首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nickel(II) complexes of the peptide fragments of human prion protein containing histidyl residues both inside and outside the octarepeat domain have been studied by the combined application of potentiometric, UV-visible and circular dichroism spectroscopic methods. The imidazole-N donor atoms of histidyl residues are the exclusive metal binding sites below pH 7.5, but the formation of stable macrochelates was characteristic only for the peptide HuPrP(76-114) containing four histidyl residues. Yellow colored square planar complexes were obtained above pH 7.5-8 with the cooperative deprotonation of three amide nitrogens in the [Nim,N,N,N] coordination mode. It was found that the peptides can bind as many nickel(II) ions as the number of independent histidyl residues. All data supported that the complex formation processes of nickel(II) are very similar to those of copper(II), but with a significantly reduced stability for nickel(II), which shifts the complex formation reactions into the slightly alkaline pH range. The formation of coordination isomers was characteristic of the mononuclear complexes with a significant preference for the nickel(II) binding at the histidyl sites outside the octarepeat domain. The results obtained for the two-histidine fragments of the protein, HuPrP(91-115), HuPrP(76-114)H85A and HuPrP(84-114)H96A, made it possible to compare the binding ability of the His96 and His111 sites. These data reveal a significant difference in the nickel(II) and copper(II) binding sites of the peptides: His96 was found to predominate almost completely for nickel(II) ions, while the opposite order, but with comparable concentrations, was reported for copper(II).  相似文献   

2.
Copper(II) complexes of amino acids and peptides containing the chelating bis(imidazolyl) residues have been reviewed. The results reveal that bis(imidazolyl) analogues of these biomolecules are very effective ligands for metal binding. The nitrogen donor atoms of the chelating agent are the major metal binding sites under acidic conditions. In the presence of terminal amino group the multidentate character of the ligands results in the formation of various polynuclear complexes including the ligand and the imidazole bridged dimeric species. The most intriguing feature of the coordination chemistry of these ligands is that the deprotonation of the coordinated imidazole-N(1)H groups results in the appearance of a new chelating site in the molecules. It leads to the formation of stable trinuclear complexes via negatively charged imidazolato bridges.  相似文献   

3.
A new calculation method to determine microscopic protonation processes from CD spectra measured at different pH and Cu(II):ligand ratios was developed and used to give the relative binding strengths for the three histidines of hsPrP(84-114), a 31-mer polypeptide modeling the N-terminal copper(II) binding region of human (homo sapiens) prion protein. Mutants of hsPrP(84-114) with two or one histidyl residues have also been synthesized and their copper(II) complexes studied by CD spectroscopy. The 1-His models were analyzed first, and the molar CD spectra for the different coordination modes on the different histidines were calculated using the general computational program PSEQUAD. These spectra were deconvoluted into the sum of Gaussian curves and used as a first parameter set to calculate the molar spectra for the different coordination modes (3N and 4N coordination) and coordination positions (His85, His96 and His111) of the 2-His peptides. The calculation method therefore does not require the direct use of CD spectra measured in the smaller peptide models. This is a significant improvement over earlier calculation methods. In the same runs, the stepwise deprotonation pK(mic) values were refined and the pH-dependent distribution of copper(II) between the two histidines was determined. The results revealed the high, but different copper(II) binding affinities of the three separate histidines in the following order: His85 < His96His111. The calculation also showed that molar CD spectra which belong to the same coordination mode and coordination position in different ligands have very similar transition energies but different intensities. For this reason, direct transfer of molar CD spectra between different ligands may be a source of error, but the pK(mic) values and the copper(II) binding preferences are transferable from the 2-His peptides to the 3-His hsPrP(84-114).  相似文献   

