首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microtubule-associated proteins MAPs 1 and 2 from pig brain have been found to react with antibodies directed against human ankyrin and spectrin, respectively (Bennett and Davis, 1981; Davis and Bennett, 1982). In a complementary approach we have prepared antibodies against MAP1 alpha. MAP1 gamma and MAP2 purified from pig brain and tested their reactivity with human erythrocyte membrane proteins. Anti-MAP1 alpha was shown to react with alpha and beta-spectrin and with protein 4.1; anti-MAP1 gamma reacted with alpha-spectrin and ankyrin and with a 60 K peptide which copurified with human spectrin. Finally anti-MAP2 was specific for beta-spectrin and protein 4.2. The biological function of protein 4.2 is still unknown but details on the interactions between ankyrin, spectrin and protein 4.1 and their role in mediating the linkage of oligomeric actin on the erythrocyte membrane are well documented. The present results, which demonstrate extended immunological analogies between pig brain high molecular weight MAPs and human erythrocyte membrane proteins, may reflect the presence, in the two families of proteins, of similar functionally important epitopes.  相似文献   

2.
Axons from rats treated with the neurotoxic agent beta,beta'-iminodipropionitrile (IDPN) were examined by quick-freeze, deep-etch electron microscopy. Microtubules formed bundles in the central region of the axons, whereas neurofilaments were segregated to the periphery. Most membrane-bounded organelles, presumably including those involved in rapid axonal transport, were associated with the microtubule domain. The high resolution provided by quick-freeze, deep-etch electron microscopy revealed that the microtubules were coated with an extensive network of fine strands that served both to cross-link the microtubules and to interconnect them with the membrane-bounded organelles. The strands were decorated with granular materials and were irregular in dimension. They appeared either singly or as an extensive anastomosing network in fresh axons. The microtubule-associated strands were observed in fresh, saponin-extracted, or aldehyde-fixed tissue. To explore further the identity of the microtubule-associated strands, microtubules purified from brain tissue and containing the high molecular weight microtubule-associated proteins MAP 1 and MAP 2 were examined by quick-freeze, deep-etch electron microscopy. The purified microtubules were connected by a network of strands quite similar in appearance to those observed in the IDPN axons. Control microtubule preparations consisting only of tubulin and lacking the MAPs were devoid of associated strands. To learn which of the MAPs were present in the microtubule bundles in the axon, sections of axons from IDPN-treated rats were examined by immunofluorescence microscopy using antibodies to MAP 1A, MAP 1B, MAP 2, and tubulin. Anti-MAP 2 staining was only marginally detectable in the IDPN-treated axons, consistent with earlier observations. Anti-MAP 1A and anti-MAP 1B brightly stained the IDPN-treated axons, with the staining exclusively limited to the microtubule domains. Furthermore, thin section-immunoelectron microscopy using colloidal gold-labeled second antibodies revealed that both anti-MAP 1A and anti-MAP 1B stained fuzzy filamentous structures between microtubules. In view of earlier work indicating that rapid transport is associated with the microtubule domain in the IDPN-treated axon, it now appears that MAP 1A and MAP 1B may play a role in this process. We believe that MAP 1A and MAP 1B are major components of the microtubule-associated fibrillar matrix in the axon.  相似文献   

