首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6-Methoxymellein, a phytoalexin of carrot, was produced in cultured cells upon addition of partial hydrolysates of carrot cells obtained by treatment with purified endo-polygalacturonase or endo-pectin lyase. Direct addition of these enzymes to the cell culture also stimulated the accumulation of this 6-methoxymellein. When the hydrolysates obtained by these enzymes were subsequently treated within pectin esterase, the activity for the elicitation of 6-methoxymellein production decreased appreciably. These results suggest that pectinolytic enzymes release elicitor-active cell wall fragments from carrot cells and that a certain degree of esterification of the galacturonosyl moiety in these pectic polysaccharides is required for elicitor activity.  相似文献   

2.
Auxin-deprived, mannitol-supplemented, suspension-cultured pear (Pyrus communis L. Passe Crassane) fruit cells produce large quantities (20-40 nanoliters ethylene per 106 cells per hour) of ethylene in response to auxins, CuCl2 or 1-amino-cyclopropane-1-carboxylic acid (ACC). Maximum rates of production are achieved about 12 hours after the addition of optimal amounts of indoleacetic acid (IAA), naphthalene acetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), 4 to 5 hours after the addition of CuCl2 and 1 to 2 hours after the addition of ACC. Supraoptimal concentrations of IAA result in a lag phase followed by a normal response. High concentrations of NAA and 2,4-D result in an early (4-5 hours) stress response and injury.

Continuous protein and RNA synthesis are essential for elaboration of the full IAA response; only protein synthesis is necessary for the response to CuCl2 and ACC. Based on polysomal states and rates of amino acid incorporation, CuCl2 partially inhibits protein synthesis while nonetheless stimulating ethylene production. In general, ethylene production by the pear cells resembles that of other plant systems. Some differences may reflect the sensitivity of the cells and are discussed. The relatively high levels of ethylene produced and the experimental convenience of the cultured cells should make them especially suitable for further investigations of ethylene production and physiology.

  相似文献   

3.
Auxin requirements of sycamore cells in suspension culture   总被引:3,自引:3,他引:0       下载免费PDF全文
Sycamore (Acer pseudoplatanus L.) cell suspension cultures (strain OS) require 2,4-dichlorophenoxyacetic acid (2,4-D) in their culture medium for normal growth. If the 2,4-D is omitted, rates of cell division are dramatically reduced and cell lysis may occur. Despite this `auxin requirement,' it has been shown by gas chromatography-mass spectrometry that the cells synthesize indol-3yl-acetic acid (IAA). Changes in free 2,4-D and IAA in the cells during a culture passage have been monitored.

There is a rapid uptake of 2,4-D by the cells during the lag phase leading to a maximum concentration per cell (125 nanograms per 106 cells) on day 2 followed by a decline to 45 nanograms per 106 cells by day 9 (middle of linear phase). The initial concentration of IAA (0.08 nanograms per 106 cells) rises slowly to a peak of 1.4 nanograms per 106 cells by day 9 then decreases rapidly to 0.2 nanograms per 106 cells by day 15 (early declining phase) and 0.08 nanograms per 106 cells by day 23 (early stationary phase).

  相似文献   

4.
Membrane fractions from Cucurbita maxima hypocotyls were isolated in a medium which inhibits the action of endogenous phospholipases. After removal of soluble phosphatases by Sepharose 2B-CL column chromatography, an auxin-stimulated ATPase activity was found in membrane fractions from linear sucrose gradients. In the presence of 10-4 M phenylacetic acid (PAA), the stimulation by indol-3-acetic acid (IAA) exhibited a bimodal concentration dependence with maximal stimulation of about 50% at 10-6 M IAA. Without PAA, only a high concentration of 10-4 M IAA was stimulatory, whereas 10-6 M IAA had no apparent effect and 10-8 M IAA exhibited weak inhibition. PAA alone had only weak or no effects. The effects of IAA must be considered as hormone-specific. The ATPase activity in the presence of 10-4 M PAA was activated only by 2,4-dichlorophenoxyacetic acid (2,4-D), an active auxin analogue, but not by the inactive stereoisomers, 2,3-D and 3,5-D. Comparison with marker enzyme profiles suggested that part of the auxin-stimulated ATPase was localized on plasma membranes as well as other compartments. Thus, the auxin-stimulated ATPase may become a useful tool in the investigation of the mechanism of action of auxin.Abbrevations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,3-D 2,3-dichlorophenoxyacetic acid - 3,5-D 3,5-dichlorophenoxyacetic acid - IAA indol-3-acetic acid - PAA phenylacetic acid - MES (2-(N-morpholino))-ethanesulfonic acid - EDTA ethylenediamine tetraacetic acid  相似文献   