4.
The complexes between copper(II) and four synthetic tetrapeptides bearing a single histidine residue within the sequence (AcHGGG, AcGHGG, AcGGHG and AcGGGH, respectively), have been investigated by potentiometric and spectroscopic methods (UV-Vis, circular dichroism and electron paramagnetic resonance). Potentiometric studies in the pH range 4-12 allowed identification and quantitative determination of the species present in solution for each copper-peptide complex. In all cases, upon raising pH, copper(II) coordination starts from the imidazole nitrogen of the His; afterwards three deprotonated amide nitrogens are progressively involved in copper coordination, except in the case of AcGHGG. Based on the potentiometric and spectroscopic results, detailed molecular structures are proposed for the dominant copper(II) tetrapeptide species existing in solution, either at neutral or alkaline pH. The structural consequences of the presence and of the location of a unique histidine residue within the tetrameric sequence are specifically analyzed. Results are discussed in relation to the modeling of copper(II) binding sites in proteins, particular emphasis being devoted to the copper complexes of the prion protein.  相似文献   

5.
Mononuclear copper(II) complexes of the alloferon 1 His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly, alloferon 2 Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly, Ac-alloferon 1 Ac-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly and Ac-alloferon 2 Ac-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly have been studied by potentiometric, UV-vis, CD and EPR spectroscopic methods. The potentiometric and spectroscopic data shows that acetylation of the amino terminal group induces significant changes in the coordination properties of the Ac-alloferons 1 and 2 compared to the alloferons 1 and 2, respectively. The presence of four (Ac-alloferon 1) or three (Ac-alloferon 2) histidyl residues provides a high possibility for the formation of macrochelates via the exclusive binding of imidazole-N donor atoms. The macrochelation suppresses, but cannot preclude the deprotonation and metal ion coordination of amide functions and the CuH−3L species with {NIm, 3N} bonding mode at pH above 8 are formed. The N-terminal amino group of the alloferons 1 and 2 takes part in the coordination of the metal ion and the 4N complex with {NH2, 3NIm} coordination mode dominates at physiological pH 7.4 for alloferon 1 and the 3N {NH2, CO, 2NIm} binding mode for alloferon 2. However, at higher pH values sequential amide nitrogens are deprotonated and coordinated to copper(II) ions.  相似文献   

6.
The equilibrium distribution of copper(II) and zinc(II) ions among a mixture of 17 amino acids has been computed from stability-constant and blood-plasma-composition data. At pH7.4, 98% of the copper(II) in the simulated plasma solution is co-ordinated to histidine and cystine, predominantly as the mixed-ligand complexes [Cu.His.Cystine](-) and [Cu.H.His.Cystine]. Approximately half of the zinc(II) is co-ordinated to cysteine and histidine, but appreciable complex-formation occurs with most of the other amino acids. Stability constants are given for copper(II) and zinc(II) amino acid complexes, including some mixed-ligand species, at 37 degrees C and I=0.15m.  相似文献   

7.
The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in the nervous system where they act as neurotransmitters and neuromodulators. Significantly reduced levels of these peptides were observed in neurodegenerative diseases and it may be suggested that this reduction may also result from the copper(II)-catalyzed oxidation. The studies of the interaction of copper(II) with neurokinin A and the copper(II)-catalyzed oxidation were performed. Copper(II) complexes of the neurokinin A (His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) and acetyl-neurokinin A (Ac-His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) were studied by potentiometric, UV-Vis (UV-visible), CD (circular dichroism) and EPR spectroscopic methods to determine the stoichiometry, stability constants and coordination modes in the complexes formed. The histidine residue in first position of the peptide chain of neurokinin A coordinates strongly to Cu(II) ion with histamine-like {NH2, NIm} coordination mode. With increasing of pH, the formation of a dimeric complex Cu2H2L2 was found but this dimeric species does not prevent the deprotonation and coordination of the amide nitrogens. In the Ac-neurokinin A case copper(II) coordination starts from the imidazole nitrogen of the His; afterwards three deprotonated amide nitrogens are progressively involved in copper coordination. To elucidate the products of the copper(II)-catalyzed oxidation of the neurokinin A and Ac-neurokinin A, liquid chromatography-mass spectrometry (LC-MS) method and Cu(II)/hydrogen peroxide as a model oxidizing system were employed.Oxidation target for both studied peptides is the histidine residue coordinated to the metal ions. Both peptides contain Met and His residues and are very susceptible on the copper(II)-catalyzed oxidation.  相似文献   

