首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More than 80,000 tons of itaconic acid (IA) is produced worldwide each year and is sold at a price of around US$ 2/kg. The IA production yield from sugar is higher than 80 g/l. The widespread use of IA in synthetic resins, synthetic fibers, plastics, rubbers, surfactants, and oil additives has resulted in an increased demand for this product. However, at present, the IA production capacity exceeds the demand because this product has a restricted range of applications. Studies have been actively conducted in different biomedical fields—dental, ophthalmic, and drug delivery—to extend the range of applications of IA. Recently, many researchers have attempted to replace the carbon source used for microbial production of IA with cheaper alternative substrates. However, there is still a need for new biotechnology innovations that would help to reduce the production costs, such as innovative process development and strain improvement to allow the use of a low-quality carbon source. In this short review, we discuss the following aspects of IA production: strain improvement, process development, identification of the key enzyme cis-aconitic acid decarboxylase (CAD) in the IA metabolic pathway, metabolic importance of CAD, and new applications of IA.  相似文献   

2.
Coupled lactic acid fermentation and adsorption   总被引:7,自引:0,他引:7  
Polyvinylpyridine (PVP) and activated carbon were evaluated for coupled lactic acid fermentation and adsorption, to prevent the product concentration from reaching inhibitory levels. The lactic acid production doubled as a result of periodical circulation of the fermentation broth through a PVP adsorption column. The adsorbent was then regenerated and the adsorbed lactate harvested, by passing 0.1 N NaOH through the column. However, each adsorption-regeneration cycle caused about 14% loss of the adsorption capacity, thus limiting the practical use of this rather expensive adsorbent. Activated carbon was found much more effective than PVP in lactic acid and lactate adsorption. The cells of Lactobacillus delbrueckii subsp. delbrueckii (LDD) also had strong tendency to adsorb on the carbon. A study was therefore conducted using an activated carbon column for simultaneous cell immobilization and lactate adsorption, in a semi-batch process with periodical medium replacement. The process produced lactate steadily at about 1.3 g l(-1)h(-1) when the replacement medium contained at least 2 g l(-1) of yeast extract. The production, however, stopped after switching to a medium without yeast extract. Active lactic acid production by LDD appeared to require yeast extract above a certain critical level (<2 g l(-1)).  相似文献   

3.
By extensive microbial screening, about 50 strains with the ability to secrete gluconic acid were isolated from wild flowers. The strains belong to the yeast-like mould Aureobasidium pullulans (de Bary) Arnaud. In shake flask experiments, gluconic acid concentrations between 23 and 140 g/l were produced within 2 days using a mineral medium. In batch experiments, various important fermentation parameters influencing gluconic acid production by A. pullulans isolate 70 (DSM 7085) were identified. Continuous production of gluconic acid with free-growing cells of the isolated yeast-like microorganisms was studied. About 260 g/l gluconic acid at total glucose conversion could be achieved using continuous stirred tank reactors in defined media with residence times (RT) of about 26 h. The highest space-time-yield of 19.3 g l(-1) x h(-1)) with a gluconic acid concentration of 207.5 g/l was achieved with a RT of 10.8 h. The possibility of gluconic acid production with biomass retention by immobilised cells on porous sinter glass is discussed. The new continuous gluconate fermentation process provides significant advantages over traditional discontinuous operation employing Aspergillus niger. The aim of this work was the development of a continuous fermentation process for the production of gluconic acid. Process control becomes easier, offering constant product quality and quantity.  相似文献   