3.
We prepared a monoclonal antibody to microtubule-associated protein 1 (MAP 1), one of the two major high molecular weight MAP found in microtubules isolated from brain tissue. We found that MAP 1 can be resolved by SDS PAGE into three electrophoretic bands, which we have designated MAP 1A, MAP 1B, and MAP 1C in order of increasing electrophoretic mobility. Our antibody recognized exclusively MAP 1A, the most abundant and largest MAP 1 polypeptide. To determine the distribution of MAP 1A in nervous system tissues and cells, we examined tissue sections from rat brain and spinal cord, as well as primary cultures of newborn rat brain by immunofluorescence microscopy. Anti-MAP 1A stained white matter and gray matter regions, while a polyclonal anti-MAP 2 antibody previously prepared in this laboratory stained only gray matter. This confirmed our earlier biochemical results, which indicated that MAP 1 is more uniformly distributed in brain tissue than MAP 2 (Vallee, R.B., 1982, J. Cell Biol., 92:435-442). To determine the identity of cells and cellular processes immunoreactive with anti-MAP 1A, we examined a variety of brain and spinal cord regions. Fibrous staining of white matter by anti-MAP 1A was generally observed. This was due in part to immunoreactivity of axons, as judged by examination of axonal fiber tracts in the cerebral cortex and of large myelinated axons in the spinal cord and in spinal nerve roots. Cells with the morphology of oligodendrocytes were brightly labeled in white matter. Intense staining of Purkinje cell dendrites in the cerebellar cortex and of the apical dendrites of pyramidal cells in the cerebral cortex was observed. By double-labeling with antibodies to MAP 1A and MAP 2, the presence of both MAP in identical dendrites and neuronal perikarya was found. In primary brain cell cultures anti-MAP 2 stained predominantly cells of neuronal morphology. In contrast, anti-MAP 1A stained nearly all cells. Included among these were neurons, oligodendrocytes and astrocytes as determined by double-labeling with anti-MAP 1A in combination with antibody to MAP 2, myelin basic protein or glial fibrillary acidic protein, respectively. These results indicate that in contrast to MAP 2, which is specifically enriched in dendrites and perikarya of neurons, MAP 1A is widely distributed in the nervous system.  相似文献   

4.
Milligram amounts of mammalian ciliary axonemes were isolated from porcine tracheas. These were reactivated upon addition of ATP, indicating intact functional capability with a mean beat frequency at 37 degrees C of 8.2 Hz. Electron microscopy showed typical ultrastructure of the isolated demembranated axonemes. Electrophoresis into polyacrylamide gradient gels containing sodium dodecyl sulfate revealed reproducible protein profiles from ten different tracheal preparations. Four major protein bands were observed in the 300-330 K molecular weight region, as well as tubulin at 51-54K. Extraction of the isolated tracheal axonemes with 0.6M KCl removed the outer dynein arms seen in electron microscopic cross-section of axonemes, preferentially solubilized two of the high molecular weight proteins at 320 and 330 K, and resulted in a three- to four-fold increase in ATPase specific activity. Sedimentation of the dialyzed salt extract on a 5-30% sucrose density gradient and subsequent fractionation yielded two peaks of ATPase activity. The faster migrating, 19S major ATPase peak correlated with the 320 and 330 K proteins, and two other proteins at 81 and 67 K. The slower sedimenting, 12S minor ATPase peak corresponded to a 308 K protein and two smaller proteins at 33 and 48 K. Thus, the outer dynein arm of tracheal cilia appeared to be associated with at least two high molecular weight proteins. These results demonstrate that adequate quantities of functionally intact axonemes can be reproducibly isolated from porcine tracheas, allowing further fractionation and analysis of mammalian cilia.  相似文献   

5.
A microtubule-associated protein (MAP) with a molecular mass of 72-kDa that was purified from porcine brain by using its property of heat stability in a low pH buffer was characterized. Low-angle rotary shadowing revealed that the 72-kDa protein was a rodlike protein approximately 55-75 nm long. The 72-kDa protein bound to microtubules polymerized from phosphocellulose column-purified tubulin (PC-tubulin) with taxol and promoted the polymerization of PC-tubulin in the absence of taxol. Microtubules polymerized by the 72-kDa protein showed a tendency to form bundles of several microtubules. Quick-freeze, deep-etch electron microscopy revealed that the 72-kDa protein formed short crossbridges between microtubules. We performed peptide mapping to analyze the relationship of the 72-kDa protein to other heat-stable MAPs, and the results showed some resemblance of the 72-kDa protein to MAP2. Cross-reactivity with a monoclonal anti-MAP2 antibody further suggested that the 72-kDa protein and MAP2 are immunologically related. To study the relationship between the 72-kDa protein and MAP2C, a smaller molecular form of MAP2 identified in juvenile rat brain, we prepared the 72-kDa protein from rat brain by the same method as that used for porcine brain. The fact that the 72-kDa protein from juvenile rat brain was also stained with our monoclonal anti-MAP2 antibody also suggested that the 72-kDa protein is an MAP2C homologue of the porcine brain.  相似文献   

