首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carotenoids are considered a limited resource for animals because they are not synthesised by the body. Birds use carotenoids, mainly xanthophylls, for physiological functions, such as anti-oxidant activity, and for colour expression; hence, they need to shunt carotenoids between competitive demands. Recent studies suggest that the anti-oxidant role of xanthophylls might not be as important as previously thought and that at high concentrations they may, in fact, acquire pro-oxidant properties. In this work, we studied the effects of a moderate xanthophyll supplementation (115 mg of carotenoids/kg diet/day; 4 weeks) on serum carotenoids, serum concentration of reactive oxygen metabolites (ROMs), serum anti-oxidant capacity (OXY), the degree of oxidative stress (OS; ROMs/OXY × 1,000), body mass, and skin colour, in rehabilitated captive adult Eurasian kestrels (Falco tinnunculus). The supplementation caused increased levels of serum carotenoids (∼90%), ROMs (∼82%), OS (∼115%) and an immediate loss of body mass (∼6.2%), but it did not affect OXY and tarsi skin hue. The red (∼16%) and yellow (∼15%) colorimetric components were increased after the first week of supplementation and the effect persisted during the rest of the experiment. Two months after the end of supplementation, serum carotenoids, OS and ROMs returned to baseline levels, however the body mass did not. Our findings suggest that, above a certain physiological threshold, carotenoids can cause detrimental effects. This is relevant for the trade-off between expression of sexual signals and the costs of maintaining/producing them.  相似文献   

2.
In pigs, the genetic selection for lean, large muscle blocks and fast growth has been linked to an increased prevalence of metabolic diseases such as porcine stress syndrome and mulberry heart disease. These diseases are associated with cardiovascular inadequacy, which may lead to oxidative stress. In the present study, reactive oxygen metabolites (ROMs) and the anti-oxidant power (OXY) in sera of different swine groups were investigated. The following groups were selected (each around 80 kg body weight): wild boars (WB), Cinta Senese (CS), and Landrace x Large White (LxLW), the latter as both specific pathogen-free (SPF) and intensively farmed animals. In addition, a group of LxLW agonic sows (AS) was also investigated; this group is known to be under oxidative stress. Two colorimetric micro-methods were used to measure ROMs and OXY; ROMs were expressed as mM H(2)O(2) and OXY as microM HOCl neutralised. Between groups, average ROM and OXY values were found to be significantly different by one-way ANOVA (P < 0.001). ROM levels were lower in WB (13.41 +/- 1.85) and CS (19.27 +/- 1.68), and highest in LxLW (42.00 +/- 1.36). OXY values ranged from 260.10 +/- 22.13 (WB) to 396.90 +/- 9.83 (LxLW). Only one swine group (the CS group) showed a significant, positive correlation between ROM and OXY values. The AS group even showed a negative correlation between ROM and OXY values. These results imply satisfactory environmental coping occurred only within the CS group. Results are discussed in the light of animal welfare legislation, food safety and consumers' protection.  相似文献   

3.
We investigated genetic and environmental components of variance in avian T-cell-mediated immune response (CMI) through a cross-fostering experiment conducted on wild American kestrels (Falco sparverius). CMI was evaluated in vivo by an experimental challenge with phytohaemagglutinin, a T-cell mitogen, injected intradermally in fledglings. Additionally, we assessed two measures of nutritional condition (body mass and circulating plasma proteins) which could influence the variance components of CMI. A two-way nested ANOVA indicated that CMI of fledgling kestrels was explained more by the nest where the bird was reared (33% of the explained variance) than by the nest of origin (12%). Body mass was explained equally by familial and environmental components, while plasma proteins were only related to the rearing environment. CMI of fledglings was not related to their circulating plasma proteins, but was positively correlated with their body mass. Fledgling body mass seemed to be influenced by pre-hatching or post-hatching maternal effects prior to manipulation since resemblance in body mass of sibships at the age of manipulation was high (h 2≤0.58), and body mass at this age predicted body mass at fledging. Therefore, pre-manipulation parental effects on body mass, such as investment in egg size, could have inflated the familial effects on body mass of fledglings and then on its correlated CMI. When controlling for body mass, most of the variation in CMI of fledglings was explained by the nest where the bird was reared (36.6%), while the variance explained by the nest of origin (4%) was not significant. This means that environmental influences are major determinants of offspring CMI. The low proportion of variance explained by the familial component may have been due to the high correlation of CMI to fitness. Received: 19 October 1999 / Accepted: 23 December 1999  相似文献   

