首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The occupational chemical 4-vinylcyclohexene (VCH) has been shown to cause destruction of small pre-antral follicles in ovaries of mice. Further, its monoepoxide metabolites, 1,2-VCH epoxide, 7,8-VCH epoxide, and the diepoxide, VCD, have been shown to cause pre-antral follicle loss in rats as well as mice. Chemicals that destroy small pre-antral follicles are of concern to women because exposure can result in premature ovarian failure (early menopause). METHODS: Studies working with these chemicals over the past decade have determined a number of aspects of the mechanism(s) of small pre-antral destruction, and a variety of questions have been answered. RESULTS: Specifically, it has been determined that the diepoxide (VCD) is the bioactive form and it directly targets the ovary in mice and rats. Mice are more susceptible to VCH than rats because they are capable of its metabolic bioactivation. Follicle destruction by VCD is selective for primordial and primary follicles. Mechanistic studies in rats have determined that VCD causes ovotoxicity by accelerating the natural process of atresia (apoptosis) and this requires repeated exposures. Pro-apoptotic signaling events in the Bcl-2 and mitogen activated protein kinase families have been shown to be selectively activated in fractions of small pre-antral follicles (targets for VCD). Finally, a whole ovarian culture system using neonatal mouse and rat ovaries has been developed to expand the potential for more in depth investigations into ovotoxicity caused by VCD. CONCLUSIONS: This article provides an overview of the questions asked and the approaches taken in studying VCH and VCD to support these conclusions.  相似文献   

2.
云南蒜油化学成分的研究   总被引:3,自引:0,他引:3  
本文对云南曲靖产大蒜(Allium sativum L.)蒜油用气相色谱和色谱-质谱法进行了分析,鉴定了20个化合物。其中:6-甲基-1-硫杂-2,4-环己二烯(6-methyl-1-thi-2,4-cyclohexadiene),5-甲基-1,2-二硫杂-3-环戊烯(5-methyl-1,2-dithi-3-cyclopentene),4-甲基-1,2-二硫杂-3-环戊烯(4-methyl-1,2-dithi-3-cyclopentene),4-乙烯基-1,2,3-三硫杂-5-环己烯(4-vinyl-1,2,3-trithi-5-cyclohexene)及甲基烯丙基五硫醚(allyl methyl pentasulfide)等为蒜油中首次报道的化合物。  相似文献   

3.
The two CHCl3 activation pathways have been studied in incubations at different oxygenation conditions with hepatic microsomes from control Sprague Dawley (SD) rats or SD rats treated with different cytochrome P450 inducers (acetone, phenobarbital, pyrazole, dexamethasone, and β-naphthoflavone). The present results provide direct evidence that CHCl3 concentration is critical in determining the role of different cytochrome P450 isoforms (CYP) and the related effects of metabolic inducers. At 0.1 mM CHCl3 concentration, the only major contribution to its oxidative biotransformation in liver microsomes from untreated rats was due to CYP2E1, as shown by metabolic inhibition due to 4-methylpyrazole or by anti-CYP2E1 antibodies. Moreover, animal treatments with acetone and pyrazole increased the production of adducts of phosgene to microsomal phospholipid by about 10–15 times. At 5 mM chloroform, in control rat liver microsomes, CYP2B1/2 was the major participant responsible for chloroform activation, while CYP2E1 and CYP2C11 were also significantly involved. Consistently, at this chloroform concentration, the effect of phenobarbital (CYP2B1/2 inducer) was maximal, producing very high levels of adducts. The reductive pathway was expressed at 5 mM CHCl3 only and was not significantly increased by any of the inducers used. Moreover, it was not inhibited by metyrapone and 4-methylpyrazole or by anti CYP2C11 antibodies. Therefore, it may be concluded that, in the range of chloroform concentrations tested, those CYPs involved in CHCl3 oxidative bioactivation do not participate in CHCl3 reduction. Chloroform oxidative metabolism in PB-microsomes could achieve very high absolute rates, much higher than those in C-microsomes; in contrast, the metabolic rates in AC- and PYR-microsomes remained within the activity levels observable in C-microsomes at high chloroform concentration. Therefore, it can be argued that the CYP2B1/2-mediated induction of CHCl3 activation is the basis for the effect of PB in potentiating chloroform hepatotoxicity. Moreover, processes other than CYP2E1-mediated metabolic induction may be more relevant in the ketones potentiation of chloroform-induced acute toxicity. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 305–312, 1997.  相似文献   