8.
The stoichiometry, stability constants and solution structure of the complexes formed in the reaction of copper(II) with N-terminal fragments of human and mouse beta-amyloid peptide, 1-6, 1-9, 1-10 have been determined by potentiometric, UV/VIS, CD and EPR spectroscopic methods. The fragments 1-9 and 1-10 form complexes with the same coordination modes as the fragments 1-6. The coordination of the metal ion for human and mouse fragments starts from the N-terminal Asp residue which stabilizes significantly the 1N complex as a result of chelation through the beta-carboxylate group. In a wide pH range of 4-10, the imidazole nitrogen of His(6) is coordinated to form a macrochelate. Results show that, in the pH range 5-9 the human fragments form the complex with different coordination mode compared to that of the mouse fragments. The low pK(1)(amide) values (approximately 5) obtained for the mouse fragments may suggest the coordination of the amide nitrogen of His(6) while in case of the human fragments the coordination of the amide nitrogen of Ala(2) is suggested. The replacement of glycine by the arginine residue in the fifth position of the beta-amyloid peptide sequence changes the coordination modes of a peptide to metal ion in the physiological pH range. In a wide pH (including physiological) range the mouse fragments of beta-amyloid peptide are much more effective in Cu(II) binding than the human fragments.  相似文献   

9.
Copper(II) complexes of the peptide fragment (Dpl122-130) encompassing the sequence 122-130 of human doppel protein were characterized by potentiometric, UV-Visible, CD and EPR spectroscopic methods. An analogous peptide, in which the aspartate residue was substituted by an asparagine amino acid, was synthesized in order to provide evidence on the possible role of carboxylate group in copper(II) coordination. It was found that the carboxylic group is directly involved in copper(II) coordination at acidic pH, forming the CuLH2 species with Dpl122-130. This copper(II) complex displayed EPR parameters very similar to those of the analogous complex with the whole doppel protein. At pH higher than 7, the complexes showed magnetic parameters similar to those of the major species of protein formed in the pH range 7-8, with the metal coordination environment consisting of one imidazole and three amide nitrogen atoms. The comparison of Cu-Dpl122-130 binding constant values with those of the prion peptide fragments (PrP106-114), showed that doppel peptide had a higher metal binding affinity at acidic pH whereas the prion peptide fragment binds the metal tightly at physiological pH.  相似文献   

10.
We report studies on the interaction of some zinc(II) and copper(II) complexes of amines and amino acids with poly(dC-dG) and poly(dm5C-dG). Of the zinc complexes the species zinc-tris(2-aminoethyl) amine is found to be the most efficient for inducing Z-DNA giving a mid point at low ionic strength of 1.4 microM (poly(dC-dG] and 44nM (poly(dm5C-dG). While an antagonistic effect on raising the ionic strength is observed, the transition occurs at only 2 microM for poly(dm5C-dG) at 150mM NaCl. The most efficient copper(II) complex is that of diethylene triamine, though copper(II) complexes are generally less efficient than zinc(II) complexes. We also report kinetic and thermodynamic studies upon the B-Z transition induced by these complexes. A model is proposed for the interaction of one of the zinc complexes which involves not only direct zinc-DNA binding but also the formation of hydrogen bonds between the metal bond amine groups and the residues adjacent to the coordination site.  相似文献   

