, formed by AspH124, HisH126, and HisH128, has been identified at the protein surface which binds Cd(2+) or Zn(2+). Using Zn K-edge x-ray absorption fine structure spectroscopy we report here on the local structure of Zn(2+) ions bound to purified RC complexes embedded into polyvinyl alcohol films. X-ray absorption fine structure data were analyzed by combining ab initio simulations and multiparameter fitting; structural contributions up to the fourth coordination shell and multiple scattering paths (involving three atoms) have been included. Results for complexes characterized by a Zn to RC stoichiometry close to one indicate that Zn(2+) binds two O and two N atoms in the first coordination shell. Higher shell contributions are consistent with a binding cluster formed by two His, one Asp residue, and a water molecule. Analysis of complexes characterized by approximately 2 Zn ions per RC reveals a second structurally distinct binding site, involving one O and three N atoms, not belonging to a His residue. The local structure obtained for the higher affinity site nicely fits the coordination geometry proposed on the basis of x-ray diffraction data, but detects a significant contraction of the first shell. Two possible locations of the second new binding site at the cytoplasmic surface of the RC are proposed.  相似文献   

7.
The location of the cytochrome binding site on the reaction center of Rhodopseudomonas sphaeroides was studied by two different approaches. In one, cross-linking agents, principally dithiobis(propionimidate) and dimethyl suberimidate, were used to link cytochrome c and cytochrome c2 to reaction centers; in the other, the inhibition of electron transfer by antibodies against the subunits was investigated. Cytochrome c (horse) cross-linked to the L and M subunits, whereas cytochrome c2 (R. sphaeroides) cross-linked only to the L subunit. The cross-linked reaction center-cytochrome complexes were isolated by affinity chromatography. The rate of electron transfer in the cross-linked cytochrome c2 complex was the same as that in the un-cross-linked complex. However, when cytochrome c was used, the rate in the cross-linked complex was about 15 times slower than that in the un-cross-linked complex. Fab fragments of antibodies specific against the L and M subunits blocked electron transfer from both cytochrome c (horse) and cytochrome c2 (R. sphaeroides). Antibodies specific for the H subunit did not block either reaction. We conclude that the cytochrome binding site on the reaction center is close (approximately 10 A) to both the L and M subunits, possibly in a cleft between them.  相似文献   

8.
9.
The topology of the cytochrome b subunit of the bc1 complex from Rhodobacter sphaeroides has been examined by generating gene fusions with alkaline phosphatase. Gene fusions were generated at random locations within the fbcB gene encoding the cytochrome b subunit. These fusion products were expressed in Escherichia coli and were screened for alkaline phosphatase activity on chromogenic plates. 33 in-frame fusions which showed activity were further characterized. The fusion junctions of all those fusions which had a high specific activity were clustered in three regions of the cytochrome b polypeptide, and thus these regions were tentatively assigned as being near the periplasmic surface. The data are consistent with a model containing eight transmembrane helices. In order to explore the validity of the gene fusion approach for a protein not normally expressed in E. coli, the topology of the L-subunit of the photosynthetic reaction center from R. sphaeroides was also explored using phoA gene fusions. A similar protocol was used as with the cytochrome b subunit. The gene fusions with high specific activity were shown to be in regions of the L-subunit polypeptide known to be at or near the periplasmic surface, as defined by the high resolution structure determined by X-ray crystallography. These data demonstrate the utility of this approach for determining membrane protein topology and extend potential applications to include at least some proteins not normally expressed in E. coli.  相似文献   

10.
The X-ray crystal structure of a reaction centre from Rhodobacter sphaeroides with a mutation of tyrosine M210 to tryptophan (YM210W) has been determined to a resolution of 2.5 A. Structural conservation is very good throughout the body of the protein, with the tryptophan side chain adopting a position in the mutant complex closely resembling that of the tyrosine in the wild-type complex. The spectroscopic properties of the YM210W reaction centre are discussed with reference to the structural data, with particular focus on evidence that the introduction of the bulkier tryptophan in place of the native tyrosine may cause a small tilt of the macrocycle of the B(L) monomeric bacteriochlorophyll.  相似文献   

