首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Satsuma (Citrus unshiu [Mak] Marc.) and Clementine (Citrus reticulata [Hort.] Ex. Tanaka, cv Oroval) are two species of seedless mandarins differing in their tendency to develop parthenocarpic fruits. Satsuma is a male-sterile cultivar that shows a high degree of natural parthenocarpy and a high fruit set. Seedless Clementine varieties are self-incompatible, and in the absence of cross-pollination show a very low ability to set fruit. The gibberellins (GAs) GA53, putative 17-OH-GA53, GA44, GA17, GA19, GA20, GA29, GA1, 3-epi-GA1, GA8, GA24, GA9, and GA4 have been identified from developing fruits of both species by full-scan combined gas chromatography-mass spectrometry. Using selected ion monitoring with [2H2]- and [13C]-labeled internal standards, the levels of GA53, GA44, GA19, GA20, GA1, GA8, GA4, and GA9 were determined in developing ovaries at anthesis and 7 days before and after anthesis, from both species. Except for GA8, levels of the 13-hydroxy-GAs were higher in Satsuma than in Clementine, and these differences were more prominent for developing young fruits. At petal fall, Satsuma had, on a nanograms per gram dry weight basis, higher levels of GA53 (10.4x), GA44 (13.9x), GA19 (3.0x), GA20 (11.2x), and GA1 (2.0x). By contrast, levels of GA8 were always higher in Clementine, whereas levels of GA4 did not differ greatly. Levels of GA9 were very low in both species. At petal fall, fruitlets of Satsuma and Clementine contained 65 and 13 picograms of GA1, respectively. At this time, the application of 25 micrograms of paclobutrazol to fruits increased fruit abscission in both varieties. This effect was reversed by the simultaneous applications of 1 microgram of GA3. GA3 alone improved the set in Clementine (13x), but had little influence on Satsuma. Thus, seedless fruits of the self-incompatible Clementine mandarin may not have adequate GA levels for fruit set. Collectively, these results suggest that endogenous GA content in developing ovaries is the limiting factor controlling the parthenocarpic development of the fruits.  相似文献   

2.
The induction of parthenocarpic fruit set was investigated using the apple cvs. Golden Delicious and Jonagold. The gibberellins GA3, GA4, GA5 and GA7 and the synthetic phenylurea-type cytokinin CPPU (N-(2-chloro-4-pyridyl)-N-phenylurea), were applied alone and in combination to unpollinated flowers at the end of petal fall. Gibberellins induced only a marginal final set of parthenocarpic fruits. CPPU sprays were more effective, particularly in the first year. When applied in combination, CPPU and gibberellins had a positive synergistic effect on parthenocarpic fruit set and fruit size, but a negative effect on flower induction the next year. After CPPU + GA sprays, percent fruit set was similar, or greater, compared to natural pollinated trees. The parthenocarpic fruits induced by CPPU + GA had an increased length to diameter ratio. CPPU stimulated, and GA4 and GA7 reduced, the russeting of the parthenocarpic fruits. The internal quality of the fruits was hardly affected, but Ca-deficiency symptoms occurred more frequently in parthenocarpic fruits.  相似文献   

3.
The radio-labeled gibberellins GA1, GA3,GA4, and GA7 were applied to intact developing applefruits (Malus domestica Borkh. cv. Jonagold) during theperiod when GAs are suggested to inhibit flower bud induction for the followingyear. Radioactivity from these compounds was found to be transported intoadjacent tissues as there are pedicels and bourses (4%). Application topedicels, after removal of the fruits, enhanced the transport into adjacentbourses up to 11%. The bud-carrying lateral bourse shoots contained onlyminor amounts of radioactivity on average 0.4% in both cases. Theseexport rates were identical, 1 or 5 days after application.After application of the corresponding deuterium-labeled GAs and analyses bymass spectrometry the specific metabolization of GA1 toGA1 13-O-glucoside and of GA3 to GA313-O-glucoside was demonstrated. Additional metabolites of GA1 andGA3 were not detected. After fruit application of GA3 theratio of GA3 to GA3 13-O-glucoside was found to be 1:2 inthe fruit. Pedicel application led to ratios of 1:4 and 1:5, respectively, inthe pedicel and in the adjacent bourse. After the application of GA4and GA7, neither glucosylation products nor other GA-like metabolitescould be identified.This is the first report of the metabolism of GAs to GA 13-O-glucosides indeveloping apple fruits. The possible function of the GAs as a signal in flowerbud formation for the following year is discussed.  相似文献   

