首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The palaeoecological visibility of historical human impact on natural ecosystems in tropical East Africa is strongly impeded by an overriding dominant signature of climate change at decadal‐to‐millennial time scales. Better knowledge of the relative magnitude and timing of present and past human impact and climate variability is, however, instrumental to properly assess the resilience, and recovery potential, of East Africa's natural ecosystems. Here, we briefly review comprehensive previous attempts to assess past ecosystem responses to climate change and human impact. We further discuss some key issues of climate‐human‐ecosystem relationships in a multidisciplinary framework and address some future challenges and outcomes, which may pave the way to a better understanding of past climate‐human‐ecosystem interaction‐ in tropical Africa.  相似文献   

2.
Vegetation dynamics plays a critical role in causing the decadal variability of precipitation over the Sahel region of West Africa. However, the potential impact of changes in CO2 concentration on vegetation dynamics and precipitation variability of this region has not been addressed by previous studies. In this paper, we explore the role of CO2 concentration in the regional climate system of West Africa using a zonally symmetric, synchronously coupled biosphere‐atmosphere model. We first document the response of precipitation and vegetation to incremental changes of CO2 concentration; the impact of CO2 concentration on the variability of the regional biosphere‐atmosphere system is then addressed using the second half of the twentieth century as an example. An increase of CO2 concentration causes the regional biosphere‐atmosphere system to become wetter and greener, with the radiative effect of CO2 and improved plant‐water relation dominant in the Sahelian grassland region and the direct enhancement of leaf carbon assimilation dominant in the tree‐covered region to the south. Driven by the observed sea surface temperature (SST) of the tropical Atlantic Ocean during the period 1950–97 and with CO2 concentration prescribed at a pre‐industrial level 300ppmv, the model simulates a persistent Sahel drought during the period of 1960s?1990s. The simulated drought takes place in the form of a transition of the coupled biosphere‐atmosphere system from a wet/green regime in the 1950s to a dry/barren regime after the 1960s. This climate transition is triggered by SST forcing and materialized through vegetation‐climate interactions. The same SST forcing does not produce such a persistent drought when a constant modern CO2 concentration of 350ppmv is specified, indicating that the biosphere‐atmosphere system at higher CO2 level is more resilient to drought‐inducing external forcings. This finding suggests that the regional climate in Sahel, which tends to alternate between dry and wet spells, may experience longer (or more frequent) wet episodes and shorter (or less frequent) dry episodes in the future than in the past. Our study has significant implications regarding the impact of climate change on regional socio‐economic development.  相似文献   

3.
Aims A lack of explicit information on differential controls on net primary productivity (NPP) across regions and ecosystem types is largely responsible for uncertainties in global trajectories of terrestrial carbon balance with changing environment. The objectives of this study were to determine how NPP of different forest types would respond to inter-annual variability of climate and to examine the responses of NPP to future climate change scenarios across contrasting forest types in northern China.Methods We investigated inter-annual variations of NPP in relation to climate variability across three forest types in northern China, including a boreal forest dominated by Larix gmelinii Rupr., and two temperate forests dominated by Pinus tabulaeformis Carr. and Quercus wutaishanica Mayr., respectively, and studied the responses of NPP in these forests to predicted changes in climate for the periods 2011–40, 2041–70 and 2070–100 under carbon emission scenarios A2 and B2 of Intergovernmental Panel on Climate Change. We simulated the responses of NPP to predicted changes in future climate as well as inter-annual variability of the present climate with the Biome-BGC version 4.2 based on site- and species-specific parameters. The modeled forest NPP data were validated against values in literature for similar types of forests and compared with inter-annual growth variations reflected by tree-ring width index (RWI) at the study sites.Important findings Inter-annual variations in modeled NPP during the period 1960–06 were mostly consistent with the temporal patterns in RWI. There were contrasting responses of modeled NPP among the three forest types to inter-annual variability of the present climate as well as to predicted changes in future climate. The modeled NPP was positively related to annual mean air temperature in the L. gmelinii forest (P < 0.001), but negatively in the P. tabulaeformis forest (P = 0.05) and the Q. wutaishanica forest (P = 0.03), while the relationships of modeled NPP with annual precipitation for the three forest types were all positive. Multiple stepwise regression analyses showed that temperature was a more important constraint of NPP than precipitation in the L. gmelinii forest, whereas precipitation appeared to be a prominent factor limiting the growth in P. tabulaeformis and Q. wutaishanica. Model simulations suggest marked, but differential increases in NPP across the three forest types with predicted changes in future climate.  相似文献   

4.