6.
The classification of MAP 2 as a microtubule-associated protein is based on its affinity for microtubules in vitro and its filamentous distribution in cultured cells. We sought to determine whether MAP 2 is also able to bind in situ to organelles other than microtubules. For this purpose, primary cultures of rat brain cells were stained for immunofluorescence microscopy with a rabbit anti-MAP 2 antibody prepared in our laboratory, as well as with antibodies to vimentin, an intermediate filament protein, and to tubulin, the major subunit of microtubules. MAP 2 was present on cytoplasmic fibers in neurons and in a subpopulation of the flat cells present in the cultures. Our observations were concentrated on the flat cells because of their suitability for high-resolution immunofluorescence microscopy. Double antibody staining revealed co-localization of MAP 2 with both tubulin and vimentin in the flat cells. Pretreatment of the cultures with vinblastine resulted in the redistribution of MAP 2 into perinuclear cables that contained vimentin. Tubulin paracrystals were not stained by anti-MAP 2. In cells extracted with digitonin, the normal fibrillar distribution of MAP 2 was resistant to several treatments (PIPES buffer plus 10 mM Ca++, phosphate buffer at pH 7 or 9) that induced depolymerization of microtubules, but not intermediate filaments. Staining of the primary brain cells was not observed with preimmune serum nor with immune serum adsorbed prior to use with pure MAP 2. We detected MAP 2 on intermediate filaments not only with anti-MAP 2 serum, but also with affinity purified anti-MAP 2 and with a monoclonal anti-MAP 2 prepared in another laboratory. We conclude from these experiments that material recognized by anti-MAP 2 antibodies associates with both microtubules and intermediate filaments. We propose that one function of MAP 2 is to cross-link the two types of cellular filaments.  相似文献   

7.
Previous studies with the mammalian brain have shown that the expression of a number of neuronal microtubule-associated proteins (MAPs) is developmentally regulated. For example, the low-molecular-weight form of MAP2 (MAP2c) is abundant in neonatal rat brains and is less abundant in adults. Similarly, MAP5 levels decrease during postnatal development. Using monoclonal antibodies, we have followed the time of first appearance, cellular distribution, and molecular form of MAP2 and MAP5 during the morphogenesis of the quail retina. MAP2 first appears in ganglion cell bodies and in the axons of the optic fibre layer (OFL) at embryonic day 4 (E4). Anti-MAP2 staining remains restricted to these sites until E10, when staining appears in the inner plexiform layer (IPL). At E14, one day before hatching, anti-MAP2 staining is found in three broad laminae in the IPL, as well as in photosensitive cells. MAP5 is present in ganglion cell axons from the onset of neurite elongation at E3 and is limited to the OFL until E10. The intensity of anti-MAP5 staining in the OFL and optic nerve decreases after E7, which corresponds with a decrease in the number of actively growing ganglion cell axons. By E14, anti-MAP5 stains five layers in the IPL that correspond with layers of amacrine cell process arborizations. Western blots of E10 brain microtubule proteins show that MAP2 is represented by both a 260 x 10(3) Mr protein and a 60-65 x 10(3) Mr protein; the latter is much more abundant. Anti-MAP5 recognizes a 320 x 10(3) Mr brain microtubule protein in both the quail and the rat. We conclude that the cellular distribution, developmental regulation and molecular forms of MAP2 and MAP5 are similar in the rat and quail, suggesting that these molecules have conserved and hence fundamental roles in the growth and differentiation of neuronal processes.  相似文献   

8.
The influence on microtubule assembly in vitro of monoclonal antibodies against microtubule-associated proteins (MAPs) was studied. Light scattering was used for measuring net polymer formation and electron microscopy for determining the influence of antibodies on microtubule morphology. Control experiments showed that nonimmune mouse IgG had no effect on either the assembly or appearance of microtubules. The same was true for monoclonal antibodies against MAP1. At low levels, antibodies against MAP2 caused the aggregation of microtubules into bundles, an effect that did not occur with antibodies against any other MAP type studied. At increasing concentrations, anti-MAP2 progressively inhibited tubulin polymerization, producing irregular, shortened filaments. Anti-MAP5 produced a striking fragmentation of microtubules into very short pieces that were otherwise morphologically identical to control microtubules. The different effects of these antibodies show the potential of monoclonal antibodies for investigating MAP function and form an important adjunct to cellular microinjection experiments.  相似文献   