4.
Present study used Aspergillus terreus strain C1 isolated from mangrove soil for itaconic acid (IA) production from potato starch waste. Fermentation parameters were optimized by classical one factor approach and statistical experimental designs, such as Plackett-Burman and response surface designs. Anionic deionization of potato waste was found to be a very effective, economic, and easy way of improving IA production. The increase in IA production by deionization was found to correlate with removal of phosphate. In our knowledge, this is the first report on application of deionization of potato waste to enhance IA production. Other parameters like inoculum development conditions, pH, presence of peptone and certain salts in the medium also significantly affected IA production. IA production by strain C1 increased 143-fold during optimization when compared with the starting condition. The optimized IA level (35.75 g/L) was very close to the maximum production predicted by RSM (38.88 g/L). Bench scale production of IA was further optimized in 3-L stirred tank reactor by varying parameters like agitation and aeration rate. The maximum IA production of 29.69 g/L was obtained under the agitation speed of 200 rpm and aeration rate of 0.25 vvm. To the best of our knowledge, it is the first report on IA production from potato starch waste at bioreactor level. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2774, 2019.  相似文献   

5.
Liang LY  Liu RM  Ma JF  Chen KQ  Jiang M  Wei P 《Biotechnology letters》2011,33(12):2439-2444
Escherichia coli NZN111 is a double mutant with inactivated lactate dehydrogenase and pyruvate formate-lyase. It cannot utilize glucose anaerobically because of its unusually high intracellular NADH/NAD(+) ratio. We have now constructed a recombinant strain, E. coli NZN111/pTrc99a-mdh, which, during anaerobic fermentation, produced 4.3 g succinic acid l(-1) from 13.5 g glucose l(-1). The NADH/NAD(+) ratio decreased from 0.64 to 0.26. Furthermore, dual-phase fermentation (aerobic growth followed by anaerobic phase) resulted in enhanced succinic acid production and reduced byproduct formation. The yield of succinic acid from glucose during the anaerobic phase was 0.72 g g(-1), and the productivity was 1.01 g l(-1) h(-1).  相似文献   

6.
Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (>80 g L?1) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (>200 g L?1). This review summarizes the latest progress on enhancing the yield and productivity of IA production. IA biosynthesis involves the decarboxylation of the TCA cycle intermediate cis-aconitate through the action of cis-aconitate decarboxylase (CAD) enzyme encoded by the CadA gene in A. terreus. A number of recombinant microorganisms have been developed in an effort to overproduce it. IA is used as a monomer for production of superabsorbent polymer, resins, plastics, paints, and synthetic fibers. Its applications as a platform chemical are highlighted. It has a strong potential to replace petroleum-based methylacrylic acid in industry which will create a huge market for IA.  相似文献   

7.
A 5 l packed bed bioreactor was used to study the effect of initial lactose concentration and hydraulic retention time (HRT) on cell growth, lactose utilization and lactic acid production. Up to 95% of the initial lactose concentration was utilized at longer HRTs (30-36 h). The study showed that lactic acid production increased with increases in HRT (12-36 h) and initial lactose concentrations. The highest lactic acid production rate (3.90 g l(-1) h(-1)) was obtained with an initial lactose concentration of 100 g/l and an HRT of 18 h, whereas the lowest lactic acid production rate (1.35 g l(-1) h(-1)) was obtained with an initial lactose concentration of 50 g/l and an HRT of 36 h. This suggested that optimal lactic acid production can be achieved at an HRT of 18 h and initial lactose concentration of 100 g/l.  相似文献   

8.
L(+)-lactic acid production was investigated using an enzymatic hydrolysate of waste office automation (OA) paper in a culture of the filamentous fungus Rhizopus oryzae. In 4 d culture, 82.8 g/l glucose, 7 g/l xylose, and 3.4 g/l cellobiose contained in the hydrolysate were consumed to produce 49.1 g/l of lactic acid. The lactic acid yield and production rate were only 0.59 g/g and 16.3 g/l/d, respectively, only 75% and 61% of the results from the glucose medium. The low production rate from waste OA hydrolysate was elucidated by trials using xylose as the sole carbon source; in those trials, the lactic acid production rate was 7.3 g/l/d, only 28% that of glucose or cellobiose. The low lactic acid yield from waste OA hydrolysate was clarified by trials using artificial hydrolysates comprised of 7:2:1 or 7:1:2 ratios of glucose:cellobiose:xylose. For both, the lactic acid production rate of 17.4 g/l/d matched that of waste OA paper, while the lactic acid yield was similar to that of the glucose medium. This indicates that the production rate may be inhibited by xylose derived from hemicellulose, and the yield may be inhibited by unknown compounds derived from paper pulp.  相似文献   