4.
Phenobarbital, 3-methylcholanthrene, acetone and pyrazole were used as inducers of cytochrome P450 and the NADPH-dependent oxidase activity (O-2 production) of pulmonary and hepatic microsomes was determined. Oxidase activity of microsomes from 3-methylcholanthrene-treated rats was significantly decreased as compared to that of controls when expressed on the basis of cytochrome P450 content (30% decrease for liver, 60% decrease for lung). The oxidase activity of liver microsomes from pyrazole-treated rats showed a significant increase, whereas phenobarbital treated microsomes had average superoxide-generating activity. The contribution of cytochromes CYP 1A, CYP 2B and CYP 2E1 to superoxide-generating activity was investigated using monoclonal antibodies. Monoclonal antibody 1-91-3 against CYP 2E1 inhibited superoxide generation by 58% in liver microsomes from pyrazole-treated rats. Monoclonal antibodies 1-7-1 and 2-66-3 against CYP 1A and CYP2B, respectively, had no effect on superoxide generation. These results indicate that different cytochrome P450 isoforms are mainly responsible for differential superoxide generating activities of microsomes and complement the reconstitution study of Morehouse and Aust. Furthermore, our study indicates that CYP 1A1, induced by 3-MC, demonstrates an unusually low oxidase activity.  相似文献   

5.
We examined which human CYP450 forms contribute to carbon tetrachloride (CCl(4)) bioactivation using hepatic microsomes, heterologously expressed enzymes, inhibitory antibodies and selective chemical inhibitors. CCl(4) metabolism was determined by measuring chloroform formation under anaerobic conditions. Pooled human microsomes metabolized CCl(4) with a K(m) of 57 microM and a V(max) of 2.3 nmol CHCl(3)/min/mg protein. Expressed CYP2E1 metabolized CCl(4) with a K(m) of 1.9 microM and a V(max) of 8.9 nmol CHCl(3)/min/nmol CYP2E1. At 17 microM CCl(4), a monoclonal CYP2E1 antibody inhibited 64, 74 and 83% of the total CCl(4) metabolism in three separate human microsomal samples, indicating that at low CCl(4) concentrations, CYP2E1 was the primary enzyme responsible for CCl(4) metabolism. At 530 microM CCl(4), anti-CYP2E1 inhibited 36, 51 and 75% of the total CCl(4) metabolism, suggesting that other CYP450s may have a significant role in CCl(4) metabolism at this concentration. Tests with expressed CYP2B6 and inhibitory CYP2B6 antibodies suggested that this form did not contribute significantly to CCl(4) metabolism. Effects of the CYP450 inhibitors alpha-naphthoflavone (CYP1A), sulfaphenazole (CYP2C9) and clotrimazole (CYP3A) were examined in the liver microsome sample that was inhibited only 36% by anti-CYP2E1 at 530 microM CCl(4). Clotrimazole inhibited CCl(4) metabolism by 23% but the other chemical inhibitors were without significant effect. Overall, these data suggest that CYP2E1 is the major human enzyme responsible for CCl(4) bioactivation at lower, environmentally relevant levels. At higher CCl(4) levels, CYP3A and possibly other CYP450 forms may contribute to CCl(4) metabolism.  相似文献   

