首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brucella abortus is an intracellular pathogen that relies on unconventional virulence factors to infect hosts. In non-professional phagocytes, Rho GTPases-activation by the Escherichia coli cytotoxic necrotizing factor (CNF) promoted massive Brucella entrance by membrane ruffling, a mechanism that differs from the common mode of entrance used by this bacterium in non-treated cells. Cytotoxic necrotizing factor treatment, however, did not alter the intracellular route followed by the wild type or non-virulent defined mutants. In contrast, expression of a constitutively active Rab5Q79L GTPase did not alter cell-invasion by Brucella but hampered its ability to reach the endoplasmic reticulum. The CNF-induced Brucella super-infection did not reduce the ability of host cells to synthesize DNA and progress through the cell cycle. Furthermore, CNF-treatment increased the isolation of Brucella-containing compartments by a factor of 15. These results demonstrate that in non-professional phagocytic cells, Brucella manipulates two different sets of GTPases during its biogenesis, being internalization and intracellular trafficking two consecutive but independent processes. Besides, CNF-induced super-infection demonstrates that Brucella does not interfere with crucial cellular processes and has shown its potential as tool to characterize the intracellular compartments occupied by this bacterium.  相似文献   

2.
BackgroundHuman brucellosis caused by the facultative intracellular pathogen Brucella spp. is an endemic bacterial zoonosis manifesting as acute or chronic infections with high morbidity. Treatment typically involves a combination therapy of two antibiotics for several weeks to months, but despite this harsh treatment relapses occur at a rate of 5–15%. Although poor compliance and reinfection may account for a fraction of the observed relapse cases, it is apparent that the properties of the infectious agent itself may play a decisive role in this phenomenon.Methodology/Principal findingsWe used B. abortus carrying a dual reporter in a macrophage infection model to gain a better understanding of the efficacy of recommended therapies in cellulo. For this we used automated fluorescent microscopy as a prime read-out and developed specific CellProfiler pipelines to score infected macrophages at the population and the single cell level. Combining microscopy of constitutive and induced reporters with classical CFU determination, we quantified the protective nature of the Brucella intracellular lifestyle to various antibiotics and the ability of B. abortus to persist in cellulo despite harsh antibiotic treatments.Conclusion/SignificanceWe demonstrate that treatment of infected macrophages with antibiotics at recommended concentrations fails to fully prevent growth and persistence of B. abortus in cellulo, which may be explained by a protective nature of the intracellular niche(s). Moreover, we show the presence of bona fide intracellular persisters upon antibiotic treatment, which are metabolically active and retain the full infectious potential, therefore constituting a plausible reservoir for reinfection and relapse. In conclusion, our results highlight the need to extend the spectrum of models to test new antimicrobial therapies for brucellosis to better reflect the in vivo infection environment, and to develop therapeutic approaches targeting the persister subpopulation.  相似文献   

3.
4.
Identification of Brucella spp. genes involved in intracellular trafficking   总被引:10,自引:3,他引:7  
After uptake by host cells, the pathogen Brucella transits through early endosomes, evades phago–lysosome fusion and replicates in a compartment associated with the endoplasmic reticulum (ER). The molecular mechanisms underlying these processes are still poorly understood. To identify new bacterial factors involved in these processes, a library of 1800 Brucella melitensis 16M mini-Tn 5catkm mutants was screened for intracellular survival and multiplication in HeLa cells and J774A.1 macrophages. Thirteen mutants were identified as defective for their intracellular survival in both cell types. In 12 of them, the transposon had inserted in the virB operon, which encodes a type IV-related secretion system. The preponderance of virB mutants demonstrates the importance of this secretion apparatus in the intracellular multiplication of B. melitensis . We also examined the intracellular fate of three virB mutants ( virB2 , virB4 and virB9 ) in HeLa cells by immunofluorescence. The three VirB proteins are not necessary for penetration and the inhibition of phago–lysosomal fusion within non-professional phagocytes. Rather, the virB mutants are unable to reach the replicative niche and reside in a membrane-bound vacuole expressing the late endosomal marker, LAMP1, and the sec61β protein from the ER membrane, proteins that are present in autophagic vesicles originating from the ER.  相似文献   

5.
6.
Glucose Transport in Brucella abortus   总被引:4,自引:4,他引:0       下载免费PDF全文
Brucella abortus British strain 19 transported glucose with an apparent K(m) of 0.16 mM and an apparent V(max) of 250 nmol per min per mg of N. The only common glucose analogue transported was 2-deoxyglucose (2-DOG), with an apparent K(i) of 0.73 mM. Alpha- or beta-methyl glucosides and 3-O-methylglucose were not transported. Transport was linear for 70 to 90 s, depending on the concentration of substrate used. 2-Deoxyglucose was transported as the free sugar and was not further metabolized once inside the cell. There was no glucose phosphoenolpyruvate phosphotransferase system (PEP-PTS) present, and there were no inhibitors present in Brucella cell-free extract that inhibited the Escherichia coli glucose PEP-PTS. N-Ethylmaleimide (NEM) and p-chloromercuribenzoate (pCMB) completely inhibited transport of glucose and 2-DOG. Glutathione, dithiothreitol, and beta-mercaptoethanol reversed the effects of pCMB but not of NEM. A pH optimum of 7.2 and a temperature optimum of 37 to 45 C were observed for both K(m) and V(max). The glucose transport system appeared to be constitutive for glucose transport in cells grown on fructose, galactose, erythritol, or glucose. The electron transfer inhibitors carbonyl cyanide, m-chlorophenylhydrazone, NaN(3), 2,4-dinitrophenol, and KCN inhibited 2-DOG transport to a greater extent than did the metabolic energy inhibitors NaAsO(4), iodoacetate, KF, and 2-heptyl-4-hydroxyquinoline-N-oxide. Dicyclohexylcarbodiimide, an inhibitor of membrane-bound adenosine triphosphatases, inhibited transport by 100%.  相似文献   