4.
Two aldehydic C20-gibberellins, L-2 and L-4, were isolated from the immature fruits of yellow lupine (Lupinus luteus L.). L-2 was shown to have the structure II and named gibberellin A23. L-4 was identified as gibberellin A19(VI). Two new C20-gibberellins, tentatively called 3,13-dihydroxy GA15(IV) and 13-hydroxy GA15(VIII), were derived from gibberellins, A23 and A19, respectively. The biological activities of four 3,13-dihydroxy C20-gibberellins-GA18(I), GA23(II), GA28(III) and 3,13-dihydroxy GA15(IV), which were isolated from the fruits except for 3,13-dihydroxy GA15—were compared in six gibberellin bioassays.  相似文献   

5.
Satsuma [Citrus unshiu (Mak) Marc.] and Clementine [Citrus reticulata (Hort.) Ex. Tanaka, cv. Oroval] are two related species of seedless mandarins which differ in their tendency to set parthenocarpic fruits. Satsuma fruits naturally set parthenocarpically whereas Clementine mandarins show very low ability to set fruit in the absence of cross-pollination. The endogenous levels of gibberellins (GAs) and free and conjugated indole-acetic acid (IAA) and abscisic acid (ABA) throughout early stages of fruit development were investigated in seedless cultivars of both species. Analyses performed by full-scan combined gas chromatography-mass spectrometry (GC-MS) of extracts from ovaries at anthesis demonstrated the presence of GA19, GA20, GA29, GA1, GA8, GA3 and iso-GA3 in Satsuma mandarin, whereas only GA29, GA3 and trace levels of GA8 were detected in Clementine. At this developmental stage GA-like substances, as estimated by bioassay, reached their highest levels in Satsuma, while Clementine mandarins contained relatively lower levels. In both species the highest levels of free IAA were found at petal-fall stage at which time free ABA levels also peaked. Developing fruits of Clementine had higher amounts of both free IAA and ABA. In Satsuma, levels of conjugated IAA remained low throughout reproductive development whereas in Clementine they increased as the free form declined. In contrast, conjugated ABA was at low levels in Clementine but reached higher concentrations in Satsuma. These results suggest that in these mandarins the potential for setting parthenocarpic fruits is mainly influenced by the hormonal status of the fruit during the later stages of cell division and early stages of cell enlargement. Thus, the condition of low ability to set parthenocarpic fruits appears to be associated with lower levels of active GAs, lower capability to catabolize ABA to conjugated ABA and higher ability to conjugate IAA during this period.  相似文献   

6.
The gibberellin (GA) economy of young pea (Pisum sativum L.) fruits was investigated using a range of mutants with altered GA biosynthesis or deactivation. The synthesis mutation lh-2 substantially reduced the content of both GA4 and GA1 in young seeds. Among the other synthesis mutations, ls-1, le-1 and le-3, the largest reduction in seed GA1 content was only 1.7-fold (le-1), while GA4 was not reduced in these mutants, and in fact accumulated in some experiments (compared with the wild type). Mutation sln appeared to block the step GA20 to GA29 in young pods and seeds, but not as strongly as in older seeds. Mutations ls-1, le-1 and le-3 markedly reduced pod GA1 levels, but pod elongation was not affected. After feeds of [13C,3H]GA20 to leaves, the pods contained 13C,3H-labelled GA20, GA1, GA29 and GA81, and the seeds, [13C,3H]GA20 and [13C,3H]GA29. These findings are discussed in relation to recent suggestions regarding the role and origin of GA1 in pea fruits. Received: 6 June 1997 / Accepted: 15 July 1997  相似文献   

7.
Maki SL  Brenner ML 《Plant physiology》1991,97(4):1359-1366
Gibberellins (GAs) are either required for, or at least promote, the growth of the pea (Pisum sativum L.) fruit. Whether the pericarp of the pea fruit produces GAs in situ and/or whether GAs are transported into the pericarp from the developing seeds or maternal plant is currently unknown. The objective of this research was to investigate whether the pericarp tissue contains enzymes capable of metabolizing GAs from [14C]GA12-7-aldehyde ([14C]GA12ald) to biologically active GAs. The metabolism of GAs early in the biosynthetic pathway, [14C]GA12 and [14C]GA12ald, was investigated in pericarp tissue isolated from 4-day-old pea fruits. [14C]GA12ald was metabolized primarily to [14C]GA12ald-conjugate, [14C]GA12, [14C]GA53, and polar conjugate-like products by isolated pericarp. In contrast, [14C]GA12 was converted primarily to [14C]GA53 and polar conjugate-like products. Upon further investigations with intact 4-day-old fruits on the plant, [14C]GA12 was found to be converted to a product which copurified with endogenous GA20. Lastly, [2H]GA20 and [2H]GA1 were recovered 48 hours after application of [2H]- and [14C]GA53 to pericarp tissue of intact 3-day-old pea fruits. These results demonstrate that pericarp tissue metabolizes GAs and suggests a function for pericarp GA metabolism during fruit growth.  相似文献   