9.
The heterotrophic marine microalga Crypthecodinium cohnii produces docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications. So far, DHA production has been studied with glucose and acetic acid as carbon sources. This study investigates the potential of ethanol as an alternative carbon source for DHA production by C. cohnii. In shake-flask cultures, the alga was able to grow on ethanol. The specific growth rate was optimal with 5 g l(-1) ethanol and growth did not occur at 0 g l(-1) and above 15 g l(-1). By contrast, in fed-batch cultivations with a controlled feed of pure ethanol, cumulative ethanol addition could be much higher than 15 g l(-1), thus enabling a high final cell density and DHA production. In a representative fed-batch cultivation of C. cohnii with pure ethanol as feed, 83 g dry biomass l(-1), 35 g total lipid l(-1) and 11.7 g DHA l(-1) were produced in 220 h. The overall volumetric productivity of DHA was 53 mg l(-1 )h(-1), which is the highest value reported so far for this alga.  相似文献   

10.
Itaconic acid (IA), an unsaturated 5‐carbon dicarboxylic acid, is a building block platform chemical that is currently produced industrially from glucose by fermentation with Aspergillus terreus. However, lignocellulosic biomass has potential to serve as low‐cost source of sugars for production of IA. Research needs to be performed to find a suitable A. terreus strain that can use lignocellulose‐derived pentose sugars and produce IA. One hundred A. terreus strains were evaluated for the first time for production of IA from xylose and arabinose. Twenty strains showed good production of IA from the sugars. Among these, six strains (NRRL strains 1960, 1961, 1962, 1972, 66125, and DSM 23081) were selected for further study. One of these strains NRRL 1961 produced 49.8 ± 0.3, 38.9 ± 0.8, 34.8 ± 0.9, and 33.2 ± 2.4 g IA from 80 g glucose, xylose, arabinose and their mixture (1:1:1), respectively, per L at initial pH 3.1 and 33°C. This is the first report on the production of IA from arabinose and mixed sugar of glucose, xylose, and arabinose by A. terreus. The results presented in the article will be very useful in developing a process technology for production of IA from lignocellulosic feedstocks. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1059–1067, 2017  相似文献   

11.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

12.
Jin B  Huang LP  Lant P 《Biotechnology letters》2003,25(23):1983-1987
Rhizopus arrhizus, strain DAR 36017, produced L(+)-lactic acid in a simultaneous saccharification and fermentation process using starch waste effluents. Lactic acid at 19.5-44.3 g l(-1) with a yield of 0.85-0.96 g g(-1) was produced in 40 h using 20-60 g starch l(-1). Supplementation of nitrogen source may be unnecessary if potato or corn starch waste effluent was used as a production medium.  相似文献   

13.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

14.
Process variables and concentration of carbon in media were optimised for lactic acid production by Lactobacillus casei NRRL B-441. Lactic acid yield was inversely proportional to initial glucose concentration within the experimental area (80-160 g l(-1)). The highest lactic acid concentration in batch fermentation, 118.6 g l(-1), was obtained with 160 g 1(-1) glucose. The maximum volumetric productivity, 4.4 g 1(-1) h(-1) at 15 h, was achieved at an initial glucose concentration of 100 g l(-1). Similar lactic acid concentrations were reached with a fedbatch approach using growing cells, in which case the fermentation time was much shorter. Statistical experimental design and response surface methodology were used for optimising the process variables. The temperature and pH optima for lactic acid production were 35 degrees C, pH 6.3. Malt sprout extract supplemented with yeast extract (4 g l(-1)) appeared to be an economical alternative to yeast extract alone (22 g l(-1)) although the fermentation time was a little longer. The results demonstrated both the separation of the growth and lactic acid production phases and lactic acid production by non-growing cells without any nutrient supplements. Resting L. casei cells converted 120 g l(-1) glucose to lactic acid with 100% yield and a maximum volumetric productivity of 3.5 g l(-1) h(-1).  相似文献   