11.
The interaction of Cu(II) ion with small peptides has been an interesting subject to clarify the role of copper in detail. As various Cu(II)-oligopeptide complexes can also be good models for the active centers of metalloenzymes, complexes of tripeptide and tetrapeptides are frequently investigated instead of the complexes of large peptides. The histidine side-chains of various metalloproteins frequently take part in the copper(II) coordination. Accordingly, we studied the coordination of Cu(II) to the N and C terminal protected tripeptide ligands L(A) (Ac-HisGlyHis-NHMe), L(B) (Ac-HisAlaHis-NHMe) and L(C) (Ac-HisAibHis-NHMe) in aqueous solution potentiometrially in order to determine the effect of C(alpha) methyl groups at middle residue acid on the ligation of the backbone NH and also on histidine's N(im) of coordination. Species distribution curves indicates that in acidic pH, all three peptides behave as bidentate ligands and a macrochelate forms on the metal coordination with the two histidine imidazolyl N. This coordination remains unaffected with the +I effect of increasing CH(3) groups at C(alpha) of middle residue. In the pH range 4-8, the tridentate coordination from the peptide is seen in ligand L(A) and L(B) while it is absent in L(C) due to +I effect of two C(alpha) methyl groups at middle residue as they makes N-terminal NH deprotonation difficult in this pH range and it takes place along with C terminal NH and only 4N coordinated species formed at higher pH. These 4N (N(im), N(-), N(-), N(im)) coordinated species are formed by all the three ligands at higher pH values.  相似文献   

12.
Results are reported from potentiometric and spectroscopic (UV-Vis, CD, and ESR) studies of the protonation constants and Cu2+ complex stability constants of pituitary adenylate cyclase activating polypeptide fragments (HSDGI-NH2, TDSYS-NH2, RKQMAVKKYLAAVL-NH2). With HSDGI-NH2, the formation of a dimeric complex Cu2H-2L2 was found in the pH range 5-8, in which the coordination of copper(II) is glycylglycine-like, while the fourth coordination site is occupied by the imidazole N3 nitrogen atom, forming a bridge between two copper(II) ions. The formation of dimeric species does not prevent the deprotonation and coordination of the amide nitrogen, and in pH above 8 the CuH-2L complex is formed. Aspartic acid in the third position of peptide sequence stabilizes the CuH-2L species and prevents the coordination of a fourth nitrogen donor. Aspartic acid residue in the second position of TDSYS-NH2 stabilizes the CuL (2N) complex but does not prevent deprotonation and binding of the second and third peptide nitrogens to give 3N and 4N complexes at higher pH. The tetradecapeptide amide forms with copper(II) ions unusually stable 3N and 4N complexes compared to pentaalanine amide.  相似文献   

13.
Torreggiani A  Tamba M  Fini G 《Biopolymers》2000,57(3):149-159
A comparative Raman and FTIR study of carnosine, a dipeptide present in several mammalian tissues, and its complexes with copper(II) at different pH values was carried out. The neutral imidazole ring gives rise to some bands that appear at different wavenumbers, depending on whether the imidazole ring is in the tautomeric form II or I. At pH 7 and 9 the molecule exists in equilibrium between the two tautomeric forms; tautomer I is predominant. Metal coordination is a factor that affects the tautomeric equilibrium, and the copper(II) coordination site can be monitored by using some Raman marker bands such as the vC(4)=C(5) band. On the basis of the vibrational results, conclusions can be drawn on the functional groups involved in the Cu(II) chelation and on the species existing in the Cu(II)-carnosine system. At neutral and basic pH the most relevant species formed when the Cu(II)/carnosine molar ratio is not very different from unity is a dimer, [Cu(2)L(2)H(-2)](0). In this complex the ligand coordinates the metal via the N (amino), O (carboxylate), and N (amide) donor atoms while the N(tau) nitrogen atoms of the imidazole rings (tautomer II) bridge the copper(II) ions. At a slightly acidic pH the two monomeric complexes [CuLH](2+) and [CuL](+) were present. In the former the imidazole ring takes part in the Cu(II) coordination in the tautomeric I form whereas in the latter it is protonated and not bound to Cu(II).  相似文献   

14.
Preparation and characterisation of copper(II) hyaluronate   总被引:1,自引:0,他引:1  
Amorphous copper complexes of the general composition Cu(C14H20O11N)2 x xH2O have been prepared with high- and low-molecular-weight hyaluronic acid (HA). Optimal conditions for preparation are obtained at pH values from 5.0 to 5.5, with a molar ratio of HA versus Cu2+ of 1:1, and at a mass concentration of 5 and 10 mg/mL for high- (Mw = 1.8 x 10(6) Da) and low-molecular-weight sodium hyaluronate (Mw = 2 x 10(5) Da), respectively. The coordination polyhedron of the copper ion has been elucidated by EXAFS and XANES spectroscopy. Copper atoms are octahedrally coordinated in both cases with four equatorial Cu-O bond lengths of 1.95 A, and two axial Cu-O bonds of 2.46 A. Visible spectra of acidic aqueous solution suggest that substitution of axial oxygens by NH groups occurs at pH 6.5 or higher. If the pH value of the copper(II) hyaluronate solution increases above 6.5, the coordination of copper(II) changes. It is very likely that the N atom coming from the acetamido group enters into the coordination sphere of the copper(II) ion.  相似文献   