Background

Many low- and middle-income countries are not on track to reach the public health targets set out in the Millennium Development Goals (MDGs). We evaluated whether differential progress towards health MDGs was associated with economic development, public health funding (both overall and as percentage of available domestic funds), or health system infrastructure. We also examined the impact of joint epidemics of HIV/AIDS and noncommunicable diseases (NCDs), which may limit the ability of households to address child mortality and increase risks of infectious diseases.

Methods and Findings

We calculated each country''s distance from its MDG goals for HIV/AIDS, tuberculosis, and infant and child mortality targets for the year 2005 using the United Nations MDG database for 227 countries from 1990 to the present. We studied the association of economic development (gross domestic product [GDP] per capita in purchasing-power-parity), the relative priority placed on health (health spending as a percentage of GDP), real health spending (health system expenditures in purchasing-power-parity), HIV/AIDS burden (prevalence rates among ages 15–49 y), and NCD burden (age-standardised chronic disease mortality rates), with measures of distance from attainment of health MDGs. To avoid spurious correlations that may exist simply because countries with high disease burdens would be expected to have low MDG progress, and to adjust for potential confounding arising from differences in countries'' initial disease burdens, we analysed the variations in rates of change in MDG progress versus expected rates for each country. While economic development, health priority, health spending, and health infrastructure did not explain more than one-fifth of the differences in progress to health MDGs among countries, burdens of HIV and NCDs explained more than half of between-country inequalities in child mortality progress (R 2-infant mortality  = 0.57, R 2-under 5 mortality  = 0.54). HIV/AIDS and NCD burdens were also the strongest correlates of unequal progress towards tuberculosis goals (R 2 = 0.57), with NCDs having an effect independent of HIV/AIDS, consistent with micro-level studies of the influence of tobacco and diabetes on tuberculosis risks. Even after correcting for health system variables, initial child mortality, and tuberculosis diseases, we found that lower burdens of HIV/AIDS and NCDs were associated with much greater progress towards attainment of child mortality and tuberculosis MDGs than were gains in GDP. An estimated 1% lower HIV prevalence or 10% lower mortality rate from NCDs would have a similar impact on progress towards the tuberculosis MDG as an 80% or greater rise in GDP, corresponding to at least a decade of economic growth in low-income countries.

Conclusions

Unequal progress in health MDGs in low-income countries appears significantly related to burdens of HIV and NCDs in a population, after correcting for potentially confounding socioeconomic, disease burden, political, and health system variables. The common separation between NCDs, child mortality, and infectious syndromes among development programs may obscure interrelationships of illness affecting those living in poor households—whether economic (e.g., as money spent on tobacco is lost from child health expenditures) or biological (e.g., as diabetes or HIV enhance the risk of tuberculosis). Please see later in the article for the Editors'' Summary  相似文献   

5.
Optimum climate conditions for grapevine growth are limited geographically and may be further challenged by a changing climate. Due to the importance of the winemaking sector in Europe, the assessment of future scenarios for European viticulture is of foremost relevance. A 16-member ensemble of model transient experiments (generated by the ENSEMBLES project) under a greenhouse gas emission scenario and for two future periods (2011–2040 and 2041–2070) is used in assessing climate change projections for six viticultural zoning indices. After model data calibration/validation using an observational gridded daily dataset, changes in their ensemble means and inter-annual variability are discussed, also taking into account the model uncertainties. Over southern Europe, the projected warming combined with severe dryness in the growing season is expected to have detrimental impacts on the grapevine development and wine quality, requiring measures to cope with heat and water stress. Furthermore, the expected warming and the maintenance of moderately wet growing seasons over most of the central European winemaking regions may require a selection of new grapevine varieties, as well as an enhancement of pest/disease control. New winemaking regions may arise over northern Europe and high altitude areas, when considering climatic factors only. An enhanced inter-annual variability is also projected over most of Europe. All these future changes pose new challenges for the European winemaking sector.  相似文献   