6.
Cytochrome P450 (CYP) 2E1 is induced by ethanol and is postulated to be a source of reactive oxygen species during alcoholic liver disease. However, there was no difference in liver pathology and radical formation between wild-type and CYP2E1 knockout mice fed ethanol. Other CYP isoforms may contribute these effects if CYP2E1 is inhibited or absent. The purpose of this study was, therefore, to determine if blocking most of the P450 isoforms with 1-aminobenzotriazole (ABT; 100 mg/kg i.g.), has any effect on liver damage and oxidative stress due to alcohol in rats and mice. Male C57BL/6 mice and Wistar rats were fed either high-fat control or ethanol-containing enteral diet for 4 weeks. ABT had a significant inhibitory effect on many P450 isoforms independent of concomitant alcohol administration. However, ABT did not protect against liver damage due to alcohol in either species. Indices of oxidative stress and inflammation were also similar in livers from vehicle-treated and ABT-treated animals fed ethanol. In summary, suppression of P450 activity with ABT had no apparent effect on oxidative stress caused by alcohol in both rats and mice. These data support the hypothesis that oxidative stress and liver damage can occur independently of CYP activities in both rats and mice during early alcohol-induced liver injury.  相似文献   

7.
8.
Allyl sulfides such as diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS), typical flavor components of Allium vegetables, have been shown to inhibit benzo[a]pyrene (B[a]P)-induced carcinogenesis in animal models. As a possible mechanism of this inhibition, the effect of these volatile substances on cytochrome P450 (CYP)1 (CYP1A1, 1A2 and 1B1)-mediated bioactivation of B[a]P was investigated using a human hepatoma cell model (HepG2). DADS and DATS inhibited the B[a]P-induced ethoxyresorufin O-deethylase (EROD) activity, a marker enzyme for CYP1, by 30-90% and 70-95% at 100-1,000 microM concentration, respectively. The cell viability, an indicator of the capacity to inhibit B[a]P bioactivation, was increased by treatments of 100-1,000 microM DADS and 10-100 microM DATS. Immunoblot results indicated that the B[a]P inducible CYP1A2 protein was suppressed by 100-1,000 microM of DADS and 10-100 microM of DATS, but CYP1A1 and 1B1 were not detectable in any microsomes. Analysis of B[a]P metabolites revealed that the level of 7,8-diol formed was significantly reduced in the DADS and DATS treated microsomes as compared to the control. The level of 9,10-diol and 4,5-diol formed was also lowered by the allyl sulfide treatments. These results suggest that the protective mechanism of allyl sulfides on B[a]P-induced carcinogenesis is possibly related with the modulation of CYP1-mediated bioactivation of B[a]P.  相似文献   

9.
CYP4F isoforms are involved in the oxidation of important cellular mediators such as leukotriene B4 (LTB4) and prostaglandins. The proinflammatory agent LTB4 and cytotoxic leukotoxins have been associated with several inflammatory diseases. We present evidence that the hydroxylation of Z 9(10)-epoxyoctadecanoic, Z 9(10)-epoxyoctadec-Z 12-enoic, and Z 12(13)-epoxyoctadec-Z 9-enoic acids and that of monoepoxides from arachidonic acid [epoxyeicosatrienoic acid (EET)] is important in the regulation of leukotoxin and EET activity. These three epoxidized derivatives from the C18 family (C18-epoxides) were converted to 18-hydroxy-C18-epoxides by human hepatic microsomes with apparent Km values of between 27.6 and 175 microM. Among recombinant P450 enzymes, CYP4F2 and CYP4F3B catalyzed mainly the omega-hydroxylation of C18-epoxides with an apparent Vmax of between 0.84 and 15.0 min(-1), whereas the apparent Vmax displayed by CYP4F3A, the isoform found in leukocytes, ranged from 3.0 to 21.2 min(-1). The rate of omega-hydroxylation by CYP4A11 was experimentally found to be between 0.3 and 2.7 min(-1). CYP4F2 and CYP4F3 exhibited preferences for omega-hydroxylation of Z 8(9)-EET, whereas human liver microsomes preferred Z 11(12)-EET and, to a lesser extent, Z 8(9)-EET. Moreover, vicinal diol from both C18-epoxides and EETs were omega-hydroxylated by liver microsomes and by CYP4F2 and CYP4F3. These data support the hypothesis that the human CYP4F subfamily is involved in the omega-hydroxylation of fatty acid epoxides. These findings demonstrate that another pathway besides conversion to vicinal diol or chain shortening by beta-oxidation exists for fatty acid epoxide inactivation.  相似文献   