4.
1. Fluctuations in the quality of the habitat in which an animal lives can have major consequences for its behaviour and physiological state. In poor-quality habitat with low food availability, metabolically intensive foraging activity is likely to result in increased generation of reactive oxygen species, while scarcity of food can lead to a weakening of exogenously derived antioxidant defences. The consequent oxidant/antioxidant imbalance may lead to elevated oxidative stress. 2. Although the link between food availability and oxidative stress has been studied in the laboratory, very little is known about this relationship in the wild. Here, we investigate the association between territory quality (measured through food availability) and oxidative stress in the Seychelles warbler (Acrocephalus sechellensis). 3. Seychelles warblers are insectivorous birds that inhabit a fixed feeding territory year round. Individuals experience profound and rapid local fluctuations in territory quality within these territories, owing to changing patterns of vegetation defoliation resulting from seasonal changes in prevailing wind direction and wind-borne salt spray. 4. As expected, oxidant generation (measured as reactive oxygen metabolites; ROMs) was higher when territory quality was low, but there was no correlation between territory quality and antioxidant capacity (OXY). The negative correlation between territory quality and ROMs was significant between individuals and approached significance within individuals, indicating that the pattern resulted from individual responses to environmental variation. 5. ROMs and OXY levels within individuals were positively correlated, but the relationship between territory quality and ROMs persisted after including OXY as a covariate, implying that oxidative stress occurs in low territory quality conditions. 6. Our results indicate that the oxidative stress balance of an individual is sensitive to relatively short-term changes in territory quality, which may have consequences for the birds' fitness.  相似文献   

5.
Here, we aimed at estimating sex‐specific heritabilities of cell‐mediated immune response (CMI) in the blue tit nestlings (Cyanistes caeruleus). To separate genetic and environmental components of the phenotypic variance in CMI (measured using phytohaemagglutinin assay), we performed a cross‐fostering experiment. Additionally, controlled environmental variation was introduced by enlarging some broods. Our analyses revealed a significant genetic component (as approximated by the nest‐of‐origin term) of the phenotypic variance in immune response. More importantly, these genetic effects differed between sexes and experimentally manipulated brood sizes, as indicated by significant genotype‐by‐sex and genotype‐by‐environment interactions. We discuss possible causes of such sexual dimorphism in gene expression and suggest that sex‐ and environment‐specific genetic interactions may contribute to the maintenance of genetic variability in traits related to immune functions.  相似文献   

6.
Mice selected for aggression and coping (long attack latency (LAL), reactive coping strategy; short attack latency (SAL), pro-active coping strategy) are a useful model for studying the physiological background of animal personalities. These mice also show a differential stress responsiveness, especially in terms of hypothalamic-pituitary-adrenal axis reactivity, to various challenges. Since the stress response can increase the production of reactive oxygen species, we predicted that the basic oxidative status of the lines could differ. We found that LAL showed higher serum antioxidant capacity (OXY) than SAL, while no differences emerged for reactive oxygen metabolites (ROMs) or the balance between ROMs and OXY, reflecting oxidative stress. Moreover, the lines showed inverse relationships between ROMs or OXY and body mass corrected for age. The results indicate that variation in oxidative status is heritable and linked to personality. This suggests that different animal personalities may be accompanied by differences in oxidative status, which may predict differences in longevity.  相似文献   