8.
Tissue-culture-propagated own-rooted cv. Spartan apple trees (Malus domestica Borkh.) planted in 1979 were treated in 1983 and 1985 via a soil-line trunk drench with the plant growth retardant paclobutrazol [(2RS, 3RS)-1-(4-chlorophenyl)-4.4-dimethyl-2-(1,2, 4-triazol-1-yl) pentan-3-ol]. Seeds of immature fruits from untreated and treated trees were sampled in 1989 ca 75 days after full bloom. After seeds were freeze-dried, gibberellins (GAs) were extracted, purified and fractionated via C18 reversed-phase high-performance liquid chromatography (HPLC). Gibberellins A1, A3, A4, A7, A8, A9, A15, A17, A19, A20, A24, A34, A35, A44, A51, A53, A54, A61, A62, A63 and A68 were identified by using C18 HPLC, gas chromatography-selected ion monitoring and Kovats retention indices. Eight of the GAs identified were also quantified by using deuterated internal standards. The paclobutrazol applications caused a 55% reduction of vegetative shoot elongation in 1989, but both treated and untreated trees had developed a biennial bearing pattern by that time (heavy bloom or “on year’in 1989). Levels of early 13-hydroxylation pathway GAs, viz. GA53, GA19, GA20, GA1 and also GA3, were not altered by treatment. However, GA4, GA7 and GA9 were increased 13.4, 6.5 and 3.8 times, respectively, in seeds of fruit from treated compared to untreated trees.  相似文献   

9.
Aloni B  Daie J  Wyse RE 《Plant physiology》1986,82(4):962-966
The effect of gibberellic acid (GA3) on sucrose export from source leaves was studied in broad bean (Vicia faba L.) plants trimmed of all but one source and one sink leaf. GA3 (10 micromolar) applied to the source leaf, enhanced export of [14C]sucrose (generated by 14CO2 fixation) to the root and to the sink leaf. Enhanced export was observed with GA treatments as short as 35 minutes. When GA3 was applied 24 hours prior to the 14CO2 pulse, the enhancement of sucrose transport toward the root was abolished but transport toward the upper sink leaf was unchanged. The enhanced sucrose export was not due to increased photosynthetic rate or to changes in the starch/sucrose ratio within the source leaf; rather, GA3 increased the proportion of sucrose exported. After a 10-min exposure to [14C]GA3, radioactivity was found only in the source leaf. Following a 2 hour exposure to [14C]GA3, radioactivity was distributed along the entire stem and was present in both the roots and sink leaf. Extraction and partitioning of GA metabolites by thin layer chromatography indicated that there was a decline in [14C]GA3 in the lower stem and root, but not in the upper stem. This pattern of metabolism is consistent with the disappearance of the GA3 effect in the lower stem with time after treatment. We conclude that in the short term, GA3 enhances assimilate export from source leaves by increasing phloem loading. In the long term (24 hours), the effect of GA3 is outside the source leaf. GA3 accumulates in the apical region resulting in enhanced growth and thus greater sink strength. Conversely, GA3 is rapidly metabolized in the lower stem thus attenuating any GA effect.  相似文献   

10.
Dipping plantain fruits in gibberellins (GA4/7 or GA3) delayed the ripening of individual fruits by approximately 50%, the two treatments being equally effective. Measurement of the preclimacteric period (PCP) by increased respiration showed that plantain fruits vacuum infiltrated with GA4/7 (10-5 M) gave an extension of 37% in the PCP under high humidity. No effect was observed at low humidity. The use of gibberellins on plantain storage is discussed.  相似文献   