10.
In order to assess the effect of cigarette smoke (CS) on metabolic enzymes, male hamsters and rats were exposed for two weeks to smoke produced in a Hamburg type II smoking machine. The livers were then used for Ames liquid incubation and western immunoblot assays. Mutagenic activities of seven heterocyclic amines (HCAs) in Salmonella typhimurium TA98 in the presence of rat or hamster liver S9 were elevated up to 3.7 times above controls (including sham smoke control). Enhancement of mutagenic activities of PhIP and aflatoxin B(1) was observed only in CS-exposed hamster, whereas no significant alteration of mutagenicity was observed with 2-aminofluorene, benzo[a]pyrene, and 3'-hydroxymethyl-N, N-dimethyl-4-aminoazobenzene in strain TA98 or with six N-nitrosodialkylamines in strain TA100. 7,8-Benzoflavone and/or furafylline considerably inhibited the mutagenic activation of IQ and Trp-P-1 in the presence of liver S9 from untreated hamsters and sham smoke- or CS-exposed hamsters and rats, indicating the predominant involvement of hamster cytochrome P450 (CYP) 1A enzymes in the metabolic activation of HCAs. In addition, the data suggest that CS-exposure may selectively induce hepatic CYP1A1/1A2 isoforms. Western immunoblot analyses of liver microsomes using anti-rat CYP antibodies revealed that CS-exposure increased the levels of hamster CYP1A2 (3.9-fold) and rat CYP1A2 (3.0-fold) and CYP1A1, without significant change in the levels of CYP2E1 and CYP2B and 3A isoforms in each species. The presently observed selective induction of HCA activation and CYP isozymes due to CS supports the idea that CS may contribute to enhancing effects on initiation by carcinogens which are metabolically activated by hepatic CYP1A1/1A2. In conjunction with results observed for smokers, the present findings indicate that the hamster is a good animal for studies with CS, and that cigarette smoking in combination with intake of heating protein-rich foods as a life style may markedly contribute to the human carcinogenesis by HCAs.  相似文献   

11.
A new mechanism for formation of 7-ketocholesterol was recently described involving cytochrome P-450 (CYP)7A1-catalyzed conversion of 7-dehydrocholesterol into 7-ketocholesterol with cholesterol-7,8-epoxide as a side product. Some patients with cerebrotendinous xanthomatosis (CTX) and all patients with Smith-Lemli-Opitz syndrome (SLO) have markedly increased levels of 7-dehydrocholesterol in plasma and tissues. In addition, the former patients have markedly upregulated CYP7A1. We hypothesized that these patients may produce 7-ketocholesterol from 7-dehydrocholesterol with formation of cholesterol-7,8-epoxide as a side product. In accord with this hypothesis, two patients with CTX were found to have increased levels of 7-ketocholesterol and 7-dehydrocholesterol, as well as a significant level of cholesterol-7,8-epoxide. The latter steroid was not detectable in plasma from healthy volunteers. Downregulation of CYP7A1 activity by treatment with chenodeoxycholic acid reduced the levels of 7-ketocholesterol in parallel with decreased levels of 7-dehydrocholesterol and cholesterol-7,8-epoxide. Three patients with SLO were found to have markedly elevated levels of 7-ketocholesterol as well as high levels of cholesterol-7,8-epoxide. The results support the hypothesis that 7-dehydrocholesterol is a precursor to 7-ketocholesterol in SLO and some patients with CTX.  相似文献   