7.
Mothers can adjust the phenotype of their offspring to the local environment through a modification of their egg investment and/or nestling provisioning. However, offspring health may be severely impaired if the conditions experienced by nestlings do not match with those anticipated by the mother. If maternal effects differentially affect the sexes or if one sex is more strongly affected by an environmental stressor, fitness benefits may also differ between male and female offspring. Here, we study maternal effects in male and female great tit Parus major nestlings by means of an ectoparasite treatment before egg‐laying combined with a partial cross‐foster experiment between broods of infested and uninfested nests. Nestlings that were raised in their own nest experienced the same conditions before and after cross‐fostering (either in parasite infested or uninfested nests), while cross‐fostered ones experienced different conditions (either changing from infested to uninfested or the other way around). We measured effects on nestling plasma levels of oxidative stress [reactive oxygen metabolites (ROMs) and total antioxidant capacity (OXY)], body condition (body size and mass) and post‐fledging survival. Daughters, but not sons, from matching conditions showed the lowest ROM and high OXY levels when exposed to parasites, while there was no effect of parasite exposure in any of both sexes in case of a mismatch. In contrast, body condition and post‐fledging survival were not (or only slightly) affected by any of the experimental treatments. Results of this study show that maternal effects can affect oxidative stress levels of nestlings in a sex‐specific way and that the outcome depends on the exposure to environmental stressors, such as parasites.  相似文献   

8.
We quantified in the garden warbler (Sylvia borin) and the barn swallow (Hirundo rustica), two long-distance migratory songbirds, the early oxidative damage (ROMs) and plasma anti-oxidant capacity (OXY) variation of individuals caught at a stop-over site after a sustained flight across the sea, during spring migration. Our main goal was to quantify the oxidative damage and anti-oxidant capacity variation in these two migratory species in relation to fat and muscle stores. The birds were sampled in Ponza, a small island along the migratory route of these species. The levels of ROMs and OXY did not show any differences between the two species and in general were higher in individuals with higher fat and protein stores. Nevertheless, the balance between ROMs and OXY was better in individuals in good condition. These patterns were similar in both species. No sex differences emerged for both ROMs and OXY in the barn swallow, the only species that could be sexed. Both markers of oxidative stress did not show any significant variation across a 30-min restrained experiment. These data are the first of this kind in wild birds in a migratory context and suggest that individuals in better condition are exposed to lower oxidative stress, providing an indirect evidence of the oxidative cost caused by prolonged flights.  相似文献   

9.
We evaluated the oxidative cost paid by birds when coping with an immune challenge. We used the phytohaemagglutinin skin test (PHA) to assess the effects of the T-cell-mediated immune response on the concentration of reactive oxygen metabolites (ROMs), total antioxidant barrier (OXY) and total serum carotenoid concentration in wild nestlings of the Eurasian kestrel (Falco tinnunculus). Immunostimulation caused increased levels of ROMs, decreased OXY and increased circulating levels of carotenoids. These results suggest that an immune challenge can increase avian oxidative stress, and that carotenoids were remobilised from other tissues likely because their circulating levels were not sufficiently high to sustain an effective immune response.  相似文献   

10.
Devin R. de Zwaan  Kathy Martin 《Ibis》2018,160(4):790-804
Songbird nests are an important life‐history component with multiple functions, including the creation of a suitable microclimate for offspring development. Thus, functional nest characteristics may influence fitness correlates, such as nestling size traits, and may co‐vary with prevailing environmental conditions. We investigated among‐ and within‐female variation in nest substrate, lining and decoration structures with associated fitness consequences (hatching success, nestling size traits, nest survival) across two breeding seasons for an alpine population of Horned Lark Eremophila alpestris. We combined these observations with explicit measures of nest temperature to address the influence of nest characteristics on microclimate. Nests in heather substrate had the coldest microclimates compared with grass and bare‐ground substrate, but also the greatest nest survival rates (68% versus 37–44% in other substrates), indicating the potential for substrate use decisions to reflect a trade‐off between microclimate and nest survival in response to prevailing weather and predation risk conditions. Furthermore, nest lining and nest decoration patterns indicated some support for a thermoregulatory function. Nests that were lined with willow (Salix sp.) seed‐down were associated with larger, heavier nestlings and the use of down lining decreased in frequency as the season warmed up. Nest decoration placed in front of the nest (e.g. stones or dirt clumps varying in mass from 5.3 to 186.6 g) was positively associated with warmer nest microclimates. Females demonstrated high phenotypic flexibility, as 61–94% of the observed variance in nest characteristics was explained by within‐female rather than among‐female differences. Such flexible nesting behaviour suggests the capacity to adjust to changing environmental conditions to maintain vital fitness correlates such as nest survival and nestling size development.  相似文献   