6.
Aim Africa is expected to face severe changes in climatic conditions. Our objectives are: (1) to model trends and the extent of future biome shifts that may occur by 2050, (2) to model a trend in tree cover change, while accounting for human impact, and (3) to evaluate uncertainty in future climate projections. Location West Africa. Methods We modelled the potential future spatial distribution of desert, grassland, savanna, deciduous and evergreen forest in West Africa using six bioclimatic models. Future tree cover change was analysed with generalized additive models (GAMs). We used climate data from 17 general circulation models (GCMs) and included human population density and fire intensity to model tree cover. Consensus projections were derived via weighted averages to: (1) reduce inter‐model variability, and (2) describe trends extracted from different GCM projections. Results The strongest predicted effect of climate change was on desert and grasslands, where the bioclimatic envelope of grassland is projected to expand into the desert by an area of 2 million km2. While savannas are predicted to contract in the south (by 54 ± 22 × 104 km2), deciduous and evergreen forest biomes are expected to expand (64 ± 13 × 104 km2 and 77 ± 26 × 104 km2). However, uncertainty due to different GCMs was particularly high for the grassland and the evergreen biome shift. Increasing tree cover (1–10%) was projected for large parts of Benin, Burkina Faso, Côte d’Ivoire, Ghana and Togo, but a decrease was projected for coastal areas (1–20%). Furthermore, human impact negatively affected tree cover and partly changed the direction of the projected change from increase to decrease. Main conclusions Considering climate change alone, the model results of potential vegetation (biomes) show a ‘greening’ trend by 2050. However, the modelled effects of human impact suggest future forest degradation. Thus, it is essential to consider both climate change and human impact in order to generate realistic future tree cover projections.  相似文献   

7.
The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability.  相似文献   

8.
Since first introduced to North America in 1999, West Nile virus (WNV) has spread rapidly across the continent, threatening wildlife populations and posing serious health risks to humans. While WNV incidence has been linked to environmental factors, particularly temperature and rainfall, little is known about how future climate change may affect the spread of the disease. Using available data on WNV infections in vectors and hosts collected from 2003–2011 and using a suite of 10 species distribution models, weighted according to their predictive performance, we modeled the incidence of WNV under current climate conditions at a continental scale. Models were found to accurately predict spatial patterns of WNV that were then used to examine how future climate may affect the spread of the disease. Predictions were accurate for cases of human WNV infection in the following year (2012), with areas reporting infections having significantly higher probability of presence as predicted by our models. Projected geographic distributions of WNV in North America under future climate for 2050 and 2080 show an expansion of suitable climate for the disease, driven by warmer temperatures and lower annual precipitation that will result in the exposure of new and naïve host populations to the virus with potentially serious consequences. Our risk assessment identifies current and future hotspots of West Nile virus where mitigation efforts should be focused and presents an important new approach for monitoring vector‐borne disease under climate change.  相似文献   

9.
Running over timescales that span decades or centuries, the epidemiological transition provides the central narrative of global health. In this transition, a reduction in mortality is followed by a reduction in fertility, creating larger, older populations in which the main causes of illness and death are no longer acute infections of children but chronic diseases of adults. Since the year 2000, the Millennium Development Goals (MDGs) have provided a framework for accelerating the decline of infectious diseases, backed by a massive injection of foreign investment to low-income countries. Despite the successes of the MDGs era, the inhabitants of low-income countries still suffer an enormous burden of disease owing to diarrhoea, pneumonia, HIV/AIDS, tuberculosis, malaria and other pathogens. Adding to the predictable burden of endemic disease, the threat of pandemics is ever-present and global. With a view to the future, this review spotlights five aspects of the fight against infection beyond 2015, when the MDGs will be replaced by a new set of goals for poverty reduction and sustainable development. These aspects are: exploiting the biological links between infectious and non-infectious diseases; controlling infections among the new urban majority; enhancing the response to international health threats; expanding childhood immunization programmes to prevent acute and chronic diseases in adults; and working towards universal health coverage. By scanning the wider horizon now, infectious disease specialists have the chance to shape the post-2015 era of health and development.  相似文献   