12.
Allyl sulfides such as diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS), typical flavor components of Allium vegetables, have been shown to inhibit benzo[a]pyrene (B[a]P)-induced carcinogenesis in animal models. As a possible mechanism of this inhibition, the effect of these volatile substances on cytochrome P450 (CYP)1 (CYP1A1, 1A2 and 1B1)-mediated bioactivation of B[a]P was investigated using a human hepatoma cell model (HepG2). DADS and DATS inhibited the B[a]P-induced ethoxyresorufin O-deethylase (EROD) activity, a marker enzyme for CYP1, by 30-90% and 70-95% at 100-1,000 μM concentration, respectively. The cell viability, an indicator of the capacity to inhibit B[a]P bioactivation, was increased by treatments of 100-1,000 μM DADS and 10-100 μM DATS. Immunoblot results indicated that the B[a]P inducible CYP1A2 protein was suppressed by 100-1,000 μM of DADS and 10-100 μM of DATS, but CYP1A1 and 1B1 were not detectable in any microsomes. Analysis of B[a]P metabolites revealed that the level of 7,8-diol formed was significantly reduced in the DADS and DATS treated microsomes as compared to the control. The level of 9,10-diol and 4,5-diol formed was also lowered by the allyl sulfide treatments. These results suggest that the protective mechanism of allyl sulfides on B[a]P-induced carcinogenesis is possibly related with the modulation of CYP1-mediated bioactivation of B[a]P.  相似文献   

13.
Aroclor 1254-induced rat liver homogenate supernatant (liver S-9) is routinely used as an exogenous metabolic activation system for the evaluation of mutagenicity of xenobiotics. The purpose of this study is to evaluate whether results obtained with Aroclor 1254-induced liver microsomes would be relevant to human. Aroclor 1254-induced and uninduced rat liver microsomes were compared to human liver microsomes in the metabolism of substrates which are known to be selectively metabolized by the major human cytochrome P450 (CYP) isoforms. The activities studied and the major CYP isoforms involved were as follows: phenacetin O-deethylation (CYP1A2); coumarin 7-hydroxylation, (CYP2A6); tolbutamide 4-hydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19); dextromethorphan O-demethylation (CYP2D6); chloroxazone 6-hydroxylation (CYP2E1); and testosterone 6beta-hydroxylation (CYP3A4). We found that both induced and uninduced rat liver microsomes were active in all the pathways studied with the exception of coumarin 7-hydroxylation. Coumarin 7-hydroxylation was observed with human liver microsomes but not the rat liver microsomes. Aroclor-1254 was found to induce all activities measured, with the exception of coumarin 7-hydroxylation. Dextromethorphan O-deethylation activity was higher in the rat liver microsomes than the human liver microsomes. Testosterone 6beta-hydroxylation activity was found to be similar between the human liver microsomes and the induced rat liver microsomes. Our results suggest that experimental data obtained with Aroclor 1254-induced rat liver microsomes may not always be relevant to human.  相似文献   

14.
Exposure to benzene was recently reported to lower the cytochrome P450 (CYP) content in phenobarbital-pretreated rats in vivo (Gut et al., Environ. Health Perspect. 104 (1996) 1211-1218). This study followed the ability of quinonic benzene metabolites (catechol, hydroquinone, and benzoquinone) to destroy CYP in liver microsomes from rats pretreated with various inducers and in human liver microsomes. Sensitivity of CYP isoforms to destruction was revealed and the interspecies differences assessed. The spectrophotometric evaluations of the total CYP content, assay of CYP marker activities, and electrophoresis with immunoblotting after incubation of microsomes with quinones revealed that: (1) rat liver CYP activities markedly differed in sensitivity to quinone-mediated destruction in vitro, CYP 1A and 3A being the most sensitive isoforms; (2) differences in OH radicals formation and lipid peroxidation among microsomes from rats pretreated with various CYP inducers were also observed; (3) semiquinone radical formation, OH radical production, and induction of lipid peroxidation did not contribute significantly to CYP destruction by quinones; (4) the main mechanism of CYP destruction is covalent binding of the oxidized quinone form to protein and heme moieties of CYP; (5) quinones, mainly benzoquinone, destroy human CYP isoforms to a much greater extent than rat enzymes and thus humans may be much more susceptible to the deleterious effect of benzene metabolism. In conclusion, it is suggested that CYP destruction may be another consequence of benzene exposure and should be taken into consideration when evaluations of possible health risks are performed.  相似文献   