15.
Copper(II) and nickel(II) ternary complexes of L-dopa and related compounds   总被引:1,自引:0,他引:1  
The stability constants of the mixed ligand complexes of L-dopa, L-tyrosine, L-phenylalanine, and dopamine with copper(II) and nickel(II) ions and with 2,2'-bipyridyl and 1,10-phenanthroline were determined pH-metrically at 25 degrees C and an ionic strength of 0.2 mol/dm3 (KCl). Spectral studies were made to establish the binding mode of the ambidentate L-dopa in the ternary complexes. In contrast with the aromatic (N,N) donor atoms, the (O,O) binding mode of L-dopa is particularly favored in its ternary systems with copper(II) and nickel(II); thus, even at physiological pH there is a very considerable formation of (O,O)-bound mixed ligand complexes containing a free amino acid side-chain. Numerous binary transition metal-L-dopa complexes and the ternary complexes formed with various B ligands have been evaluated from a coordination chemistry aspect, with regard to the possibility of their therapeutic application in the treatment of Parkinson disease.  相似文献   

16.
The systematic investigation of the copper(II) complexes of tripeptides Xaa-Xaa-His, Xaa-His-Xaa and His-Xaa-Xaa, where Xaa=Gly or Ala was performed by combined pH-metry, spectrophotometry, CD and in part EPR spectroscopy. The matrix rank analysis of the spectral data revealed the number of the coloured and optically active species as a basis for the solution speciation. A critical evaluation on the speciation and solution structure of the complexes formed is presented on the basis of their d-d band optical activity. The replacement of a Gly residue with the chiral Ala amino acid allowed us to gain decisive information on the solution structure of the complexes by CD spectroscopy. It was shown that the tripeptides with histidine in the third position formed CuH(-2)L species with (NH(2), 2N(-), ImN - where Im stands for imidazole) coordination sphere as a major species, and only the macrochelated CuL complexes as minor species around pH 5.0. In copper(II)-Xaa-His-Xaa tripeptide systems the CuH(-1)L (NH(2), N(-), ImN) is the most stable species at physiological pH, but the vacant fourth site around copper(II)ions is offered for further deprotonation, most probably resulting in mixed hydroxo species at low (<5 x 10(-4)M) metal ion concentrations, while a tetrameric complex is dominant when the copper concentration exceeds 3 x 10(-3)M. The histamine type coordination mode in CuL and CuL(2) complexes of His-Xaa-Xaa ligands predominates at low pH. The structural consequences drawn from the CD spectra for the mono and bis parent complexes were supported by theoretical calculations. CD spectra strongly suggest the participation of the imidazole nitrogen both in the Cu(2)H(-2)L(2) and CuH(-2)L complexes.  相似文献   