5.
Difluoromethylornithine (DFMO) is a well known inhibitor of putrescine biosynthesis that has been reported to interact in varying ways with auxins such as indoleacetic acid (IAA) and 2,4-dichlorophenoxy acetic acid (2,4-D). In the present report DFMO is shown to inhibit root formation in isolated hypocotyl segments of Euphorbia esula L. (leafy spurge) grown in the dark on solidified nutrient media in Petri dishes. Shoot formation was only slightly inhibited by DFMO and only on media with salts and vitamins diluted 10-fold. 2,4-D inhibited both root and shoot formation in full strength or diluted media. Simultaneous application of both compounds resulted in partial reversal of root inhibition, but only at 450 n M 2,4-D, the highest concentration used. In both media IAA also partially reversed DFMO effects on root formation. The effects of DFMO, 2,4-D or IAA on root (or shoot) formation do not appear to be closely related to endogenous content of the polyamines determined by high performance liquid chromatography.  相似文献   

6.
This paper deals with the study on the condition of callus formation, embryogenesis, organogenesis, plant regeneration and protoplast culture of wild cotton (G. davidsonii) Callus cultures derived from several organs such as root, stem, leaf, cotyledon and hypocotyl. The results obtained in these cultures showed that the modified MS medium containing 2,4-D 1.0+KT 0.1; 2,4-D 0.1+KT 0.01; NAA (IAA) 2.0+KT 0.1 and NAA (IAA) 1.0+KT 0.1 mg/L were favorable to callus formation. Modified MS medium containing 2,4-D was suitable for initiated callus of G. davidsonii Besides, suspension cultures from callus of G. davidsonii were saccessfully initiated. Optimum concentration of 6BA (or ZT, or 2ip) and NAA (IAA) was for shooting, somatic embryo or leaf formation. Plantlets regenerated from somatic embryo at lower concentration of 6BA, or ZT, or 2ip. As to protoplast culture of this species, the age and physiological condition of callus or suspension cells and concentration of enzymes used for protoplast isolation affected the yield and survival of protoplasts. Protoplast of this species cultured in modified MS medium containing 2,4-D 0.5+NAA 0.5+ZT 0.1–0.2 mg/L. and divied after 3–4 days. The rate of division was 3--4% and cell cluster formed after 14 days, then these cells died.  相似文献   

7.
Cell suspension cultures of Anchusa officinalis required exogenous phytohormones for their normal growth. Cell lysis was observed at the third passage in a hormone-free medium. Using hormone — depleted cells, the effects of auxins (2,4-D, NAA, IAA and CFP) and cytokinins (BA, kinetin, and zeatin) on cell growth and RA production were investigated. All auxins tested could maintain growth and integrity of the cells whereas cytokinins alone could not, suggesting that this culture is auxindependent. Among the auxins tested, NAA had a pronounced effect on RA production. The total RA content obtained at optimum NAA concentration (0.25 mg/l) reached 1.7 g/l (12% of dry weight). The kinetics of growth and RA production suggested that the increase in final RA content was due to both an increase in the rate of RA synthesis and initiation of the period of synthesis in the exponential rather than the linear growth phase.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - IAA indoleacetic acid - CFP 2-chloro-4-fluorophenoxyacetic acid - BA 6-benzyladenine - RA rosmarinic acid  相似文献   

8.
M. Lu  H. Wong  W. Teng 《Plant cell reports》2001,20(7):674-677
This study was initiated to investigate the impacts of elicitor concentration and elicitor-adding time on the saponin synthesis and the cell growth of Panax ginseng cell suspensions. Both of the elicitors tested, yeast extract and methyl jasmonate, significantly improved saponin production. The highest additive level of the seven ginsenosides tested was 2.07% (dry weight basis), which was 28-fold higher than that in the control. The optimum time to add either elicitor was found to be on the day of inoculation. The addition of either elicitor did not show as significant an influence on cell growth as on saponin production. It was advisable to remove 2,4-dichlorophenoxyacetic acid (2,4-D) from the medium when methyl jasmonate was used as the elicitor as methyl jasmonate interacts antagonistically with 2,4-D. These results suggest that the addition of an elicitor to ginseng cell suspension cultures could stimulate saponin production.  相似文献   