15.
Medroxyprogesterone acetate (MPA) is a drug commonly used in endocrine therapy for advanced breast cancer, although it is known to cause thrombosis as a serious side effect. Recently, we found that cytochrome P450 3A4 (CYP3A4) mainly catalyzed the metabolism of MPA via CYP in human liver microsomes. However, the metabolic products of MPA in humans and rats have not been elucidated. In addition, it is not clear whether thrombosis could be induced by MPA itself or by its metabolites. In this study, we determined the overall metabolism of MPA as the disappearance of the parent drug from an incubation mixture, and identified the enzymes catalyzing the metabolism of MPA via CYP in rats. Moreover, the effects of CYP-modulators on MPA-induced hypercoagulation in vivo were examined. Intrinsic clearance of MPA in rat liver microsomes was increased by treatment with CYP3A-inducers. The intrinsic clearance of MPA in liver microsomes of rats treated with various CYP-inducers showed a significant correlation with CYP3A activity, but not CYP1A activity, CYP2B activity or CYP2C contents. Among the eight recombinant rat CYPs studied, CYP3A1, CYP3A2 and CYP2A2 catalyzed the metabolism of MPA. However, since CYP3A2 and CYP2A2 are male-specific isoforms, CYP3A1 appears to be mainly involved in the metabolism of MPA in liver microsomes of female rats. In an in vivo study, pretreatment of female rats with SKF525A, an inhibitor of CYPs including CYP3A1, significantly (p < 0.05) enhanced MPA-induced hypercoagulation, whereas pretreatment with phenobarbital, an inducer of CYPs including CYP3A1, reduced it. These findings suggest that CYP-catalyzed metabolism of MPA is mainly catalyzed by CYP3A1 and that MPA-induced hypercoagulation is predominantly caused by MPA itself in female rats.  相似文献   

16.
17.
Cytochrome P450 (CYP450) 2E1 (CYP2E1) is induced by pure ethanol following its chronic administration, and commercial alcoholic beverages, whose major constituent is ethanol, are generally assumed to have a similar effect on this isoform of CYP450. Recently, we serendipitously discovered that beer administered to rats for six weeks had only a minimal inductive effect on hepatic microsomal CYP2E1 activity, while rats on 10% ethanol had CYP2E1 levels five-fold greater than controls. The daily ethanol intake levels for the beer fed and 10% ethanol fed rats were equivalent. In addition, CYP450 spectral features of microsomes from beer fed and ethanol fed rats were markedly different. Spectral examination of microsomes from beer fed rats revealed that about 40% of the total CYP450 content existed in the form of a metabolic intermediate (MI) complex, while no evidence was found for MI complex formation in microsomes of ethanol fed rats. We conclude that beer contains an unidentified component(s) that apparently blocks the typical ethanol induction of CYP2E1 and form an MI complex with CYP450.  相似文献   