9.
Summary Layers containing Auerbach's and Meissner's plexuses were dissected from the small intestine of guinea pig and immunostained with affinity-purified antibodies against brain-specific microtubule-associated proteins (MAPs): MAP1, MAP2 and tau and a MAP with a molecular weight of 190000 dalton purified from bovine adrenal cortex (190-kDa MAP). MAP1 antibody stained the network of nerve fibers and the cell bodies of enteric neurons in both Auerbach's and Meissner's plexuses. Staining with anti-tau antibody gave the same results. Antibody against MAP2 stained neuronal cell bodies and short thin processes extending from them. Interganglionic strands composed mainly of long processes were unstained. Anti-190-kDa MAP antibody stained both the neuronal cell bodies and bundles of nerve fibers. However, the staining was less intense than that with anti-MAP1 and tau antibodies. Differentiation in the structure of the cytoskeleton probably exists in the neuronal processes of the enteric neurons as is shown in the dendrites and axons in some neurons of the central nervous system. Thus, enteric neurons possess axon-like processes containing MAP1, tau and probably lower amounts of 190-kDa MAP. Cell bodies and dendrite-like structures of these neurons contain MAP2 in addition to MAP1, tau and 190-kDa MAP.  相似文献   

10.
Two different affinity-purified polyclonal antibodies were prepared against A polypeptides of dynein 1 extracted from sea urchin sperm. These antibodies, named AD1 and AD2, reacted exclusively with the alpha and beta heavy chains of dynein 1. Using these antibodies, we analyzed their cross-reactivity with dynein of mammalian cells. Immunohistochemically, both AD1 and AD2 stained dynein-related structures such as cilia of rabbit tracheal epithelia and flagella of rat spermatozoa. Immunoblots of the proteins extracted from mammalian cilia and flagella revealed the presence of A polypeptide-like proteins which cross-reacted with AD1 and AD2. Immunoblot analysis showed that the cross-reactive proteins were localized to the 370-kDa band of rabbit cilia and the 390- and 350-kDa bands of rat sperms. The reaction patterns showed that there were some differences between the two antibodies. On ciliary protein immunoblots, AD1 recognized about half of the broad band region which reacted with AD2, and AD1 also recognized only the 350-kDa band of the flagella extract, suggesting that the antibody reveals only a beta-like polypeptide. Immunoprecipitation studies using the ciliary proteins and AD2 confirmed that the immunoreactive protein had ATPase activity. Given these results, we have characterized mammalian dyneins previously reported by other laboratories.  相似文献   

11.
Microtubule-associated protein MAP1B from neonatal rat brain was separated on sodium dodecyl sulfate-containing polyacrylamide gels into two isoforms (high and low MAP1B), both of which were recognized by a panel of monoclonal and polyclonal antibodies against MAP1B. In addition, SMI31, a monoclonal antibody directed against phosphorylated epitopes of the neurofilament proteins, showed phosphatase-sensitive reactivity against the high isoform of MAP1B. The antigenic relationship between the phosphorylated isoform of MAP1B and neurofilaments was confirmed by the reactivity of SMI31 with the immunoprecipitated MAP1B protein. After dephosphorylation of MAP1B with alkaline phosphatase, the higher-molecular-weight isoform of MAP1B was no longer detectable with phosphate-insensitive anti-MAP1B antibodies, whereas there was a significant increase in the immunoreactivity of the lower-molecular-weight MAP1B isoform. These data suggest that the structural microheterogeneity of MAP1B is due to differences in phosphorylation. The two isoforms were present in all brain regions of the young rat. During brain development, the general decrease in MAP1B levels was accompanied by changes in the relative amount of the two isoforms. In particular, the phosphorylated isoform of MAP1B decreased dramatically to almost undetectable levels in adult brain. This conclusion was further supported by immunoblotting analysis that showed the disappearance of phosphorylated epitopes of MAP1B early during brain development. In addition, dephosphorylation experiments demonstrated the phosphatase sensitivity of the phosphorylated isoform throughout development.  相似文献   