9.
B. G. Bowes 《Protoplasma》1970,71(1-2):197-202
Summary Tissue cultures ofTaraxacum officinale have been isolated from the secondary thickened root. Callus development and leaf and root formation occur on a basal medium supplemented with coconut milk and IAA or NAA, and the addition of kinetin to these media enhances callus growth and organogenesis. Cultures grown on the basal medium with coconut milk and 2,4-D show only callus growth, but organogenesis is induced by the substitution of IAA for 2,4-D. In the 2,4-D grown callus a layer of secondary meristematic tissue is present and organogenesis apparently occurs from localized regions of this tissue which have undergone de-differentiation to the primary meristematic condition.  相似文献   

10.
Brassinosteroid, an analogue of brassinolide, (BR) (2α, 3α, 22β, 23β-tetrahydroxy-24β-methyl-B-homo-7-oxa-5α-cholestan-6-one), was tested in conjunction with indole-3-acetic acid (IAA), naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-butyric acid (IBA), indole-3-propionic acid (IPA), indole-3-pyruvic acid (IPyA), indole-3-aldehyde (IAld), indole-3-carbinol (ICB) or tryptophan (TRP) for its effects on ethylene production by etiolated mung bean (Vigna radiata (L.) Rwilcz cv. Berken) hypocotyl segements. The enhancement of ethylene production due to BR was greatest in conjunction with 1 μM IBA, 2,4-D, IAA, or NAA (these increases were 2580, 2070, 890, and 300%, respectively). When increasing concentrations of IBA, 2,4-D, IAA, or NAA were used, there was a decrease in the percentage stimulation by BR. Both IPyA and IPA had different optimal concentrations than the other auxins tested. Their BR-enhanced maximum percentage stimulations (1430 and 1580%) were greatest with 5 μM IPya and 10 μM IPA, respectively. There was a marked reduction in the percentage stimulation by BR with either 100 μM IPyA or IPA. The inactive indoles (IAld, ICB, or TRP) did not synergize with BR at any of the concentrations tested. Four hours following treatment those segments in contact with 1 μM BR with or without the addition of 10 μM IAA began to show a stimulation in ethylene production above the control and this stimulation became greater over the following 20 h. It was necessary for BR to be in continual contact with the tissue to have a stimulatory effect on auxin-induced ethylene production. When segments excised from greater distances below the hypocotyl hook, were treated with either IAA alone or in combination with BR, there was a decrease in ethylene production with increasing distance. There was no effect of hypocotyl length on BR stimulation of auxin-induced ethylene production; however, there was a definite decrease in ethylene production when IAA was applied alone.  相似文献   

11.
A. Goldsworthy  M. G. Mina 《Planta》1991,183(3):368-373
A simple, inexpensive, and stable drive-unit for a vibrating probe is described. It was used to measure transcellular electrical currents and their stability in cells from suspension cultures of Nicotiana tabacum L. var. virginica. The cells were highly variable in size, morphology and current-pattern. The magnitude and pattern of the currents depended on the age of the culture, the morphology of the cells and the auxin in the culture medium. Currents in small cell clusters were weakest during the lag-phase of growth and strongest when the cultures were actively growing. The shape of the cells was related to the electrical pattern surrounding them, electrically polar cells tending to be elongated. The proportion of polar cells depended on the auxin composition of the culture medium. About 75% of the cells from suspensions grown in the presence of indole-3-acetic acid (IAA) were electrically polar. These cells normally divided at right angles to their electrical axes to form filaments. Only around 20% of the cells grown in medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) were electrically polar, the remainder had randomly oriented currents and divided in random directions to form irregular clusters rather than filaments. The electrical patterns of cells in 2,4-D were much less stable than those of cells in IAA. When currents were measured repeatedly at fixed locations on cells, those in 2,4-D were about twice as likely to disappear, arise de novo, or change direction as those in IAA. When cells were transferred from 2,4-D to IAA media, the percentage of polar cells increased from 25 to 40 within 1 d, but when they were transferred from IAA to 2,4-D, this percentage decreased from 48 to 26. It is suggested that one of the reasons that 2,4-D suppresses organogenesis in tobacco cultures (and possibly why it also functions as a herbicide) is that it reduces the stability of transcellular currents and disrupts the electrical patterns of cells so that they become less capable of organized polar growth.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid The authors are indebted to the Agricultural and Food Research Council of the UK for their financial support and to the Royal Society for the provision of the vibrating probe. We would also like to thank Dr. A. Lagoa for his help in culturing the cells.  相似文献   