11.
Seeds from heavily fruiting (on-year), mature untreated, and paclobutrazol-treated apple trees (Malus domestica Borkh. cv. Spartan) were sampled in mid-June 1987, mid-July 1987, and mid-July 1990. After seeds were freeze-dried, gibberellins (GAs) were extracted, purified, and fractionated via C18 reversed-phase high-performance liquid chromatography (HPLC). Nine GAs (GA1, GA3, GA4, GA7, GA8, GA9, GA19, GA20, and GA53) were quantified by the use of deuterated GA internal standards. Paclobutrazol trunk drench treatments reduced vegetative shoot elongation in the seasons that seeds were sampled by 55% or more. Between June 17, 1987 and July 15, 1987, the dry weight of seeds from both untreated and treated trees increased about 2.5 times and there were reductions, on a per seed basis, of GA4 in seeds from both untreated and treated trees, of GA7 in seeds from treated trees, and of GA9 in seeds from untreated trees. However, GA9 increased in seeds from treated trees. Changes in levels of some of the early-13-hydroxylation pathway GAs (GA15 GA3, GA8, GA19, GA20, and GA53) also occurred during the month. For mid-July harvested seeds, the pattern, with some exceptions, was that 2 years after paclobutrazol treatment (1987), levels of early-13-hydroxylation pathway GAs in seeds from treated trees were lower compared to controls but after 5 years (1990) their levels tended to increase. For the non-13-hydroxylated GAs (GA4, GA7, and GA9), 2 years after paclobutrazol treatment, GA4 levels were equal in seeds from untreated and treated trees, GA7 decreased in seeds from treated trees compared with controls, but GA9 levels increased. Levels of these three GAs were higher in seeds from treated trees 5 years after treatment (1990) but levels of GA4, GA7, and GA9 dramatically increased in seeds from treated trees 4 years after treatment (1989), as we previously reported.  相似文献   

12.
The gibberellin (GA) content of the reproductive organs ofCitrus sinensis (L.) Osb., cv. Bianca Comuna and the seedless variety, Salustiana, were examined by combined gas chromatography-mass spectrometry (GC/MS) at different stages of development. Gibberellins A1, A20, and A29 were identified in the reproductive buds of both cultivars 21 days prior to anthesis and in fruits 35 days after anthesis by comparison of their mass spectra and Kovats retention indices with those of standards. In addition, three uncharacterized isomers of GA1 were detected, one in buds and two in fruits. The presence of GA4 in both tissues, and of GA8 in the reproductive buds, was indicated by the occurrence of characteristic ions at the expected retention times, although their spectra were too weak for full identification. Vegetative shoots of cv. Salustiana contained gibberellins A1, A19, A20, and A29, and the unidentified isomer of GA1 present in reproductive buds. The presence of trace amounts of gibberellins A8 and A17 was also indicated. Although the two varieties did not differ qualitatively in the GAs present during flower and fruit development, the seedless variety contained slightly greater amounts. The concentrations of gibberellins A1, A4, and A20 were determined by gas chromatography-selected ion monitoring (GC/SIM) throughout ovary development and early fruit growth. In both varieties, the maximum GA1 concentration occurred at anthesis. Highest concentrations of gibberellins A20 and A4 were found in fruit 35 days after anthesis, although the GA1 concentration at this stage remained low.  相似文献   

13.
Endogenous gibberellins were analyzed from a parasitic plant, clover broomrape (Orobanche minor Smith), and its host, clover (Trifolium repens L.). Members of both the early-13- and the early-non-hydroxylation pathways were identified from both the parasite and the host (GA12, GA24, GA9 GA4, GA44, GA19, GA20, and GA1 from clover broomrape; GA9, GA4, GA44, GA19, GA20, and GA1 from clover). Quantitative analyses showed that GA44 was present at high levels in both host and parasite. The similarity in the gibberellins suggests the possibility that the major gibberellins in clover broomrape are transported from clover. However gibberellins such as GA58, GA38, and notably GA47 which was identified from a plant for the first time were detected only from clover broomrape, suggesting that the parasite may have the ability to produce at least those gibberellins  相似文献   

14.
Endogenous gibberellins and inhibitors in caryopses of rye   总被引:1,自引:0,他引:1  
Gibberellins A8, A16, A24, and abscisic acid were identified by GC-MS of derivatized extracts from immature fruits of Secale cereale. Mature caryopses contained ABA and trans-ABA in a ratio 1:1 as well as 4′-dihydrophaseic acid. During milk ripeness a neutral GA conjugate was detected. Free GA, afforded by enzymatic hydrolysis of the conjugate, was chromatographically identified as GA16  相似文献   

15.
Ten gibberellins (GAs) have been identified by Kovats retention indices and full mass spectra from GC-MS analysis of purified extracts of sporophytes of the tree-fern, Cyathea australis. These include the known GA1, GA4, GA9, GA15, GA24, GA35, and GA58 and three new GAs, 12β-hydroxyGA9 (GA69), 12α-hydroxyGA9 (GA70) and 12β-hydroxyGA4 (GA71). The structure of GA71 was established by the preparation and characterization of its methyl ester (as a metabolite of GA4 methyl ester in a culture of prothallia of Lygodium japonicum).  相似文献   