10.
Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Ni?o events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given.  相似文献   

11.
BackgroundLittle attention has been paid to potential relationships between mental health, trauma, and personal exposures to Ebola virus disease (EVD) and health behaviors in post-conflict West Africa. We tested a conceptual model linking mental health and trauma to EVD risk behaviors and EVD prevention behaviors.ConclusionsIn post-conflict settings, past war trauma and mental health problems are associated with health behaviors related to combatting EVD. The associations between war trauma and both EVD risk behaviors and EVD prevention behaviors may be mediated through two key mental health variables: depression and PTSD symptoms. Considering the role of mental health in the prevention of disease transmission may help fight continuing and future Ebola outbreaks in post-conflict Sierra Leone. This sample is specific to Freetown and the Western Area and may not be representative of all of Sierra Leone. In addition, our main outcomes as well as personal EVD exposure, war exposures, and mental health predictors rely on self-report, and therefore raise the possibility of common methods bias. However, the findings of this study may be relevant for understanding dynamics related to EVD and mental health in other major capital cities in the EVD-affected countries of West Africa.  相似文献   

12.
Cholera, an acute diarrheal illness, is caused by infection of the intestine with the bacterium Vibrio cholerae after ingestion of contaminated water or food. The disease had disappeared from most of the developed countries in the last 50 years, but cholera epidemics remain a major public health problem in many developing countries, most often localized in tropical areas. Cholera is an infectious disease for which a relationship between disease temporal patterns and climate has been demonstrated, but only in an endemic context and for local areas of Asia and South America. Until now, similar studies have not been done in an epidemic context, on the African continent, although the largest number of cholera cases has been reported for those countries by the World Health Organization. The wavelet method was used in order to explore periodicity in (i) a long-time monthly cholera incidence in Ghana, West Africa, (ii) proxy environmental variables, and (iii) climatic indices time series, from 1975 to 1995. Cross-analysis were done to explore links between these time series, i.e., between cholera and climate. Results showed strong statistical association (coherency) from the end of the 1980s, between cholera outbreak resurgences in Ghana and the climatic/environmental parameters under scrutiny. Further examination of the existence of common spatial and temporal patterns in infectious diseases on the continent of Africa will permit development of more effective treatment of disease.  相似文献   

13.
Climate drives the meningitis epidemics onset in west Africa   总被引:1,自引:0,他引:1  

Background

Every year West African countries within the Sahelo-Sudanian band are afflicted with major meningococcal meningitis (MCM) disease outbreaks, which affect up to 200,000 people, mainly young children, in one of the world''s poorest regions. The timing of the epidemic year, which starts in February and ends in late May, and the spatial distribution of disease cases throughout the “Meningitis Belt” strongly indicate a close linkage between the life cycle of the causative agent of MCM and climate variability. However, mechanisms responsible for the observed patterns are still not clearly identified.

Methods and Findings

By comparing the information on cases and deaths of MCM from World Health Organization weekly reports with atmospheric datasets, we quantified the relationship between the seasonal occurrence of MCM in Mali, a West African country, and large-scale atmospheric circulation. Regional atmospheric indexes based on surface wind speed show a clear link between population dynamics of the disease and climate: the onset of epidemics and the winter maximum defined by the atmospheric index share the same mean week (sixth week of the year; standard deviation, 2 wk) and are highly correlated.