11.
Reaction centers from the Y(L167) mutant of Rhodobacter sphaeroides, containing a highly oxidizing bacteriochlorophyll dimer and a tyrosine residue substituted at Phe L167, were compared to reaction centers from the Y(M) mutant, with a tyrosine at M164, and a quadruple mutant containing a highly oxidizing dimer but no nearby tyrosine residue. Distinctive features in the light-induced optical and EPR spectra showed that the oxidized bacteriochlorophyll dimer was reduced by Tyr L167 in the Y(L167) mutant, resulting in a tyrosyl radical, as has been found for Tyr M164 in the Y(M) mutant. In the Y(L167) mutant, the net proton uptake after formation of the tyrosyl radical and the reduced primary quinone ranged from +0.1 to +0.3 H(+)/reaction center between pH 6 and pH 10, with a dependence that is similar to the quadruple mutant but different than the large proton release observed in the Y(M) mutant. In the light-induced absorption spectrum in the 700-1000 nm region, the Y(L167) mutant exhibited unique changes that can be assigned as arising primarily from an approximately 30 nm blue shift of the dimer absorption band. The optical signals in the Y(L167) mutant were pH dependent, with a pK(a) value of approximately 8.7, indicating that the tyrosyl radical is stabilized at high pH. The results are modeled by assuming that the phenolic proton of Tyr L167 is trapped in the protein after oxidation of the tyrosine, resulting in electrostatic interactions with the tetrapyrroles and nearby residues.  相似文献   

12.
Reported are the X-ray crystal structures of recombinant Phascolopsis gouldii methemerythrin (1.8-A resolution) and the structure of an O2-binding-pocket mutant, L98Y methemerythrin (2.1-A resolution). The L98Y hemerythrin (Hr) has a greatly enhanced O2 affinity, a slower O2 dissociation rate, a larger solvent deuterium isotope effect on this rate, and a greater resistance to autoxidation relative to the wild-type protein. The crystal structures show that the hydrophobic binding pocket of Hr can accommodate substitution of a leucyl by a tyrosyl side chain with relatively minor structural rearrangements. UV/vis and resonance Raman spectra show that in solution L98Y methemerythrin contains a mixture of two diiron site structures differing by the absence or presence of an Fe(III)-coordinated phenolate. However, in the crystal, only one L98Y diiron site structure is seen, in which the Y98 hydroxyl is not a ligand, but instead forms a hydrogen bond to a terminal hydroxo/aqua ligand to the nearest iron. Based on this crystal structure, we propose that in the oxy form of L98Y hemerythrin the non-polar nature of the binding pocket favors localization of the Y98 hydroxyl near the O2 binding site, where it can donate a hydrogen bond to the hydroperoxo ligand. The stabilizing Y98OH-O2H-interaction would account for all of the altered O2 binding properties of L98Y Hr listed above.  相似文献   

13.
J Tandori  P Sebban  H Michel  L Baciou 《Biochemistry》1999,38(40):13179-13187
The X-ray crystallographic structure of the photosynthetic reaction center from Rhodobacter sphaeroides obtained at high resolution has revealed a number of internal water molecules (Ermler, U., Fritzsch, G., Buchanan, S. K., and Michel, H. (1994) Structure 2, 925-936; Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Science 276, 812-816). Some of them are organized into distinct hydrogen-bonded water chains that connect Q(B) (the terminal quinone electron acceptor of the reaction center) to the aqueous phase. To investigate the role of the water chains in the proton conduction process, proline L209, located immediately adjacent to a water chain, was mutated to the following residues: F, Y, W, E, and T. We have first analyzed the effects of the mutations on the kinetic and thermodynamic properties of the rate constants of the second electron transfer (k(AB)(2)) and of the coupled proton uptake (k(H)+) at the second flash. In all aromatic mutants, k(AB)(2) and k(H)+ are notably and concomitantly decreased compared to the wild-type, while no effect is observed in the other mutants. The temperature dependence of these rates shows activation energy values (DeltaH) similar for the proton and electron-transfer processes in the wild-type and in most of the mutants, except for the L209PW and L209PF mutants. The analysis of the enthalpy factors related to the electron and proton-transfer processes in the L209PF and the L209PW mutants allows to distinguish the respective effects of the mutations for both transfer reactions. It is noteworthy that in the aromatic mutants a substantial increase of the free energies of activation is observed (DeltaG(L209PY) < DeltaG(L209PF) < DeltaG(L209PW)) for both proton and electron-transfer reactions, while in the other mutants, DeltaG is not affected. The salt concentration dependence of k(AB)(2) shows, in the L209PF and L209PW mutants, a higher screening of the protein surface potential experienced by Q(B). Our data suggest that residues F and W in position L209 increase the polarizability of the internal water molecules and polar residues by altering the organization of the hydrogen-bond network. We have also analyzed the rates of the first electron-transfer reaction (k(AB)(1)), in the 100 micros time domain. These kinetics have previously been shown to reflect protein relaxation events possibly including proton uptake events (Tiede, D. M., Vazquez, J., Cordova, J., and Marone, P. M. (1996) Biochemistry 35, 10763-10775). Interestingly, in the L209PF and L209PW mutants, k(AB)(1) is notably decreased in comparison to the wild type and the other mutants, in a similar way as k(AB)(2) and k(H)+. Our data imply that the dynamic organization of this web is tightly coupled to the electron transfer process that is kinetically limited by protonation events and/or conformational rearrangements within the protein.  相似文献   