12.
Microtubules in the cytoplasm of rat Sertoli cell stage VI-VIII testicular seminiferous epithelium were studied morphometrically by electron microscopy. The Sertoli cell microtubules demonstrated axonal features, being largely parallel in orientation and predominantly spaced one to two microtubule diameters apart, suggesting the presence of microtubule-bound spacer molecules. Testis microtubule-associated proteins (MAPs) were isolated by a taxol, salt elution procedure. Testis MAPs promoted microtubule assembly, but to a lesser degree than brain MAPs. High molecular weight MAPs, similar in electrophoretic mobilities to brain MAP-1 and MAP-2, were prominent components of total testis MAPs, though no shared immunoreactivity was detected between testis and brain high molecular weight MAPs using both polyclonal and monoclonal antibodies. Unlike brain high molecular weight MAPs, testis high molecular weight MAPs were not heat stable. Testis MAP composition, studied on postnatal days 5, 10, 15, and 24 and in the adult, changed dramatically during ontogeny. However, the expression of the major testis high molecular weight MAP, called HMW-2, was constitutive and independent of the development of mature germ cells. The Sertoli cell origin of HMW-2 was confirmed by identifying this protein as the major MAP found in an enriched Sertoli cell preparation and in two rat models of testicular injury characterized by germ cell depletion. HMW-2 was selectively released from testis microtubules by ATP and co-purified by sucrose density gradient centrifugation with MAP-1C, a neuronal cytoplasmic dynein. The inhibition of the microtubule-activated ATPase activity of HMW-2 by vanadate and erythro-(2-hydroxy-3-nonyl)adenine and its proteolytic breakdown by vanadate-dependent UV photocleavage confirmed the dynein-like nature of HMW-2. As demonstrated by this study, the neuronal and Sertoli cell cytoskeletons share morphological, structural and functional properties.  相似文献   

13.
Summary An antigen common to purported centriolar and basal body regions of a variety of cell types was previously visualized by immuno-fluorescence microscopy. The present study demonstrates the localization of the antigen relative to the defined basal body structures of ciliated tracheal cells at the electron-microscopic level. After ethyldimethylaminopropyl carbodiimide-glutaraldehyde-saponin (EGS) fixation and permeabilization, immunoferritin labeling is consistently found associated with amorphous electron-opaque material in proximity to basal bodies and their ciliary rootlets, but not with basal body microtubules themselves. This distribution pattern is distinct from that of other proteins found in the apical region of ciliated cells, such as calmodulin. It is proposed that the dense material may be analogous to pericentriolar material of centrosomes.  相似文献   

14.
A method for biochemically isolating microtubule-associated proteins (MAPs) from the detergent-extracted cytoskeletons of carrot suspension cells has been devised. The advantage of cytoskeletons is that filamentous proteins are enriched and separated from vacuolar contents. Depolymerization of cytoskeletal microtubules with calcium at 4°C releases MAPs which are then isolated by association with taxol stabilized neurotubules. Stripped from microtubules (MTs) by salt, then dialysed, the resulting fraction contains a limited number of high molecular weight proteins. Turbidimetric assays demonstrate that this MAP fraction stimulates polymerization of tubulin at concentrations at which it does not self-assemble. By adding it to rhodamine-conjugated tubulin, the fraction can be seen to form radiating arrays of long filaments, unlike MTs induced by taxol. In the electron microscope, these arrays are seen to be composed of mainly single microtubules. Blot-affinity purified antibodies confirm that two of the proteins decorate cellular microtubules and fulfil the criteria for MAPs. Antibodies to an antigenically related triplet of proteins about 60–68 kDa (MAP 65) stain interphase, preprophase band, spindle and phragmoplast microtubules. Antibodies to the 120 kDa MAP also stain all of the MT arrays but labelling of the cortical MTs is more punctate and, unlike anti-MAP 65, the nuclear periphery is also stained. Both the anti-65 kDa and the anti-120 kDa antibodies stain cortical MTs in detergent-extracted, substrate-attached plasma membrane disks ('footprints'). Since the 120 kDa protein is detected at two surfaces (nucleus and plasma membrane) known to support MT growth in plants, it is hypothesized that it may function there in the attachment or nucleation of MTs.  相似文献   