Conclusions

This study is the first that provides a clear, quantitative demonstration of the connections that exist between MCM epidemics and regional climate variability in Africa. Moreover, this statistically robust explanation of the MCM dynamics enables the development of an Early Warning Index for meningitis epidemic onset in West Africa. The development of such an index will undoubtedly help nationwide and international public health institutions and policy makers to better control MCM disease within the so-called westward–eastward pan-African Meningitis Belt.  相似文献   

14.
As cold weather is an ischaemic heart disease (IHD) risk factor, year-to-year variations of the level of IHD mortality may be partly determined by inter-annual variations in winter climate. This paper investigates whether there is any association between the level of IHD mortality for three English counties and the winter North Atlantic Oscillation (NAO), which exerts a fundamental control on the nature of the winter climate over Western Europe. Correlation and regression analysis was used to explore the nature of the association between IHD mortality and a climate index (CI) that represents the interaction between the NAO and temperature across England for the winters 1974–1975 to 1989–1999. Statistically significant inverse associations between the CI and the level of IHD mortality were found. Generally, high levels of winter IHD mortality are associated with a negative CI, which represents winters with a strong negative phase of the NAO and anomalously low temperatures across England. Moreover, the nature of the CI in the early stages of winter appears to exert a fundamental control on the general level of winter IHD mortality. Because winter climate is able to explain a good proportion of the inter-annual variability of winter mortality, long-lead forecasting of winter IHD mortality appears to be a possibility. The integration of climate-based health forecasts into decision support tools for advanced general winter emergency service and capacity planning could form the basis of an effective adaptive strategy for coping with the health effects of harsh winters.  相似文献   

15.
The eight Millennium Development Goals (MDGs) are international development targets for the year 2015 that aim to achieve relative improvements in the standards of health, socioeconomic status and education in the world's poorest countries. Many of the challenges addressed by the MDGs reflect the direct or indirect consequences of subsistence agriculture in the developing world, and hence, plant biotechnology has an important role to play in helping to achieve MDG targets. In this opinion article, we discuss each of the MDGs in turn, provide examples to show how plant biotechnology may be able to accelerate progress towards the stated MDG objectives, and offer our opinion on the likelihood of such technology being implemented. In combination with other strategies, plant biotechnology can make a contribution towards sustainable development in the future although the extent to which progress can be made in today's political climate depends on how we deal with current barriers to adoption.  相似文献   

16.
Shlomit Paz 《EcoHealth》2009,6(3):340-345
Africa has a number of climate-sensitive diseases. One that remains a threat to public health is cholera. The aquatic environment temperature is the most important ecological parameter governing the survival and growth of Vibrio cholerae. Indeed, recent studies indicate that global warming might create a favorable environment for V. cholerae and increase its incidence in vulnerable areas. In light of this, a Poisson Regression Model has been used to analyze the possible association between the cholera rates in southeastern Africa and the annual variability of air temperature and sea surface temperature (SST) at regional and hemispheric scales, for the period 1971–2006. The results showed a significant exponential increase of cholera rates in humans during the study period. In addition, it was found that the annual mean air temperature and SST at the local scale, as well as anomalies at hemispheric scales, had significant impact on the cholera incidence during the study period. Despite future uncertainty, the climate variability has to be considered in predicting further cholera outbreaks in Africa. This may help to promote better, more efficient preparedness.  相似文献   

17.
The northern Great Plains (NGP) of the United States has been a hotspot of West Nile virus (WNV) incidence since 2002. Mosquito ecology and the transmission of vector-borne disease are influenced by multiple environmental factors, and climatic variability is an important driver of inter-annual variation in WNV transmission risk. This study applied multiple environmental predictors including land surface temperature (LST), the normalized difference vegetation index (NDVI) and actual evapotranspiration (ETa) derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) products to establish prediction models for WNV risk in the NGP. These environmental metrics are sensitive to seasonal and inter-annual fluctuations in temperature and precipitation, and are hypothesized to influence mosquito population dynamics and WNV transmission. Non-linear generalized additive models (GAMs) were used to evaluate the influences of deviations of cumulative LST, NDVI, and ETa on inter-annual variations of WNV incidence from 2004–2010. The models were sensitive to the timing of spring green up (measured with NDVI), temperature variability in early spring and summer (measured with LST), and moisture availability from late spring through early summer (measured with ETa), highlighting seasonal changes in the influences of climatic fluctuations on WNV transmission. Predictions based on these variables indicated a low WNV risk across the NGP in 2011, which is concordant with the low case reports in this year. Environmental monitoring using remote-sensed data can contribute to surveillance of WNV risk and prediction of future WNV outbreaks in space and time.  相似文献   