11.
In the context of sexual selection and parent-offspring communication, carotenoid-based coloration operates as a dynamic condition-dependent signal, as pigments stored in the skin and in the bill can be reallocated to other tissues in accordance with physiological needs. We studied the proximate factors affecting the carotenoid-dependent coloration of the Eurasian kestrel (Falco tinnunculus). Kestrel nestlings show carotenoid-based coloration at the integument level. Adult males and females share similar characteristics, but to a different extent. By cross-fostering nestlings, we evaluated the importance of the “nest of rearing” and the “nest of origin” to determine variation in skin color and blood carotenoids. The nest of rearing accounted for most of the observed variance in skin color, as well as serum carotenoids, while the nest of origin was not causal to the variability of carotenoids in young kestrels. The study indirectly shows that carotenoid-based color expressed by young kestrels is not affected by pre-laying conditions. Furthermore, we found that carotenoid coloration and blood carotenoid concentration were correlated at phenotypic and environmental levels, while the hereditary component of the carotenoid traits was too low to estimate their correlation at the genetic level.  相似文献   

12.
Different components of heritability, including genetic variance (VG), are influenced by environmental conditions. Here, we assessed phenotypic responses of life‐history traits to two different developmental conditions, temperature and food limitation. The former represents an environment that defines seasonal polyphenism in our study organism, the tropical butterfly Bicyclus anynana, whereas the latter represents a more unpredictable environment. We quantified heritabilities using restricted maximum likelihood (REML) procedures within an “Information Theoretical” framework in a full‐sib design. Whereas development time, pupal mass, and resting metabolic rate showed no genotype‐by‐environment interaction for genetic variation, for thorax ratio and fat percentage the heritability increased under the cool temperature, dry season environment. Additionally, for fat percentage heritability estimates increased under food limitation. Hence, the traits most intimately related to polyphenism in B. anynana show the most environmental‐specific heritabilities as well as some indication of cross‐environmental genetic correlations. This may reflect a footprint of natural selection and our future research is aimed to uncover the genes and processes involved in this through studying season and condition‐dependent gene expression.  相似文献   

13.
Knowledge of the role of origin‐related, environmental, sex, and age factors on host defence mechanisms is important to understand variation in parasite intensity. Because alternative components of parasite defence may be differently sensitive to various factors, they may not necessarily covary. Many components should therefore be considered to tackle the evolution of host–parasite interactions. In a population of barn owls (Tyto alba), we investigated the role of origin‐related, environmental (i.e. year, season, nest of rearing, and body condition), sex, and age factors on 12 traits linked to immune responses [humoral immune responses towards sheep red blood cells (SRBC), human serum albumin (HSA) and toxoid toxin TT, T‐cell mediated immune response towards the mitogen phytohemagglutinin (PHA)], susceptibility to ectoparasites (number and fecundity of Carnus haemapterus, number of Ixodes ricinus), and disease symptoms (size of the bursa of Fabricius and spleen, proportion of proteins that are immunoglobulins, haematocrit and blood concentration in leucocytes). Cross‐fostering experiments allowed us to detect a heritable component of variation in only four out of nine immune and parasitic parameters (i.e. SRBC‐ and HSA‐responses, haematocrit, and number of C. haemapterus). However, because nestlings were not always cross‐fostered just after hatching, the finding that 44% of the immune and parasitic parameters were heritable is probably an overestimation. These experiments also showed that five out of these nine parameters were sensitive to the nest environment (i.e. SRBC‐ and PHA‐responses, number of C. haemapterus, haematocrit and blood concentration in leucocytes). Female nestlings were more infested by the blood‐sucking fly C. haemapterus than their male nestmates, and their blood was less concentrated in leucocytes. The effect of year, season, age (i.e. reflecting the degree of maturation of the immune system), brood size, position in the within‐brood age hierarchy, and body mass strongly differed between the 12 parameters. Different components of host defence mechanisms are therefore not equally heritable and sensitive to environmental, sex, and age factors, potentially explaining why most of these components did not covary. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 703–718.  相似文献   