15.
We have obtained several hybridoma clones producing antibodies to microtubule-associated proteins (MAPs) from bovine brain. Interaction of one of these antibodies, named RN 17, with cultured cells was studied by indirect immunofluorescence and immunoelectron microscopy. RN 17 antibody recognized both high molecular weight (HMW) MAPs, MAP 1 and MAP 2, in immunoblotting reaction with brain microtubules. In lysates of cultured cells, it bound to a protein doublet with a molecular weight of 100 kD. By immunofluorescence microscopy we showed that RN 17 antibody stained cytoplasmic fibrils, mitotic spindles and small particles in the cytoplasm of various cultured cells. The cytoplasmic fibrils were identified as both microtubules and intermediate filaments by double fluorescence microscopy and by their response to colcemid and 0.6 M KCl. This identification was confirmed by immunoelectron microscopy which also showed that the particles stained by RN 17 antibody are coated vesicles. Thus, cultured non-neural cells may contain a novel protein that binds to microtubules, intermediate filaments, and coated vesicles.  相似文献   

16.
The use of a panel of monoclonal antibodies (mAbs) directed against different determinants of microtubule-associated protein 2 (MAP2) enabled us to identify two distinct high-molecular-mass MAP2 species (270 and 250 kDa) and a substantial amount of MAP2c (70 kDa) in human neuroblastoma cells. The 250-kDa MAP2 species appears to be confined to the human neuroblastoma cells and was not observed in microtubules (MTs) from bovine and rat brain, mouse neuroblastoma, or MTs from human cerebellum. A new overlay method was developed, which demonstrates binding of tubulin to human neuroblastoma high-molecular-mass MAP2 by exposing nitrocellulose-bound MT proteins under polymerization conditions to tubulin. Bound tubulin was detected with a mAb directed against beta-tubulin. The binding of tubulin to MAP2 could be abolished by a peptide homologous to positions 426-445 of the C-terminal region of beta-tubulin. Immunological cross-reactivity with several mAbs directed against bovine brain MAP2, taxol-promoted coassembly into MTs, and immunocytochemical visualization within cells were further criteria utilized to characterize these proteins as true MAPs. Indirect immunofluorescence with anti-MAP2 and anti-beta-tubulin mAbs demonstrated that there is a change in the spatial organization of MTs during induced cell differentiation, as indicated by the appearance of MT bundles and the redistribution of MAP2.  相似文献   

17.
In the accompanying paper (Bloom, G.S., T.A. Schoenfeld, and R.B. Vallee, 1983, J. Cell Biol. 98:320-330), we reported that microtubule-associated protein 1 (MAP 1) from brain comprises multiple protein species, and that the principal component, MAP 1A, can be detected in both neuronal and glial cells by immunofluorescence microscopy using a monoclonal antibody. In the present study, we sought to determine the cellular and subcellular distribution of MAP 1A in commonly used cultured cell systems. For this purpose we used immunofluorescence microscopy and immunoblot analysis with anti-MAP 1A to examine 18 types of mammalian cell cultures. MAP 1A was detected in every culture system examined. Included among these were cells of mouse, rat, Chinese hamster, Syrian hamster, Potoroo (marsupial), and human origin derived from a broad variety of tissues and organs. Anti-MAP 1A consistently labeled mitotic spindles and stained cytoplasmic fibers during interphase in most of the cultures. These fibers were identified as microtubules by co-localization with tubulin in double-labeling experiments, by their disappearance in response to colchicine or vinblastine, and by their reorganization in response to taxol. The anti-MAP 1A stained microtubules in a punctate manner, raising the possibility that MAP 1A is located along microtubules at discrete foci that might represent sites of interaction between microtubules and other organelles. Verification that MAP 1A was, indeed, the reactive material in immunofluorescence microscopy was obtained from immunoblots. Anti-MAP 1A stained a band at the position of MAP 1A in all cultures examined. These results establish that MAP 1A, a major MAP from brain, is widely distributed among cultured mammalian cells both within and outside of the nervous system.  相似文献   