15.
Several fungi and starch-rich industrial residues were screened for itaconic acid (IA) production. Out of 15 strains, only three fungal strains were found to produce IA, which was confirmed by HPLC and GC–MS analysis. These strains were identified as Aspergillus terreus strains C1 and C2, and Ustilago maydis strain C3 by sequencing of 18S rRNA gene and internal transcribed spacer regions. Cis-aconitate decarboxylase (cad) gene, which encodes a key enzyme in IA production in A. terreus, was characterized from strains C1 and C2. C1 and C2 cad gene sequences showed about 96% similarity to the only available GenBank sequence of A. terreus cad gene. 3-D structure and cis-aconitic acid binding pocket of Cad enzyme were predicted by structural modeling. Rice, corn and potato starch wastes were screened for IA production. These materials were enzymatically hydrolyzed under experimentally optimized conditions resulting in the highest glucose production of 230 mg/mL from 20% potato waste. On comparing the production potential of selected strains with different wastes, the best IA production was achieved with strain C1 (255.7 mg/L) using potato waste. Elemental composition as well as batch-to-batch variation in waste substrates were analyzed. The difference in IA production from two different batches of potato waste was found to inversely correlate with their phosphorus content, which indicated that A. terreus produced IA under phosphate limiting condition. The potato waste hydrolysate was deionized to remove inhibitory ions like phosphate, resulting in improved IA production of 4.1 g/L by C1 strain, which is commercially competitive.  相似文献   

16.
The present study describes citric acid fermentation by Aspergillus niger GCB-47 in a 15-1 stainless steel stirred fermentor. Among the alcohols tested as stimulating agents, 1.0% (v/v) methanol was found to give maximum amount of anhydrous citric acid (90.02 +/- 2.2 g/l), 24 h after inoculation. This yield of citric acid was 1.96 fold higher than the control. Methanol has a direct effect on mycelial morphology and it promotes pellet formation. It also increases the cell membrane permeability to provoke more citric acid excretion from the mycelial cells. The sugar consumed and % citric acid was 108 +/- 3.8 g/l and 80.39 +/- 4.5%, respectively. The desirable mycelial morphology was in the form of small round pellets having dry cell mass 14.5 +/- 0.8 g/l. Addition of ethanol, however, did not found to enhance citric acid production, significantly. The maximum value of Yp/x (i.e., 5.825 +/- 0.25 g/g) was observed when methanol was used as a stimulating agent. The best results of anhydrous citric acid were observed, 6 days after inoculation when the initial pH of fermentation medium was kept at 6.0.  相似文献   

17.
A recombinant enzyme from Lysinibacillus fusiformis was expressed, purified, and identified as an oleate hydratase because the hydration activity of the enzyme was the highest for oleic acid (with a k (cat) of 850?min(-1) and a K (m) of 540?μM), followed by palmitoleic acid, γ-linolenic acid, linoleic acid, myristoleic acid, and α-linolenic acid. The optimal reaction conditions for the enzymatic production of 10-hydroxystearic acid were pH 6.5, 35?°C, 4% (v/v) ethanol, 2,500?U ml(-1) (8.3?mg?ml(-1)) of enzyme, and 40?g l(-1) oleic acid. Under these conditions, 40?g l(-1) (142?mM) oleic acid was converted into 40?g l(-1) (133?mM) 10-hydroxystearic acid for 150?min, with a molar yield of 94% and a productivity of 16?g l(-1)?h(-1), and olive oil hydrolyzate containing 40?g l(-1) oleic acid was converted into 40?g l(-1) 10-hydroxystearic acid for 300?min, with a productivity of 8?g l(-1)?h(-1).  相似文献   