12.
When 2,4-dichlorophenoxyacetic acid (2,4-D)-dependent tobacco cell suspensions, one normal and one transformed by Agrobacterium tumefaciens, were subcultured on hormone-lacking medium the stationary phase of the cell cycle was reached earlier than on medium containing 2,4-D. Addition of the auxin 2,4-D could restore cell division activity within 10–12 h for the most rapidly reacting cell line. The cell-division response was characterized as being auxin-specific and optimal with 2,4-D at 2.2 10-6 M. Although the cell lines used showed different characteristics, both reacted with a rapid increase in at least three mRNA species within 1 or 2 h after 2,4-D application. Two, 2,4-D-induced protein spots, seen after in-vitro translation, had the same characteristics (MWs 35 kilodaltons (kDa) and 25 kDa with isoelectric points of 7.1 and 6.3, respectively) in both cell lines. Water-treated controls did not show alterations in the translatable mRNA populations. This indicates that the accumulation of the corresponding mRNAs is an early hormone-induced event. Since cell division is the only measurable reaction found after auxin application, cell systems as described here offer excellent possibilities for studying early auxin-induced changes at the molecular level preceding mitosis.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - kDa kilodalton  相似文献   

13.
Short-term Effects of Some Chemicals on Cambial Activity   总被引:1,自引:0,他引:1  
Aqueous solutions of indol-3yl-acetic acid (IAA), 1-naphthyl-aceticacid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), gibberellicacid (GA), 6-furfuryl-aminopurine (FAP), myo-inositol, and sucrosewere applied singly and in mixtures to the apical ends of disbuddedstem segments of willow. After 4 weeks all substances had hadsome effect on differentiation of xylem from cambial derivatives.The production of potential xylem cells, as well as their differentiationwere most markedly enhanced when IAA, GA, and FAP were appliedtogether, although the response was further augmented by additionof inositol or sucrose. The action of the substances when appliedas mixtures was often synergistic. This means that it is difficultto assess the role of different chemicals in xylem productionby extrapolation from experiments involving the applicationof single substances.  相似文献   

14.
Inflorescence stalks produced the highest amount of ethylene in response to IAA as compared with other plant parts tested. Leaf age had an effect on IAA-induced ethylene with the youngest leaves showing the greatest stimulation. The highest amount of IAA-induced ethylene was produced in the root or inflorescence tip with regions below this producing less. Inflorescence stalks treated with IAA, 2,4-D, or NAA over a range of concentrations exhibited an increase in ethylene production starting at 1 microM with increasingly greater responses up to 100 microM, followed by a plateau at 500 microM and a significant decline at 1000 microM. Both 2,4-D and NAA elicited a greater response than IAA at all concentrations tested in inflorescence stalks. Inflorescence leaves treated with IAA, 2,4-D, or NAA exhibited the same trend as inflorescence stalks. However, they produced significantly less ethylene. Inflorescence stalks and leaves treated with 100 microM IAA exhibited a dramatic increase in ethylene production 2 h following treatment initiation. Inflorescence stalks showed a further increase 4 h following treatment initiation and no further increase at 6 h. However, there was a slight decline between 6 h and 24 h. Inflorescence leaves exhibited similar rates of IAA-induced ethylene between 2 h and 24 h. Light and high temperature caused a decrease in IAA-induced ethylene in both inflorescence stalks and leaves. Three auxin-insensitive mutants were evaluated for their inflorescence's responsiveness to IAA. aux2 did not produce ethylene in response to 100 microM IAA, while axr1-3 and axr1-12 showed reduced levels of IAA-induced ethylene as compared with Columbia wild type. Inflorescences treated with brassinolide alone had no effect on ethylene production. However, when brassinolide was used in combination with IAA there was a dramatic increase in ethylene production above the induction promoted by IAA alone.  相似文献   

15.
Plant regeneration from leaf- and cotyledon-derived calli and from protoplast-derived tissue has been obtained in Lotus pedunculatus. Callus induction was achieved with 2,4-D and plant regeneration required the following two media sequences: bud formation was stimulated by IAA and BA and shoot growth by kinetin. Root formation occurred in the presence of IAA. Cotyledon protoplasts showed a low plating efficiency and plant regeneration was achieved via an intervening callus phase.Abbreviations BA 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - 2iP N6--2-isopentenyl-adenine - NAA -naphthaleneacetic acid  相似文献   