17.
Copper(II) complexes of dipeptides of histidine containing additional chelating bis(imidazol-2-yl) agent at the C-termini (PheHis-BIMA [N-phenylalanyl-histidyl-bis(imidazol-2-yl)methylamine] and HisPhe-BIMA [N-histidyl-phenylalanyl-bis(imidazol-2-yl)methylamine]) were studied by potentiometric, UV-Visible and Electron Paramagnetic Resonance (EPR) techniques. The imidazole nitrogen donor atoms of the bis(imidazol-2-yl)methyl group are described as the primary metal binding sites forming stable mono- and bis(ligand) complexes at acidic pH. The formation of a ligand-bridged dinuclear complex [Cu2L2]4+ is detected in equimolar solutions of copper(II) and HisPhe-BIMA. The coordination isomers of the dinuclear complex are described via the metal binding of the bis(imidazol-2-yl)methyl, amino-carbonyl and amino-imidazole(His) functions. In the case of the copper(II)-PheHis-BIMA system the [NH2, N-(amide), N(Im)] tridentate coordination of the ligand is favoured and results in the formation of di- and trinuclear complexes [Cu2H(-1)L]3+ and [Cu3H(-2)L2]4+ in equimolar solutions. The presence of these coordination modes shifts the formation of "tripeptide-like" ([NH2, N-, N-, N(Im)]-coordinated) [CuH(-2)L] complexes into alkaline pH range as compared to other dipeptide derivatives of bis(imidazol-2-yl) ligands. Although there are different types of imidazoles in these ligands, the deprotonation and coordination of the pyrrole-type N(1)H groups does not occur below pH 10.  相似文献   

18.
The protonation equilibria of alanylglycylhistamine (Ala-Gly-Ha) and the complexation of this ligand with Cu(II) and Ni(II) have been studied by pH-potentiometry, 1H and 14N NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), UV-Vis spectrophotometry and electron paramagnetic resonance (EPR). From pH approximately 2-12, the following complexes: MLH, MLH(-1), MLH(-2) and MLH(-3) are successively formed in aqueous solutions, the ligand under its neutral form being noted L. At physiological pH, the MLH(-2) complex is predominant. The coordination in this complex is assumed by one amino, two deprotonated peptide and one imidazole nitrogen atoms. The ESI-MS study confirmed the formation of the MLH(-1), MLH(-2) and MLH(-3) complexes. The structure of MLH(-2) was determined by single crystal X-ray analysis. CD and UV-Vis techniques allowed us to propose that the imidazole-N3 nitrogen acts as the anchor group for the coordination to the metal(II) ions rather than the amino group. At high pH values, the further deprotonation of the N-H imidazole group, leading to the formation of MLH(-3), occurs, as revealed by 1H NMR spectroscopy.  相似文献   

19.
Copper(II) is known to bind in the influenza virus His37 cluster in the homotetrameric M2 proton channel and block the proton current needed for uncoating. Copper complexes based on iminodiacetate also block the M2 proton channel and show reduced cytotoxicity and zebrafish-embryo toxicity. In voltage-clamp oocyte studies using the ubiquitous amantadine-insensitive M2 S31N variant, the current block showed fast and slow phases, in contrast to the single phase found for amantadine block of wild-type M2. Here, we evaluate the mechanism of block by copper adamantyl iminodiacitate and copper cyclooctyl iminodiacitate complexes and address whether the complexes can coordinate with one or more of the His37 imidazoles. The current traces were fitted to parametrized master equations. The energetics of binding and the rate constants suggest that the first step is copper complex binding within the channel, and the slow step in the current block is the formation of a Cu-histidine coordination complex. Solution-phase isothermal titration calorimetry and density functional theory (DFT) calculations indicate that imidazole binds to the copper complexes. Structural optimization using DFT reveals that the complexes fit inside the channel and project the Cu(II) toward the His37 cluster, allowing one imidazole to form a coordination complex with Cu(II). Electrophysiology and DFT studies also show that the complexes block the G34E amantadine-resistant mutant despite some crowding in the binding site by the glutamates.  相似文献   

20.
Stoichiometry, stability constants and solution structures of the copper(II) complexes of the N-acetylated tetrapeptide HisGlyHisGly were determined in aqueous solution in the pH range 2-11. The potentiometric and spectroscopic data (UV-Vis, CD, EPR and Raman scattering) show that acetylation of the amino terminal group induces drastic changes in the coordination properties of AcHGHG compared to HGHG. The N3 atoms of the histidine side chains are the first anchoring sites of the copper(II) ion. At pH 4.7 and 5.6 both the imidazole rings cooperate in the formation of a 2N equatorial set, while, at higher pH values, 3N and 4N complexes are formed through the coordination of peptide N- atoms. The logbeta values of the copper complexes of AcHGHG are by far lower than those of the corresponding species in the parent CuII-HGHG system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号