7.
8.
9.
Upon entry into mammalian cells, the intracellular pathogen Brucella abortus resides within a membrane-bound compartment, the Brucella -containing vacuole (BCV), the maturation of which is controlled by the bacterium to generate a replicative organelle derived from the endoplasmic reticulum (ER). Prior to reaching the ER, Brucella is believed to ensure its intracellular survival by inhibiting fusion of the intermediate BCV with late endosomes and lysosomes, although such BCVs are acidic and accumulate the lysosomal-associated membrane protein (LAMP-1). Here, we have further examined the nature of intermediate BCVs using confocal microscopy and live cell imaging. We show that BCVs rapidly acquire several late endocytic markers, including the guanosine triphosphatase Rab7 and its effector Rab-interacting lysosomal protein (RILP), and are accessible to fluid-phase markers either delivered to the whole endocytic pathway or preloaded to lysosomes, indicating that BCVs interact with late endosomes and lysosomes. Consistently, intermediate BCVs are acidic and display proteolytic activity up to 12 h post-infection. Expression of dominant-negative Rab7 or overexpression of RILP significantly impaired the ability of bacteria to convert their vacuole into an ER-derived organelle and replicate, indicating that BCV maturation requires interactions with functional late endosomal/lysosomal compartments. In cells expressing dominant-negative Rab7[T22N], BCVs remained acidic, yet displayed decreased fusion with lysosomes. Taken together, these results demonstrate that BCVs traffic along the endocytic pathway and fuse with lysosomes, and such fusion events are required for further maturation of BCVs into an ER-derived replicative organelle.  相似文献   

10.
Four juvenile male wolves (Canis lupus) each received an oral dose of 1.6-1.7 x 10(12) colony-forming units of Brucella abortus biovar 1 isolated from a bison (Bison bison) in Wood Buffalo National Park (Canada), and two others served as negative controls. Infected wolves did not show clinical signs of disease but did develop high Brucella antibody titers. Small numbers of B. abortus were excreted sporadically in feces until day 50 postinoculation (PI). Very small numbers of the bacterium were isolated from urine of only one wolf late on the same day that it was infected, and very small numbers of colonies of B. abortus were obtained from buccal swabs of three wolves for up to 48 hr PI. Two infected wolves euthanized 6 mo after the start of the experiment had no lesions, and colonies of B. abortus were isolated from thymus and most major lymph nodes. The other two infected wolves euthanized 12 mo after the start of the experiment had no lesions, and smaller numbers of brucellae were recovered from fewer lymph nodes compared with the wolves killed 6 mo earlier. The sporadic excretion of very small numbers of brucellae by the wolves was insignificant when compared with the infective dose for cattle. Brucella abortus, brucellosis, Canis lupus, pathogenesis, serology, wolf.  相似文献   

11.
Immunity and protection against Brucella abortus   总被引:2,自引:0,他引:2  
Brucella abortus is an intracellular pathogen that causes disease in cattle and in humans. The response against B. abortus involves the whole gamut of the immune system, from innate to adaptive immunity resulting from stimulation of antigen-presenting cells, NK cells, CD4(+) and CD8(+) T cells, and B cells.  相似文献   

12.
Antigens of diagnostic significance in Brucella abortus   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
16.
17.
18.
Brucellosis is characterized by abortion in ruminants and a protracted undulant fever in humans, which often results in severe pathological manifestations. Scant information exists about the molecular mechanisms employed by Brucella abortus to combat host defenses or to persist and replicate within host cells. Transposon (Tn5) mutagenesis of B. abortus and the subsequent screening of mutants for sensitivity to killing in murine macrophages and in the mouse model led to the identification of mutants which were severely attenuated for intracellular survival. One group of mutants was interrupted in cydB, a gene that is part of the cydAB operon encoding cytochrome bd oxidase, which catalyzes an alternate terminal electron transport step in bacterial respiration. The elevated affinity for molecular oxygen of this enzyme in Escherichia coli has suggested that it is involved in the protection of sensitive enzymatic activities such as those of hydrogenases and nitrogenases from damage. B. abortus cydB::Tn5 strains exhibited heightened sensitivity to the respiratory inhibitors zinc and azide, highly reactive oxygen species such as hydrogen peroxide, low pH, and attenuated virulence in the mouse model of infection. Virulence was restored by an intact copy of cydAB or by B. abortus genes encoding the oxidative radical-scavenging enzyme Cu/Zn superoxide dismutase or catalase. These results suggest a bifunctional role for the products of the cydAB operon, both in preventing the buildup of oxidative free radicals and in detoxifying the intracellular compartment, thus indicating the importance of these products in preventing intracellular destruction. Intracellular conditions that favor expression of the cydAB operon are under investigation and may be linked to the acid sensitivity also observed in this strain.  相似文献   

19.
20.
Field strains of Brucella abortus were resistant to mitomycin C, whereas strain 19 was sensitive; therefore, the antibiotic was used to distinguish B. abortus strain 19 from other strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号