18.
Ciliated epithelial cells have the unique ability to generate hundreds of centrioles during differentiation. We used centrosomal proteins as molecular markers in cultured mouse tracheal epithelial cells to understand this process. Most centrosomal proteins were up-regulated early in ciliogenesis, initially appearing in cytoplasmic foci and then incorporated into centrioles. Three candidate proteins were further characterized. The centrosomal component SAS-6 localized to basal bodies and the proximal region of the ciliary axoneme, and depletion of SAS-6 prevented centriole assembly. The intraflagellar transport component polaris localized to nascent centrioles before incorporation into cilia, and depletion of polaris blocked axoneme formation. The centriolar satellite component PCM-1 colocalized with centrosomal components in cytoplasmic granules surrounding nascent centrioles. Interfering with PCM-1 reduced the amount of centrosomal proteins at basal bodies but did not prevent centriole assembly. This system will help determine the mechanism of centriole formation in mammalian cells and how the limitation on centriole duplication is overcome in ciliated epithelial cells.  相似文献   

19.
Brain-specific expression of MAP2 detected using a cloned cDNA probe   总被引:13,自引:6,他引:7       下载免费PDF全文
We describe the isolation of a set of overlapping cDNAs encoding mouse microtubule associated protein 2 (MAP2), using an anti-MAP antiserum to screen a mouse brain cDNA expression library cloned in bacteriophage lambda gt11. The authenticity of these clones was established by the following criteria: (a) three non-identical clones each expressing a MAP2 immunoreactive fusion protein were independently isolated from the expression library; each of these clones cross-hybridized at the nucleic acid level; (b) anti-MAP antiserum was affinity purified using nitrocellulose-bound fusion protein; these antibodies detected only MAP2 in an immunoblot experiment of whole brain microtubule protein; (c) a series of cDNA "walking" experiments was done so as to obtain a non-overlapping cloned fragment corresponding to a different part of the same mRNA molecule. Upon subcloning this non-overlapping fragment into plasmid expression vectors, a fusion protein was synthesized that was immunoreactive with an anti-MAP2 specific antiserum. Thus, a single contiguous cloned mRNA molecule encodes at least two MAP2-specific epitopes; (d) the cloned cDNA probes detect an mRNA species in mouse brain that is of a size (approximately 9 kb) consistent with the coding capacity required by a 250,000-D protein. The MAP2-specific cloned cDNA probes were used in RNA blot transfer experiments to assay for the presence of MAP2 mRNA in a variety of mouse tissues. Though brain contained abundant quantities of MAP2 mRNA, no corresponding sequences were detectable in RNA prepared from liver, kidney, spleen, stomach, or thymus. We conclude that the expression of MAP2 is brain-specific. Use of the MAP2 specific cDNA probes in genomic Southern blot transfer experiments showed the presence of a single gene encoding MAP2 in mouse. The microheterogeneity of MAP2 is therefore ascribable either to alternative splicing within a single gene, or to posttranslational modification(s), or both. Under conditions of low stringency, the mouse MAP2 cDNA probe cross-hybridizes with genomic sequences from rat, human, and (weakly) chicken, but not with sequences in frog, Drosophila, or sea urchin DNA. Thus, there is significant interspecies divergence of MAP2 sequences. The implications of the above observations are discussed in relationship to the potential biological function of MAP2.  相似文献   

20.
Effect of tau on the vinblastine-induced aggregation of tubulin   总被引:3,自引:2,他引:1       下载免费PDF全文
Two microtubule-associated proteins, tau and the high molecular weight microtubule-associated protein 2 (MAP 2), were purified from rat brain microtubules. Addition of either protein to pure tubulin caused microtubule assembly. In the presence of tau and 10 microM vinblastine, tubulin aggregated into spiral structures. If tau was absent, or replaced by MAP 2, little aggregation occurred in the presence of vinblastine. Thus, vinblastine may be a useful probe in elucidating the individual roles of tau and MAP 2 in microtubule assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号