14.
Seasonal variation in nest success is well documented for many bird species. Predator behavior has been suggested as a mechanism behind these seasonal patterns, but this hypothesis has received little attention. Here we test the hypothesis that predator behavior produces seasonal patterns of nest success by relating nest success of northern cardinals Cardinalis cardinalis to the activity of Texas rat snakes Elaphe obsoleta. Cardinal nest survival varied over the season and was lower when rat snakes were more active. The probability that a nest survived was associated both with when cardinals nested and with nest height, indicating that both temporal and habitat factors affected predation risk. The increased success of higher nests could be associated with some aspect of rat snakes’ climbing ability. In combination with results for two other species studied previously at the same location, our results for cardinals suggest that the specific seasonal pattern of nest success expected for a given bird species will depend on how its nesting season coincides with predator activity. Determining the generality of seasonal variation in predator behavior as a mechanism for producing seasonal patterns of avian nest success will require additional studies that investigate birds and their nest predators simultaneously.  相似文献   

15.
Summary Intercolonial differences in raiding activity were investigated in the field on 9 colonies of the slavemaking antPolyergus samurai. Duration of raiding season, the mean start time of the first raiding trip in a day, the mean speed of outbound and inbound trips, and the mean distance to target nests varied significantly among colonies. The variance in start time of raiding was correlated with that in soil temperature and diurnal change pattern in soil temperature at the nest sites. The speed of trips and the first day with trips in the season also correlated with soil temperature at the nest site. Simple environmental factors well explained the observed variances in raiding activity among colonies. Therefore, raiding behaviour ofP. samurai seemed to be a stereotyped behaviour that is regulated through simple environmental factors.  相似文献   

16.
Genetic variation for seedling and adult fitness components was measured under natural conditions to determine the relative importance of the seedling stage for lifetime fitness in Erigeron annuus. Variation in lifetime reproductive success can result from both the persistent effects of genetic variation expressed among seedlings and from variation in adult fitness components. Analysis of covariance was used to separate the stage specific from the cumulative effects of genetic variance expressed earlier in the life cycle. E. annuus produces seeds through apomixis, which allowed measurement of the fitness of replicate genotypes from germination through the entire life cycle. There were significant differences among genotypes for date of emergence, seedling size, survivorship and fecundity, but heritabilities were low, indicating slow response to selection. For all characters, environmental components of variance were one to two orders of magnitude larger than genetic variance components, resulting in broad sense heritabilities less than 0.1. For seedling size and fecundity, all of the genetic variance was in the form of genotype-environment interactions, often with large negative genetic correlations across environments. In contrast, genotypes differed in mean survivorship through one year, but there were no genotype-environment interactions for viability. Genetic differences in viability were primarily expressed as differences in overwinter survivorship. Genotype × environment interactions among sites and blocks were generated early in the life cycle while the genotype × environment interactions in response to competitive environment (open, annual cover, perennial cover) first appeared in adult fecundity. Genetic variation in lifetime fitness was not significant, despite a fourfold difference in mean fitness among genotypes.  相似文献   

17.
The presence of heritable variation in traits is a prerequisite for evolution. The great majority of heritability (h2) estimates are performed under laboratory conditions that are characterized by low levels of environmental variability. Very little is known about the effect of environmental variability on the estimation of components of quantitative variation, although theoretical extrapolations from lab studies have been attempted. Here we investigate the effects of environmental heterogeneity on variance component estimation using full-sib families of Gryllus pennsylvanicus split between a homogeneous laboratory environment and a more variable field environment. Although large standard errors prevent demonstration of statistically significant differences among h2 of traits measured in the two environments for all but one trait, the values of h2 are, on average, lower in the variable field environment, with a mean reduction of 19%. Developmental time is an exception, exhibiting high levels of additive variance in the field, leading to a higher value of h2 in the variable environment. Underlying the lower field h2 estimates are greater components of environmental variance as expected, as well as lower components of genetic variance. In this study, there is no evidence that the increase in the environmental component of variance in the field is any more important in the reduction of h2 than is the decrease in the additive genetic component. The implications of the relative changes in the two components of variance are discussed.  相似文献   