14.
The three-dimensional structures of bacterial reaction centers have served as the framework for much of our understanding of anoxygenic photosynthesis. A key step in the determination of the structure of the reaction center from Rhodobacter sphaeroides was the use the molecular replacement technique. For this technique, we made use of two sets of data. First, X-ray diffraction data had been measured from crystals of the reaction center from R. sphaeroides by our research group in California, led by George Feher and Douglas Rees. The second data set consisted of the coordinates of the three-dimensional structure of the reaction center from Rhodopseudomonas (now Blastochloris) viridis, which had been solved in the pioneering efforts of a group in Martinsried, led by Johann Deisenhofer, Robert Huber and Hartmut Michel. The collaborative efforts of these two groups to determine the structure of the reaction center from R. sphaeroides is described.  相似文献   

15.
The localization of the reaction center polypeptides (L, M, and H) in the membranes of both the wild-type, strain 2.4.1, and the carotenoidless mutant, R-26, of Rhodopseudomonas sphaeroides was determined by using affinity-purified antibodies specific for these proteins. Binding of the antibodies to reaction center subunits in spheroplasts was visualized in the electron microscope by immunoferritin labeling. The H and M subunits were labeled at both the cytoplasmic and the periplasmic surfaces of the membrane, whereas the L subunit was labeled only at the periplasmic surface of the membrane. Thus, the reaction center is asymmetrically oriented in the membrane with at least two subunits (H and M) spanning the membrane.  相似文献   

16.
The electronic structure of protein chains L and M in photosynthetic reaction center (PRC) of Rhodobacter sphaeroides (Van Niel) Imhoff, Truper et Pfennig) was studied by using the Overlapping Dimer Approximation method and the Extended Negative Factor Counter method at ab initio level. The result indicated that: (1) Amino acid residues, the molecular orbitals of which composed the main components of frontier orbitals of protein chain L (M ), are located at the random coil areas of chain L (α helix areas of chain M ). Since the random coil is flexible and more easy to change its conformation in the electron transfer process and to reduce the energy of the system, and the structure of the α helix is reletively stable, this difference might be one of the causes for the electron transfer in photosynthetic reaction center (PRC) only takes place along the L branch. (2) The His residues which axially coordinated to the “special pair” P and accessory chlorophyll molecules (ABChls) are essentially important for the ELUMO levels of P and ABChl. But, the corresponding molecular orbitals of these His residues do not appear in the composition of frontier orbitals of protein chains. It means that the interaction between pigment molecules and protein chains do not influence the contribution to the frontier orbitals of protein chains explicitly, but influences the corresponding ELUMO levels significantly.  相似文献   