16.
This paper deals with the effects of four plant growth substances, ic. IAA, NAA, 2,4-D and GA and their different concentration on rind-regeneration after girdling in Solanum melongen var. esculantum. The formation of callus was promoted by IAA, NAA and GA, but retarded by 2,4-D in early stage. The initiation of vascular cambium in callus was retarded by all these substances. However, an increase in amount of xylem was promoted by IAA at low concentrations. The different concentrations of NAA and GA affected a decrease in amount of xylem. The formation of "bundled" vascular tissue was impelled by NAA, GA and 2,4-D. The initiation of phellogen was promoted by IAA and NAA at high concentrtion. In addition, the nest-like tracheid mass was induced in callus by IAA and NAA frequently.  相似文献   

17.
18.
The possible effects of synthetic auxins and anti-auxins onthe metabolism of indole-3-acetic acid (IAA) in plant tissueshave not been properly studied in the past. For this reasonseedlings of peas, beans, and sunflower have been treated withthe synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D)and two supposed anti-auxins, 2,3,5-tri-iodobenzoic acid (TIBA)and maleic hydrazide (MH), at non-toxic levels sufficient tocause well-marked growth responses. Estimates of the contentof alcohol-extractable growth-substances have subsequently beendetermined, after separation by paper partition chromatography.Although at least six active natural compounds have been indicatedin such extracts, only the effects of treatment on IAA levelshave been followed in detail. 2,4-D treatment of both leaves and roots has no detectable effecton the levels of free endogenous IAA, and it is thereby concludedthat 2,4-D is an auxin in its own right and does not act ongrowth via a disturbance of IAA metabolism. There are indicationsthat considerable amounts of the absorbed 2,4-D are convertedin plant tissues to a neutral detoxication product which iseasily decomposed to liberate 2,4-D during chromatographic analysis. TIBA treatment of pea roots dramatically reduces their freeendogenous IAA content, in some cases to 1/10,000 the normallevel. The implications of these findings are discussed in termsof the physiological and morphological responses of plants toTIBA treatment. There are indications that MH may put up slightly the levelof free endogenous auxin in pea roots but further confirmatorywork is required.  相似文献   

19.
2,4-dichlorophenoxyacetic acid (2,4-D), a chemical analogue of indole-3-acetic acid (IAA), is widely used as a growth regulator and exogenous source of auxin. Because 2,4-D evokes physiological and molecular responses similar to those evoked by IAA, it is believed that they share a common response pathway. Here, we show that a mutant, antiauxin resistant1 (aar1), identified in a screen for resistance to the anti-auxin p-chlorophenoxy-isobutyric acid (PCIB), is resistant to 2,4-D, yet nevertheless responds like the wild-type to IAA and 1-napthaleneacetic acid in root elongation and lateral root induction assays. That the aar1 mutation alters 2,4-D responsiveness specifically was confirmed by analysis of GUS expression in the DR5:GUS and HS:AXR3NT-GUS backgrounds, as well as by real-time PCR quantification of IAA11 expression. The two characterized aar1 alleles both harbor multi-gene deletions; however, 2,4-D responsiveness was restored by transformation with one of the genes missing in both alleles, and the 2,4-D-resistant phenotype was reproduced by decreasing the expression of the same gene in the wild-type using an RNAi construct. The gene encodes a small, acidic protein (SMAP1) with unknown function and present in plants, animals and invertebrates but not in fungi or prokaryotes. Taken together, these results suggest that SMAP1 is a regulatory component that mediates responses to 2,4-D, and that responses to 2,4-D and IAA are partially distinct.  相似文献   

20.
The indole alkaloids brucine and yohimbine, just like hypaphorine, counteract indole-3-acetic acid (IAA) activity in seedling roots, root hairs and shoots, but do not appear to alter auxin transport in roots or in cultured cells. In roots, the interactions between IAA and these three alkaloids appear competitive and specific since these molecules interact with IAA but with neither 1-naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D), two synthetic auxins. The data reported further support the hypothesis that hypaphorine brucine and yohimbine compete with IAA on some auxin-binding proteins likely to be auxin receptors and that 2,4-D and NAA are not always perceived by the same receptor as IAA or the same component of that receptor. At certain steps of plant development and in certain cells, endogenous indole alkaloids could be involved in IAA activity regulation together with other well-described mechanisms such as conjugation or degradation. Hypaphorine with other active indole alkaloids remaining to be identified, might be regarded as a new class of IAA antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号