18.
Alachlor (2-chloro-N-methoxymethyl-N-(2,6-diethylphenyl)acetamide) is a widely used pre-emergent chloroacetanilide herbicide which has been classified by the USEPA as a probable human carcinogen. The putative carcinogenic metabolite, 2,6-diethylbenzoquinone imine (DEBQI), is formed through a complex series of oxidative and non-oxidative steps which have been characterized in rats, mice, and monkeys but not in humans. A key metabolite leading to the formation of DEBQI is 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA). This study demonstrates that male human liver microsomes are able to metabolize alachlor to CDEPA. The rate of CDEPA formation for human liver microsomes (0.0031 +/- 0.0007 nmol/min per mg) is significantly less than the rates of CDEPA formation for rat liver microsomes (0.0353+/-0.0036 nmol/min per mg) or mouse liver microsomes (0.0106 +/- 0.0007). Further, we have screened human cytochrome P450 isoforms 1A1, 1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4 and determined that human CYP 3A4 is responsible for metabolism of alachlor to CDEPA. Further work is necessary to determine the extent to which humans are able to metabolize CDEPA through subsequent metabolic steps leading to the formation of DEBQI.  相似文献   

19.
Kataoka S  Yasui H  Hiromura M  Sakurai H 《Life sciences》2005,77(22):2814-2829
CYP2E1 is known to be induced in streptozotocin (STZ)-treated diabetic rats (STZ rats), and its induction is improved by insulin. We have examined the age-dependent changes of CYP2E1 in the liver microsomes of type 1 diabetic STZ rats, the effects of VOSO4 on the contents of total P450 and CYP2E1, and the activities of CYP2E1 in terms of p-nitrophenol hydroxylation. The contents of P450 and CYP2E1 and CYP2E1 activity were enhanced with the development of diabetes. When the hyperglycemia of STZ rats was improved by daily intraperitoneal injections of VOSO4 for 10 days at the doses of 7 mg/kg body weight for 5 days, 5 mg/kg for the following 3 days, and then 2.5 mg/kg for 2 days, the P450 and CYP2E1 levels and CYP2E1 activity were lowered than those in the untreated STZ rats. To understand the mechanism underlying CYP2E1-dependent hydroxylation activity, the production of reactive oxygen species was examined in the NADPH-liver microsomal systems by ESR spin-trapping. Singlet oxygen (1O2) was detected in all microsomal systems, while superoxide anion radical(*O2-) and hydroxyl radical (*OH) were not. On the basis of these results, we conclude that (1) CYP2E1 level and activity are enhanced in the diabetic state, however, they are improved by VOSO4 treatment, and (2) 1O2 is generated during CYP2E1-dependent substrate oxygenation.  相似文献   

20.
H(2)O(2) production was evaluated in liver microsomes prepared from Cyp1a1/1a2(+/+) wild-type and Cyp1a1(-/-) and Cyp1a2(-/-) knockout mice pretreated with 5 microg dioxin (TCDD)/kg body wt or vehicle alone. NADPH-dependent H(2)O(2) production in TCDD-induced microsomes from wild-type mice was about one-third of that in noninduced microsomes. In Cyp1a2(-/-) mice, H(2)O(2) production was the same for induced and noninduced microsomes, with levels significantly higher than those in wild-type mice. Cyp1a1(-/-) microsomes displayed markedly lower levels of H(2)O(2) production in both induced and noninduced microsomes, compared with those in wild-type and Cyp1a2(-/-) microsomes. The CYP1A2 inhibitor furafylline in vitro exacerbated microsomal H(2)O(2) production proportional to the degree of CYP1A2 inhibition, and the CYP2E1 inhibitor diethyldithiocarbamate decreased H(2)O(2) production proportional to the degree of CYP2E1 inhibition. Microsomal H(2)O(2) production was strongly correlated to NADPH-stimulated production of thiobarbituric acid-reactive substances, as well as to decreases in microsomal membrane polarization anisotropy, indicative of peroxidation of unsaturated membrane lipids. Our results suggest that possibly acting as an "electron sink," CYP1A2 might decrease CYP2E1-and CYP1A1-mediated H(2)O(2) production and oxidative stress. In this regard, CYP1A2 may be considered an antioxidant enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号