17.
A Mn-containing enzyme complex is involved in the oxidation of H2O to O2 in algae and higher plants. X-ray absorption spectroscopy is well suited for studying the structure and function of Mn in this enzyme complex. Results of X-ray K-edge and extended X-ray absorption fine structure (EXAFS) studies of Mn in the S1 and S2 states of the photosynthetic O2-evolving complex in photosystem II preparations from spinach are presented in this paper. The S2 state was prepared by illumination at 190 K or by illumination at 277 K in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU); these are protocols that limit the photosystem II reaction center to one turnover. Both methods produce an S2 state characterized by a multiline electron paramagnetic resonance (EPR) signal. An additional protocol, illumination at 140 K, produces as a state characterized by the g = 4.1 EPR signal. We have previously observed a shift to higher energy in the X-ray absorption K-edge energy of Mn upon advancement from the dark-adapted S1 state to the S2 state produced by illumination at 190 K [Goodin, D. B., Yachandra, V. K., Britt, R. D., Sauer, K., & Klein, M. P. (1984) Biochim. Biophys. Acta 767, 209-216]. The Mn K-edge spectrum of the 277 K illuminated sample is similar to that produced at 190 K, indicating that the S2 state is similar when produced at 190 or 277 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of D2O, glycerol and dimethyl sulfoxide (DMSO) on redox potential Em of bacteriochlorophyll of a special P2 or [P(M)P(L)] pair, the rate of energy migration from bacteriopheophytin H(M) to [P(M)P(L)], electron transfer from [P(M)P(L)] to bacteriopheophytin H(L) and then to quinone Q(A) in reaction centers (RC) of Rhodobacter sphaeroides were studied. The H2O --> D2O substitution did not change Em of the special pair, whereas addition of 70% glycerol or 35% DMSO (v/v) increased the values of Em by 30 and 45 mV, respectively. Rate constants of energy migration km(H(M)* (km)--> P2), charge separation ke([P(M)P(L)] *H(L) (ke)--> [P(M)P(L)] +H(L)-), electron transfer to quinone kQ did not change after the glycerol addition, whereas isotopic substitution and addition of DMSO caused a 2-3-fold increase in km, ke, and kQ values. Theoretical analysis of the redox center potential dependence on dielectric permeability epsilon, swelling of the protein globule in a solvent, and on changes in the charge distribution (charge shifts) in the protein interior near the redox center was carried out. It has been shown that the H2O replacement with DMSO can result in the Em increase by tens of mV. No correlation was found between the Em values and the rate of charge separation upon isotopic substitution and addition of cryoprotectants. The effect of epsilon of the medium on the rate of electron transport due to changes of energy of intermolecular interaction between the donor and acceptor molecules was estimated.  相似文献   

19.
The structures of the reaction center variants Pro L209 --> Tyr, Pro L209 --> Phe, and Pro L209 --> Glu from the photosynthetic purple bacterium Rhodobacter sphaeroides have been determined by X-ray crystallography to 2.6-2.8 A resolution. These variants were constructed to interrupt a chain of tightly bound water molecules that was assumed to facilitate proton transfer from the cytoplasm to the secondary quinone Q(B) [Baciou, L., and Michel, H. (1995) Biochemistry 34, 7967-7972]. However, the amino acid exchanges Pro L209 --> Tyr and Pro L209 --> Phe do not interrupt the water chain. Both aromatic side chains are oriented away from this water chain and interact with three surrounding polar side chains (Asp L213, Thr L226, and Glu H173) which are displaced by up to 2.6 A. The conformational changes induced by the bulky aromatic rings of Tyr L209 and Phe L209 lead to unexpected displacements of Q(B) compared to the wild-type protein. In the structure of the Pro L209 --> Tyr variant, Q(B) is shifted by approximately 4 A and is now located at a position similar to that reported for the wild-type reaction center after illumination [Stowell, M. H. B., et al. (1997) Science 276, 812-816]. In the Pro L209 --> Phe variant, the electron density map reveals an intermediate Q(B) position between the binding sites of the wild-type protein in the dark and the Pro L209 --> Tyr protein. In the Pro L209 --> Glu reaction center, the carboxylic side chain of Glu L209 is located within the water chain, and the binding site of Q(B) remains unchanged compared to the wild-type structure.  相似文献   

20.
M R Sutton  D Rosen  G Feher  L A Steiner 《Biochemistry》1982,21(16):3842-3849
We have determined the sequence of the 25-28 amino-terminal residues of the three subunits, L, M, and H, of the membrane-bound reaction center protein of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26. The sequences are as follows: L, H2N-Ala-Leu-Leu-Ser-Phe-Glu-Arg-Lys-Tyr-Arg- Val-Pro-Gly-Gly-Thr-Leu-Val-Gly-Gly-Asn-Leu-Phe-Asp-Phe-(His)-Val-; M, H2N-Ala-Glu-Tyr-Gln-Asn-Ile-Phe-Ser-Gln-Val-Gln-Val-Arg-Gly-Pro-Ala-Asp-Leu-Gly-Met-Thr-Glu-Asp-Val-Asn-Leu-Ala-Asn-; H, H2N-Met-Val-Gly-Val-Thr-Ala-Phe-Gly-Asn-Phe-Asp-Leu-Ala-Ser-Leu-Ala-Ile-Tyr-Ser-Phe-Trp-Ile-Phe-Leu-Ala-X-Leu-Ile-. The H sequence, especially after the aspartyl residue at position 11, is rich in hydrophobic residues, consistent with the possibility that this section of the polypeptide chain is located within the membrane. The L sequence is hydrophilic near the amino terminus and then becomes moderately hydrophobic. The M sequence is of average polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号