18.
气候变化对传染病爆发流行的影响研究进展   总被引:2,自引:0,他引:2  
李国栋  张俊华  焦耿军  赵自胜 《生态学报》2013,33(21):6762-6773
全球气候变化已影响到传染病发生、传播与变化的各个环节,从病原体及其携带者、传播途径和人体自身抵抗力等方面直接或间接影响传染病的发病趋势,从而对人类健康造成了巨大的威胁。所以加强对气候变化与传染病间关系、预测预报研究,对进一步认识、预防和控制传染病的爆发流行具有重要意义。本文首先阐述了全球气候变化对生物物种的地理分布和人类健康的影响,气候变化改变了生物物种的地理分布范围,增加了某些物种的潜在分布区域,并造成生物物侯期的改变;同时,极端气候事件成为导致种群数量波动的一个重要驱动力。气候变化对人类健康有直接和间接影响,它使得传染病发病率增加、传染病分布范围扩大、人群对疾病易感性增强。文章重点评述了气候变化对疟疾、登革热、霍乱、流行性乙型脑炎、流感、SARS、肠道传染病、鼠疫、血吸虫病等常见传染病流行机制和传播过程的影响研究进展。评述了传染病和气象因子关系分析中常用的定性和定量分析方法,传统的研究多以定性分析为主,方法较单一;目前,利用流行病学资料与同期的气象因子进行单因素相关分析、多元回归分析是常用的研究方法;主成分回归分析、逐步判别分析、灰色关联分析法、RS和GIS等方法近年来逐渐得到应用;数学建模、实验室生物学仿真实验方法是今后需强化的方向。提出了该研究领域国内外研究普遍存在和亟待解决的问题,针对目前的研究现状和存在的问题,提出了未来的研究重点和发展方向。  相似文献   

19.
Environmental changes have been shown to play an important role in the emergence of new human diseases of zoonotic origin. The contribution of social factors to their spread, especially conflicts followed by mass movement of populations, has not been extensively investigated. Here we reveal the effects of civil war on the phylogeography of a zoonotic emerging infectious disease by concomitantly studying the population structure, evolution and demography of Lassa virus and its natural reservoir, the rodent Mastomys natalensis, in Guinea, West Africa. Analysis of nucleoprotein gene sequences enabled us to reconstruct the evolutionary history of Lassa virus, which appeared 750 to 900 years ago in Nigeria and only recently spread across western Africa (170 years ago). Bayesian demographic inferences revealed that both the host and the virus populations have gone recently through severe genetic bottlenecks. The timing of these events matches civil war-related mass movements of refugees and accompanying environmental degradation. Forest and habitat destruction and human predation of the natural reservoir are likely explanations for the sharp decline observed in the rodent populations, the consequent virus population decline, and the coincident increased incidence of Lassa fever in these regions. Interestingly, we were also able to detect a similar pattern in Nigeria coinciding with the Biafra war. Our findings show that anthropogenic factors may profoundly impact the population genetics of a virus and its reservoir within the context of an emerging infectious disease.  相似文献   

20.
The Ebola virus disease (EVD) outbreak in West Africa was unprecedented in scale and location. Limited access to both diagnostic and supportive pathology assays in both resource-rich and resource-limited settings had a detrimental effect on the identification and isolation of cases as well as individual patient management. Limited access to such assays in resource-rich settings resulted in delays in differentiating EVD from other illnesses in returning travellers, in turn utilising valuable resources until a diagnosis could be made. This had a much greater impact in West Africa, where it contributed to the initial failure to contain the outbreak. This review explores diagnostic assays of use in EVD in both resource-rich and resource-limited settings, including their respective limitations, and some novel assays and approaches that may be of use in future outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号