16.
Endogenous gibberellins (GAs) in the shoots of normal- (cv. Yomaki, YO) and bush-type (cv. Spacemaster, SP) cultivars of cucumber (Cucumis sativus L.) grown under natural conditions were analyzed. From both YO and SP grown for 40 days, after sowing, a series of C-13-H GAs including GA4, GA9, GA15, GA24, GA25, GA34, and GA51 were identified by gas chromatography-mass spectrometry (GC-MS; full scan). In addition to the above GAs, GA12 and GA70 were similarly identified from both YO and SP grown for 61 days after sowing. The endogenous levels of GA4 and GA9, which are highly active in promoting cucumber hypocotyl elongation, were quantified by GC-selected ion monitoring (GC-SIM) using [2H2]GA4 and [2H4]GA9 as internal standards. No remarkable difference in terms of endogenous levels of GA4/9 was observed between YO and SP in both growth stages (40 and 61 days after sowing).  相似文献   

17.
Gibberellins (GAs) in suspensors and embryos of Phaseolus coccineus seeds at the heart stage of embryo development were analyzed by combined gas chromatography-mass spectrometry (GC-MS). From the suspensor four C19-GAs, GA1, GA4, GA5, GA6, and one C20 GA, GA44, were identified. From the embryo, five C19-GAs GA1, GA4, GA5, GA6, GA60 and two C20 GAs, GA19 and GA44 were identified. The data, in relation to previous results, suggest a dependence of the embryo on the suspensor during early stages of development.  相似文献   

18.
Tanno N  Yokota T  Abe M  Okagami N 《Plant physiology》1992,100(4):1823-1826
It is known that dormancy of the genus Dioscorea is induced by application of gibberellin (GA) A3. To understand the role of GAs in dormancy induction, endogenous GAs have been identified by Kovats retention indices and full mass spectra from capillary gas chromatography-mass spectrometry analysis of purified extract from dormant bulbils of Dioscorea opposita Thunb. These include GA4, GA9, GA12, GA19, GA20, GA24, GA36, and GA53; their presence suggests the occurrence of two biosynthetic pathways in D. opposita bulbils, the early 13-hydroxylation pathway and the non-13-hydroxylation pathway.  相似文献   

19.
Evidence has been reported that bulb development in onion plants (Allium cepa L.) is controlled by endogenous bulbing and anti-bulbing hormones, and that gibberellin (GA) is a candidate for anti-bulbing hormone (ABH). In this study, we identified a series of C-13-H GAs (GA12, GA15, GA24, GA9, GA4, GA34, and 3-epi-GA4) and a series of C-13-OH GAs (GA44, GA20, GA1 and GA8) from the leaf sheaths including the lower part of leaf blades of onion plants (cv. Senshu-Chuko). These results suggested that two independent GA biosynthetic pathways, the early-non-hydroxylation pathway to GA4 (active GA) and early-13-hydroxylation pathway to GA1 (active GA), exist in onion plants. It was also suggested that GA4 and GA1 have almost the same ability to inhibit bulb development in onion plants induced by treatment with an inhibitor of GA biosynthesis, uniconazole-P. The endogenous levels of GA1 and GA4, and their direct precursors, GA20 and GA9, in leaf blades, leaf sheaths, and roots of 4-week-old bulbing and non-bulbing onion plants were measured by gas chromatography/selected ion monitoring with the corresponding [2H]labeled GAs as internal standards. In most cases, the GA levels in long-day (LD)-grown bulbing onion plants were higher than those of short-day (SD)-grown non-bulbing onion plants, but the GA1 level in leaf blades of SD-grown onion plants was rather higher than that of LD-grown onion plants. Relationship between the endogenous GAs and bulb development in onion plants is discussed.  相似文献   

20.
The gibberellins GA1, GA3, GA4, GA7, GA9 and GA20 were quantified in vegetative and pollen cone buds of juvenile and mature trees of Pinus radiata by combined gas chromatography-mass spectrometry and selected ion monitoring (GC-MS-SIM) using deuterated GAs as internal standards. Higher levels of GA7 and GA9 and lower levels of GA4 were detected in juvenile vegetative buds compared to mature buds, and there were no differences in relation to age for GA1, GA3 and GA20. Conversely, when differences between vegetative and pollen cone buds from a mature tree were studied, the highest levels of GA1 and GA4 were found in pollen cone buds, similar levels of GA3, GA7 and GA9 were observed in both, and ten fold lower levels of GA20 were found in pollen cone buds as compared with vegetative buds. These results indicate a difference in GA metabolism in relation to both the tree age as well as the physiological status of buds: vegetative or reproductive in this conifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号