18.
Despite the importance of maternal effects in evolution, and knowledge of links among nest site choice, timing of nesting, offspring sex, and reproductive success in animals with environmental sex determination, these attributes have not been rigorously studied in a combined and natural context. To address this need we studied the relationships between three maternal traits (nest site choice, lay date, and nest depth) and two fitness‐related attributes of offspring (hatchling sex and embryonic survival) in the riverine turtle Carettochelys insculpta, a species with temperature‐dependent sex determination, for four years. Predation and flooding were the major sources of embryonic mortality in 191 nests. Embryonic survival was influenced by both lay date and nest site choice: in one year when nesting began later than average, nests laid later and at lower elevations were destroyed by early wet season river rises. In other years early nesting precluded flood mortality. However, turtles did not nest at the highest available elevations, and a field experiment confirmed that turtles were constrained to nest at lower elevations where they could construct a nest chamber. The principal determinant of hatchling sex in 140 nests was lay date, which in turn was apparently related to the magnitude of the previous wet season(s). Clutches laid earlier in the season (a female's first clutch) produced mainly males, while later clutches (her second clutch) yielded mostly females, due to seasonal increases in air temperatures. Accordingly, later nesting produced female‐biased hatchling sex ratios in 1996, while earlier nesting resulted in sex ratios near unity in the other years. However, all‐female nests were more likely to be flooded than mixed‐sex or all‐male nests in years when nesting was late. In conclusion, we found evidence that the position of two maternal trait distributions (elevation of the nest site and lay date), associated with the reproductive strategy of C. insculpta, reflect a combination of natural selection, physical constraints, and phenotypic plasticity. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 1–16.  相似文献   

19.
Nesting behaviour is critical for reproductive success in oviparous organisms with no parental care. In organisms where sex is determined by incubation temperature, nesting behaviour may be a prime target of selection in response to unbalanced sex ratios. To produce an evolutionary change in response to sex-ratio selection, components of nesting behaviour must be heritable. We estimated the field heritability of two key components of nesting behaviour in a population of painted turtles (Chrysemys picta) with temperature-dependent sex determination by applying the ‘animal model’ to a pedigree reconstructed from genotype data. We obtained estimates of low to non-detectable heritability using repeated records across all environments. We then determined environment-specific heritability by grouping records with similar temperatures for the winter preceding the nesting season, a variable known to be highly associated with our two traits of interest, nest vegetation cover and Julian date of nesting. The heritability estimates of nest vegetation cover and Julian date of nesting were qualitatively highest and significant, or nearly so, after hot winters. Additive genetic variance for these traits was not detectable after cold winters. Our analysis suggests that the potential for evolutionary change of nesting behaviour may be dependent on the thermal conditions of the preceding winter, a season that is predicted to be especially subject to climate change.  相似文献   

20.
Trevor Price 《Oecologia》1991,86(4):535-541
Summary I investigated genetic and environmental factors affecting fledgling chick size in the Yellow browed leaf warbler Phylloscopus inornatus. The proportion of variation among broods is >45% for both tarsus length and body weight; this can be attributed at least in part to effects of the shared nest environment. A high off-spring-parent regression for weight also appears to be partly due to an environmentally induced correlation and the regression is reduced when effects of laying date are controlled for. A cross-fostering experiment demonstrated a significant nest of origin x nest of rearing interaction. The presence of genotype-environment interaction affecting chick size may be quite general in birds. It is shown how this can account for observed patterns of the dependence of the magnitude of offspringparent regression on prevailing conditions, as has been found in other studies. In P. inornatus the failure to detect significant genetic variance in chick body weight and tarsus length may be due to high standard errors on the estimates, but it may also reflect true low levels of genetic variance in chick size if the genotype-interaction effect described occurs regularly in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号