18.
The production of carotenoids, lipid content, and fatty acid composition were all studied in a strain of Sporobolomyces ruberrimus when using different concentrations of technical glycerol as the carbon source and ammonium sulfate as the nitrogen source. The total lipids represented an average of 13% of the dry weight, and the maximum lipids were obtained when using 65.5 g/l technical glycerol (133.63 mg/ g). The optimal conditions for fatty acid production were at 27 degrees C using 20 g of ammonium sulfate and a pH range from 6 to 7, which produced a fatty acid yield of 32.5+/-1 mg/g, including 1.27+/- 0.15 mg of linolenic acid (LNA), 7.50+/-0.45 mg of linoleic acid (LLA), 5.50+/-0.35 mg of palmitic acid (PA), 0.60+/-0.03 mg of palmitoleic acid (PAL), 1.28+/-0.11 mg of stearic acid (SA), 9.09+/-0.22 mg of oleic acid, 2.50+/-0.10 mg of erucic acid (EA), and 4.25+/-0.20 mg of lignoceric acid (LCA), where the palmitic, oleic, and linoleic acids combined formed about 37% of the total fatty acids. The concentration of total carotenoids was 2.80 mg/g when using 20 g of ammonium sulfate, and consisted of torularhodin (2.70 mg/g) and beta-carotene (0.10 mg/ g), at 23 degrees C and pH 6. However, the highest amount with the maximum specific growth rate was obtained (micromax=0.096 h(-1)) with an ammonium sulfate concentration of 30 g/l.  相似文献   

19.
A putative fatty acid hydratase from Stenotrophomonas maltophilia was cloned and expressed in Escherichia coli. The recombinant enzyme showed the highest hydration activity for oleic acid among the fatty acids tested, indicating that the enzyme is an oleate hydratase. The optimal conditions for the production of 10-hydroxystearic acid from oleic acid using whole cells of recombinant E. coli containing the oleate hydratase were pH 6.5, 35°C, 0.05% (w/v) Tween 40, 10 g l(-1) cells, and 50 g l(-1) oleic acid. Under these conditions, whole recombinant cells produced 49 g l(-1) 10-hydroxystearic acid for 4 h, with a conversion yield of 98% (w/w), a volumetric productivity of 12.3 g l(-1) h(-1), and a specific productivity of 1.23 g g-cells(-1) h(-1), which were 18%, 2.5-, and 2.5-fold higher than those of whole wild-type S. maltophilia cells, respectively. This is the first report of 10-hydroxystearic acid production using recombinant cells and the concentration and productivity are the highest reported thus far among cells.  相似文献   

20.
An unstructured model based on logistic and Luedeking-Piret equations was proposed to describe growth, substrate consumption and kojic acid production by Aspergillus flavus Link strain 44-1 in batch fermentation and also in a resuspended cell system. The model showed that kojic acid production was non-growth associated. The maximum kojic acid and cell concentrations obtained in batch fermentations using the fermenter with optimized dissolved oxygen control (32.5 g/l and 11.8 g/l, respectively) and using a shake-flask (36.5 and 12.3 g/l, respectively) were not significantly different. However, the maximum specific growth rate and a non-growth-associated rate constant for kojic acid formation (n) for batch fermentation using the fermenter (0.085/h and 0.0125 g kojic acid/g cell.h, respectively) were approximately three and two times higher than the values obtained for fermentation using a shake-flask, respectively. Efficient conversion of glucose to kojic acid was achieved in a resuspended pellet or mycelial system, in a solution containing only glucose with citrate buffer at pH 3.5 and at a temperature of 30 °C. The resuspended cell material in the glucose solution was still active in synthesizing kojic acid after prolonged incubation (up to about 600 h). The rate constant of kojic acid production (n) in a resuspended cell system using 100 g glucose/l was almost constant at an average value of 0.011 g kojic acid/g cell.h up to a cell concentration of 19.2 g/l, above which it decreased. A drastic reduction of n was observed at a cell concentration of 26.1 g/l. However, the yield based on glucose consumed (0.45 g/g) was similar for all cell concentrations investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号